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Abstract—Coevolutionary minimal substrates are simple
and abstract models that allow studying the relationships and
codynamics between objective and subjective fitness. Using
these models an approach is presented for defining and
analyzing fitness landscapes of coevolutionary problems. We
devise similarity measures of codynamic fitness landscapes and
experimentally study minimal substrates of test–based and
compositional problems for both cooperative and competitive
interaction.

I. INTRODUCTION

Coevolutionary scenarios are interesting for at least two
reasons. A first is that in natural evolution of biological
entities the evolutionary development of one species is
almost always accompanied by evolutionary adaption of
and changes in other species. Traits, features and abilities
in one species do not exist for themselves, but can only
be understood by the coupling with and response to other
species’ evolution. Hence, studying natural evolution most
likely means analyzing coevolutionary processes. A second
reason is that in artificial evolution used to solve optimiza-
tion problems by evolutionary search algorithms, designs
employing ideas from coevolution appear to be as intriguing
as promising. The advantages of coevolutionary designs are
particularly seen for solving competitive problems such as
in games [6], [18], or cooperative tasks that require the
coordination of several agents such as in some problems
related to evolutionary robotics [7], [11], or for situations
where the fitness function cannot be designed straightfor-
wardly. Early experimental results [5], [17] have produced
considerable optimism about coevolutionary designs, while
more recent works [10], [12] were rather to cast some
doubt regarding easily understandable (and applicable) co-
evolutionary problem solvers. The main difficulty appears
to be the complex notion of (co–) evolutionary progress
and genetically inheritable superiority. Several concepts have
been proposed to entangle this complexity and remedy its
effects, see the discussion in Sec. II.

A central issue in evolutionary computation is to have a
theoretical framework for describing and understanding the
evolutionary dynamics underlying evolutionary search. One
fundamental way for addressing this issue is the concept of
fitness landscapes, which has been successfully applied to
gain insight into the evolutionary search processes solving
static [8], [20] and dynamic [15] optimization problems.
Consequently, fitness landscapes have also been proposed to
understand coevolutionary processes [13], [14], while most
recently it has been suggested to employ dynamic land-
scapes [16]. In this paper, the concept of dynamic landscapes
is applied and extended. The aim of this approach is twofold.

A first is that dynamic landscapes offer the possibility of
studying the dynamics of two major characterizing quantities
in coevolutionary algorithms, subjective fitness and objective
fitness. A second is that the landscapes obtained enable
an analytic treatment valid for all possible individuals of
a population (for instance using landscape measures, see
e.g. [9] for a recent review). These analytic results may
establish a quantification for the differences between the
objective landscape describing the problem to be solved and
the subjective landscape describing how the coevolutionary
algorithm perceives the problem.

In pursuing these aims, Sec. II first reviews some of
the issues in coevolution and highlights the complex and
possibly even pathological behavior that can sometimes be
observed in coevolutionary runs. Also, ideas to explain
and predict these behavioral features are discussed, namely
solution concepts, interactive domains and objective as well
as subjective fitness. In Sec. III we consider simple models to
be employed in the numerical experiments studying fitness
landscapes in coevolution. Such abstract and conveniently
experimentable coevolutionary models have been named
minimal substrates by Watson and Pollack [22]; this term
is adopted here. The fitness landscapes of these models are
reported in Sec. IV. As the respective landscapes of the
interacting species are coupled and dynamically deforming
each other, we refer to such landscapes as codynamic. In ad-
dition, similarity measures of codynamic fitness landscapes
are introduced and experimentally studied. The paper ends
with discussing results and drawing conclusions.

II. ISSUES IN COEVOLUTION

Coevolutionary algorithms (CEAs) differ fundamentally
from evolutionary algorithms (EAs) about the way fitness
is assigned to individuals. The individuals of an EA may
inhabit the search space 𝑆. For static optimization problems,
each of its points 𝑥 ∈ 𝑆 possesses uniquely a fitness
value 𝑓(𝑥), which is assigned to the individual if the move
operators of the algorithm bring the individual to that point
in a given generation 𝑘 ∈ ℕ0. For the search space being
metric (or otherwise equipped with a neighborhood structure
𝑛(𝑥)), these elements cast the (static) fitness landscape
Λ𝑠 = (𝑆, 𝑓(𝑥), 𝑛(𝑥)). Dynamic optimization problems de-
viate from the static view by the fitness of an individual
depending on time, which can be linked to generational
time 𝑘, that is 𝑓(𝑥, 𝑘). Such a dynamic landscape still
consists of search space, fitness function and neighborhood
structure, but additionally includes generational time and
rules for changing fitness with time. Anyway, fitness is
always objective in that the search space point (and possibly
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generational time) alone defines it. In other words, fitness is
a property of a search space point, every individual has the
same fitness value if it is situated at the same search space
point (and as long as fitness does not change dynamically),
and the fitness of one individual does not depend on the
fitness of other individuals.

Contrary to the objective fitness of EAs, CEAs assign
fitness that is subjective. In coevolution the fitness of an
individual is obtained with respect to the fitness (and pos-
sibly the search space points) of other individuals. These
other individuals, which are called evaluators, do usually not
belong to the same population as the individual for which
fitness is to be evaluated, but to a coevolving population.
As a consequence, the fitness of an individual at a given
generation depends on which evaluators are taken, and on
the fitness these evaluators have. As the individuals that
form the pool of possible evaluators undergo evolutionary
development themselves, the fitness value of a search space
point (and hence of the individual situated at this point) may
vary with the selection, which makes the fitness subjective.
For describing the process of obtaining subjective fitness,
the framework of interactive domains and solution concepts
has been proposed [12]. This framework replaces the fit-
ness function and sets out the rules for assigning fitness
values to individuals. The interactive domain defines how
the reciprocal actions between individuals of one population
with evaluators from the other are organized and how the
solution of the interaction is calculated. The solution con-
cepts formalizes how the solution translates to (personal or
collective) fitness of the individuals, how these fitnesses can
be compared and interpreted over the entire coevolutionary
run and whether or not the comparison indicates coevolution-
ary progress. To establish coevolutionary progress, however,
is sometimes difficult. Solving a (maximization) problem
means finding the search space points with highest fitness –
the peaks in the fitness landscape. The objective fitness of
EAs allows deducing (evolutionary) progress by a simple
comparison of the fitness values – the higher the value
the more likely a peak is detected. Also CEAs aim at
finding individuals with highest objective fitness. However,
the subjective fitness used to drive the CEA is the result
of specific interactions with other coevolving individuals. It
may hence be incomplete and inconsistent with respect to the
objective fitness, which is obtainable, at least in principle,
by the combination of all possible interactions. Therefore,
numerical experiments with CEAs sometimes show patho-
logical features of behavior devoid of stable progress, for
instance cycling, overspecialization and disengagement [10],
[12], [22]. All these coevolutionary failures are a direct
consequence of the uncertainty connected to the question
whether progress in subjective fitness also implies progress
in objective fitness.

III. SIMPLE COEVOLUTIONARY MODELS

To study essential features of coevolution in numerical
experiments requires appropriate models. Particularly for
studying the connection between subjective and objective
fitness, it is desirable that both quantities can be determined
in a fast and easy way. Therefore, problem description from
application domains such as coevolutionary games [6], [18]
and robotics [7], [11] are less suitable because they may

need considerable numerical setup and the objective fitness is
difficult (if at all) calculable. Following this line of thought,
it is interesting to ask what minimal structural and behavioral
requirements are needed to exhibit complex and relevant
coevolutionary dynamics. Such models have been named
minimal substrates by Watson and Pollack [22]. Accordingly,
a coevolutionary minimal substrate is a simple and abstract
model of coevolution which defines an interactive domain
and a solution concept, exhibits relevant codynamic features
and allows experimental studies of the relationships between
subjective and objective fitness. In the following, and in
addition to the initial model [22], we recall and interpret
other coevolutionary models proposed earlier [13], [14] as
minimal substrates and introduce some modifications to
these models.

The optimization problems solvable by CEAs can be
classified into two groups: compositional problems (in which
fitness of an individual is assigned by an interaction that
forms a composite or team) and test–based problems (where
the interaction involves a challenge or test) [12]. Next, sim-
ple models for both groups of coevolutionary problems are
discussed. For the group of test–based problems, we consider
number games [4], [22]. The game studied here has two
populations 𝑃1 and 𝑃2 that inhabit the search spaces 𝑆𝑥 and
𝑆𝑦 , respectively. Both search spaces are one–dimensional
and real–valued. At each generation 𝑘 = 0, 1, 2, . . ., the
individuals of population 𝑃1(𝑘) can take possible values
𝑥 ∈ 𝑆𝑥 and the population 𝑃2(𝑘) may have values 𝑦 ∈ 𝑆𝑦 .
We define identical objective fitness functions over both
search spaces, that is 𝑓𝑜𝑏𝑗(𝑥) over 𝑆𝑥 and 𝑓𝑜𝑏𝑗(𝑦) over 𝑆𝑦 ,
which consequently cast objective fitness landscapes. The
subjective fitness for both populations is the result of an
interactive number game. Therefore, for each calculation of
the subjective fitness 𝑓𝑠𝑢𝑏(𝑥) for an individual from 𝑃1, a
sample 𝑠(𝑃2) of individuals from 𝑃2 is randomly selected.
This sample is statistically independent from the sample for
the next calculation. Denote 𝜇 the size of the sample 𝑠(𝑃2)
out of 𝜆 individuals in 𝑃2 in total, with 𝜇 ≤ 𝜆. Assigning
fitness 𝑓𝑠𝑢𝑏(𝑦) for the individuals of 𝑃2 is likewise but
reversed with using statistically independent samples 𝑠(𝑃1)
from 𝑃1.

The interactive domain of the number game considered
defines that the fitness 𝑓𝑠𝑢𝑏(𝑥) with respect to the sample
𝑠(𝑃2) is calculated by counting the (mean) number of
members in 𝑠(𝑃2) that have a smaller objective fitness
𝑓𝑜𝑏𝑗(𝑠𝑖(𝑃2)), 𝑖 = 1, 2, . . . , 𝜇, than the objective fitness
𝑓𝑜𝑏𝑗(𝑥):

𝑓𝑠𝑢𝑏(𝑥) =
1

𝜇

𝜇∑
𝑖=1

score(𝑥, 𝑠𝑖(𝑃2)) (1)

with score(𝑥, 𝑠𝑖) =

{
1 if 𝑓𝑜𝑏𝑗(𝑥) > 𝑓𝑜𝑏𝑗(𝑠𝑖)
0 otherwise . The

fitness 𝑓𝑠𝑢𝑏(𝑦) is calculated accordingly from (1) where
𝑦 and 𝑠𝑖(𝑃1) replace 𝑥 and 𝑠𝑖(𝑃2). The subjective fitness
(1) has some interesting properties. It is a unitary function
𝑓(𝑥) = ℝ → [0, 1] for every 𝑓𝑜𝑏𝑗 , which eases comparing
variants of 𝑓𝑠𝑢𝑏 based on different 𝑓𝑜𝑏𝑗 . The subjective fit-
ness 𝑓𝑠𝑢𝑏 converges to the objective fitness 𝑓𝑜𝑏𝑗 for 𝑓𝑜𝑏𝑗 also
being a unitary function, the sample 𝑠(𝑃1) being large, and
the distribution of 𝑓𝑠𝑢𝑏 over 𝑠𝑖(𝑃1) matching the distribution
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of 𝑓𝑜𝑏𝑗 over 𝑆𝑥, where the 𝑥 ∈ 𝑆𝑥 should be taken to
resemble a uniform distribution of 𝑓𝑜𝑏𝑗 on the interval [0, 1].

For 𝑓𝑜𝑏𝑗(𝑥) = 𝑥, we obtain the number game introduced
by Watson and Pollack [22]. The objective fitness function
𝑓𝑜𝑏𝑗(𝑥) = 𝑥 has two optima, one minimum and one
maximum. These optima, however, are for the smallest and
the largest element in the search space 𝑆𝑥, that is, on
the boundary of any admissible domain. To numerically
obtain these optima in experiments, the locations of the
optima require to define (and algorithmically enforce) a
bounded search space. This, in turn, ultimately entails a
constrained optimization problem and somehow makes the
problem setting more complicated than desirable. Therefore,
a modification is considered with the piece-wise linear
function

𝑓𝑜𝑏𝑗(𝑥) =

{
𝑥 for 0 ≤ 𝑥 ≤ 1
0.5 otherwise . (2)

This objective fitness has a minimum at 𝑥 = 0 with
𝑓𝑜𝑏𝑗(0) = 0 and a maximum at 𝑥 = 1 with 𝑓𝑜𝑏𝑗(1) = 1,
and levels off to a mid–level value of 𝑓𝑜𝑏𝑗(𝑥) = 0.5 for
𝑥 → ±∞. As a second example of objective fitness the
smooth function

𝑓𝑜𝑏𝑗(𝑥) =
1

2
+

𝑥

1 + 𝑥2
(3)

is taken. It also has two optima, a minimum at 𝑥 = −1 with
𝑓𝑜𝑏𝑗(−1) = 0 and a maximum at 𝑥 = 1 with 𝑓𝑜𝑏𝑗(1) = 1,
and also tends to 𝑓𝑜𝑏𝑗(𝑥) = 0.5 for 𝑥 large in absolute
value. Fig. 1 shows the objective fitness function (the solid
line in the graph) for the test–based coevolutionary problems
considered. Whereas the subjective fitness (1) may converge
to the objective fitness for the conditions given above, in
a coevolutionary run both quantities will almost certainly
be different. This is because the sample 𝑠(𝑃1) is most
likely small compared to the population size of 𝑃1, and
even smaller compared to the amount of samples needed
to cover the entire domain of the search space. Fig. 1 gives
a realization of the subjective fitness (the dotted line in the
graph). This realization is obtained by drawing a medium
size sample (𝜇 = 100) from a given population (𝜆 = 400)
which is uniformly distributed on 𝑆𝑥. It can be seen that the
subjective fitness resembles the objective fitness.

For the group of compositional problems, the search
spaces 𝑆𝑥 and 𝑆𝑦 of the coevolving populations may be
combined into one shared landscape 𝑆 = {𝑆𝑥, 𝑆𝑦}. This
might result in a unique (static) objective landscape for sim-
ple coevolutionary scenarios. The compositional examples
considered in this paper also work with coevolving popula-
tions that are one–dimensional and real–valued. Therefore,
combining the two one–dimensional landscapes leads to a
shared two–dimensional objective landscape. This approach
can be found in previous research [13], [14] on understand-
ing coevolutionary phenomena by fitness landscapes. We
interpret these examples as compositional minimal substrates
and employ ridge functions as suggested in [13], [14]. The
simplest function has one ridge:

𝑓𝑜𝑏𝑗(𝑥, 𝑦) =

{
𝑛+ 2min (𝑥, 𝑦)−max (𝑥, 𝑦)

for 0 ≤ (𝑥, 𝑦) ≤ 𝑛
𝑛 otherwise

, (4)
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Fig. 1. Objective (solid line) and subjective (dotted line) fitness functions
of test–based problems. (a) The piece–wise linear function (2). (b) The
smooth function (3).
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Fig. 2. Shared objective fitness functions of compositional problems. (a)
The ridge function (4) for 𝑛 = 8. (b) The sinusoid function (5).

with 𝑥, 𝑦 ∈ ℝ and 𝑛 is a parameter that sets the size and
the hight of the landscape (see Fig. 2a). The landscape has a
single maximum at 𝑓𝑜𝑏𝑗(𝑛, 𝑛) = 2𝑛 and a ridge diagonally
from 𝑓𝑜𝑏𝑗(0, 0) = 𝑛 to 𝑓𝑜𝑏𝑗(𝑛, 𝑛) that separates two planar
surfaces. There are two minima at 𝑓𝑜𝑏𝑗(0, 𝑛) = 𝑓𝑜𝑏𝑗(𝑛, 0) =
0. Outside the square 0 ≤ (𝑥, 𝑦) ≤ 𝑛, the landscape has
the mid–level value 𝑓𝑜𝑏𝑗(𝑥, 𝑦) = 𝑛 that ensures that the
optima do not lie on the boundary of the admissible domain.
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Equation (4) is the fitness function for both populations 𝑃1

and 𝑃2 and can be interpreted as the static shared objective
fitness landscape defined over 𝑆 = {𝑆𝑥, 𝑆𝑦}. As a second
example the smooth shared objective landscape

𝑓𝑜𝑏𝑗(𝑥, 𝑦) =
sin(𝑥+ 𝑦)

1 + 𝑥2 + 𝑦2
(5)

is analyzed; see Fig. 2b. It has a global minimum at
𝑓𝑜𝑏𝑗(−0.4925,−0.4925) = −0.5611, a global maximum
at 𝑓𝑜𝑏𝑗(0.4925, 0.4925) = 0.5611, and levels off to
𝑓𝑜𝑏𝑗(𝑥, 𝑦) = 0 for (𝑥, 𝑦) large in absolute value.

The subjective fitness for each population is calculated
by using the shared objective fitness functions (4) or (5)
and inserting a value obtained by a metric on the population
of the respective other population instead of the required
second variable. Thus, for calculating the subjective fitness
of 𝑃1, a metric 𝑚(𝑃2) on 𝑃2 is taken:

𝑓𝑠𝑢𝑏(𝑥) = 𝑓𝑜𝑏𝑗(𝑥,𝑚(𝑃2)). (6)

Replacing 𝑚(𝑃1) and 𝑦 for 𝑥 and 𝑚(𝑃2) in (6) yields
the subjective fitness 𝑓𝑠𝑢𝑏(𝑦). The metric 𝑚(𝑃2) used in
the numerical experiments reported here is to identify and
employ the individual with maximal or minimal fitness
at a given generation. In some sense this means that all
individuals of the other population act as evaluators by rating
and presenting its best member.

Another significant issue in coevolutionary scenarios
is the character of the interaction. A main classification
is cooperative or competitive interaction [1], [12], [19].
Cooperative means that the individual and the evaluators
interact and collaborate to solve a problem that is harder
or impossible to solve by each of them alone. The better
they support each other and perform together, the higher
the reward and hence the fitness. In other words, both
populations work towards the same aim. In competitive
interaction the individual is rewarded for out–performing the
evaluators, which sometimes means that the fitness of one
individual is increased at the expense of the others. The main
feature here is that the aims of the populations involved are
conflicting.

Interestingly, for the simple examples of coevolutionary
models considered here, either cooperative or competitive
interactions can be imposed in an abstract way. For the
compositional minimal substrates given by (6), the question
of cooperative or competitive interaction can be decided
by the properties of the metrics 𝑚(𝑃1) and 𝑚(𝑃2). These
metrics answer which individual of either population is the
best, 𝑥𝑏𝑒𝑠𝑡(𝑘) = 𝑚(𝑃1(𝑘)) and 𝑦𝑏𝑒𝑠𝑡(𝑘) = 𝑚(𝑃2(𝑘)),
respectively. As shown in [13], [14], a cooperative inter-
action is imposed if the task for both populations is the
same, that is, both are to find the maximum or minimum
of the objective fitness function (4) and (5). A competitive
interaction takes place if one population is to search for
the maximum of (4) and (5), while the other is to find
the minimum of (4) and (5). In a similar manner, for the
test–based minimal substrates given by (1), a cooperative
interaction can be observed if both populations mean to
find the maximum (or minimum) of the objective fitness. A
competitive scenario occurs if one population searches for
the maximum while the other intends to find the minimum.

So far, the interactive domains and the character of
interaction of the minimal substrates were laid out. As eval-
uation and subsequent updating of fitness in one population
requires evaluators from the other population, the question of
timely order and sequence becomes an issue. The models we
consider here have a synchronous mode of evolutionary flow.
We consider synchronization that takes place after a gen-
eration of both populations (shared synchronization). Such
synchronization points mean that both populations evolve
along the conventional EA’s generational process (fitness
evaluation followed by selection, possibly recombination and
mutation) and communicate via delivering evaluators to the
respective other population. This implies that the fitness of
𝑃1(𝑘+1) and 𝑃2(𝑘+1) is calculated using evaluators from
𝑃2(𝑘) and 𝑃1(𝑘), respectively. As the populations take turns
in evolving, this creates a coupling via the (time–dependent)
fitness values of the respective population. As an effect, both
populations coevolve, and the landscapes show codynamics.

How this codynamics is reflected in the subjective fitness
landscapes is analyzed using numerical experiments with a
CEA. The experimental results reported are obtained for an
algorithm with separated populations that undergo selection
and mutation independent from each other. The coevolution-
ary interactions are carried out as described above. Unless
otherwise stated the population size is 𝜆1 = 𝜆2 = 24
and for the test–based minimal substrate there are 𝜇1 =
𝜇2 = 12 evaluators. Selection is tournament with size 2
and mutation is Gaussian with mutation probability 0.5 and
mutation strength 0.1. In accordance to other studies [22],
no recombination is used.

IV. CODYNAMIC FITNESS LANDSCAPES

A. Pictorial results

For the test–based problem, the subjective fitness of pop-
ulation 𝑃1(𝑘+1) at generation 𝑘+1 is calculated according
to (1) using a sample 𝑠(𝑃2(𝑘)) from the population 𝑃2(𝑘)
and yields the landscape:

𝑓𝑠𝑢𝑏(𝑥, 𝑘 + 1) =
1

𝜇

𝜇∑
𝑖=1

score(𝑥, 𝑠𝑖(𝑃2(𝑘))). (7)

The samples 𝑠(𝑃2(𝑘)) are statistically independent over
the individuals for which fitness is to be assigned. This
means for each individual in every generation (and every
coevolutionary run), there is a specific (subjective) fitness
landscape. Stated like that it seems hopeless to draw any
useful information from analyzing such landscapes. How-
ever, while the samples are statistically independent, the
possible members drawn and used as evaluators are not as
they belong to the coevolving population. This implies that
the subjective fitness landscape may follow certain patterns,
and that these patterns reveal the general topology of the
(subjective) landscape, at least as the result of averaging or
another analyzing method. The subjective fitness of 𝑃2(𝑘+1)
is calculated likewise by (7), but by using a sample 𝑠(𝑃1(𝑘)).
Note that the character of the interaction (cooperative or
competitive) may influence the average composition of
the population and consequently the (average) selection of
evaluators. For instance, if in competitive interaction the
population 𝑃1 searches the minimum and 𝑃2 the maximum,
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then the evaluators drawn from 𝑃2 will on average be larger
and generally may have other statistical properties as if both
populations were to find the minimum. This also affects
the subjective landscape (7), albeit in an implicit way only.
Further note that the subjective landscape of 𝑃1 and the
landscape of 𝑃2 are coupled via the evaluators from the
respective other population which implies that codynamics
occurs between these landscapes.

For the compositional problem we get for the objective
fitness function (4) the subjective fitness landscape of pop-
ulation 𝑃1

𝑓𝑠𝑢𝑏(𝑥, 𝑘+1) = 𝑛+2min (𝑥, 𝑦𝑏𝑒𝑠𝑡(𝑘))−max (𝑥, 𝑦𝑏𝑒𝑠𝑡(𝑘)),
(8)

while for population 𝑃2 we obtain 𝑓𝑠𝑢𝑏(𝑦, 𝑘+1) and replace
𝑥 and 𝑦𝑏𝑒𝑠𝑡(𝑘) by 𝑦 and 𝑥𝑏𝑒𝑠𝑡(𝑘) in (8). From the perspective
of the populations alone it appears that fitness is calculated
on–the–fly while the CEA is running. For the objective
fitness function (5), the landscapes read accordingly. Also
these landscapes are coupled and codynamic. In difference
to the test–based landscapes, we have the same landscape
for all individuals of each population, but the landscapes still
vary over generations and coevolutionary runs. Furthermore,
as the landscapes depend explicitly on 𝑥𝑏𝑒𝑠𝑡 and 𝑦𝑏𝑒𝑠𝑡,
cooperative and competitive interaction may explicitly yield
landscapes with different shapes.
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Fig. 3. Realizations of codynamic fitness landscapes of the test–based
problem specified by the smooth objective fitness function (3). (a) Com-
petitive interaction. (b) Cooperative interaction.

Due to the simplicity of the examples, the codynamic
fitness landscapes can be depicted as a function of co-
evolutionary run–time. Fig. 3 shows realizations of the
codynamic landscapes of the test–based problem specified
by the smooth objective fitness function (3) and in Fig.
4 the codynamic landscapes of the compositional problem
specified by the shared objective fitness function (5) can be
seen. As an illustration of codynamics, both figures show

0

2

4

6
−4

−2

0

2

4

−0.5

0

0.5

1

x,yk

f su
b
(x

,k
),

f su
b
(y

,k
)

(a)

0

2

4

6
−4

−2

0

2

4

−0.5

0

0.5

1

x,yk

f su
b
(x

,k
),

f su
b
(y

,k
)

(b)

Fig. 4. Realizations of codynamic fitness landscapes of the compositional
problem specified by the shared objective fitness function (5). (a) Compet-
itive interaction. (b) Cooperative interaction.

the subjective landscapes 𝑓𝑠𝑢𝑏(𝑥, 𝑘) of population 𝑃1 as
red lines and 𝑓𝑠𝑢𝑏(𝑦, 𝑘) of population 𝑃2 as blue lines.
The landscapes are given for three points in coevolutionary
run–time, 𝑘 = 0, 3, 6. They are realizations of codynamic
fitness landscapes because they are the result of a single
coevolutionary run. Another run with another initial popu-
lation may produce slightly different curves. The numerical
experiments, however, have shown that certain pattern are
preserved over the runs.

As illustrated in Fig. 3, we obtain an ensemble of
landscapes for each point in time for coevolutionary test–
based problems. This ensemble is built by the possibly
different landscapes for each sample 𝑠(𝑃1) or 𝑠(𝑃2). Thus,
at the utmost there are as many landscapes as individuals
in the population, which is 𝜆 = 24 for the example.
However, the scoring function (1) that renders subjective
fitness from objective fitness implies a discretization, which
means that only a finite number of different landscape shapes
are possible. The effect of discretization is clearly visible
in Fig. 3. Discretization also contributes to the deviation
between the curves of the subjective fitness landscape and
the objective landscape. The subjective landscape frequently
overestimates or underestimates the objective landscape
(compare the curves in Fig. 3 with the curve in Fig. 1b),
which goes along with coevolutionary intransitivity. Another
interesting feature of codynamic landscapes can be seen for
coevolutionary run–time going by. For the initial population,
which most likely has a large diversity, the shape of the
subjective landscapes still somehow resembles the shape
of the objective landscape, compare to Fig. 1b. For time
going on the shape of the subjective landscape changes
dramatically. In Fig. 3a competitive interaction is shown
where population 𝑃1 searches for the minimum and 𝑃2

intends to find the maximum. It is visible that the landscape
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𝑓𝑠𝑢𝑏(𝑥, 𝑘) contracts around the solution peak, while the land-
scape 𝑓𝑠𝑢𝑏(𝑦, 𝑘) does the same around the solution valley.
Other topological features of the landscape (for instance the
respective valley and peak) are blanked out. It appears as if
the coevolutionary process creates the fitness landscape in
which the algorithm performs the search. Interestingly, this
blanking out effect is also noticeable for cooperative interac-
tion, see Fig. 3b. However, here both subjective landscapes
evolve along similar pattern. Comparing the figures also
reveals that the degree of contraction varies from run to run,
which emphasize that each subjective landscape in itself is a
realization. The subjective landscapes of the compositional
problem specified by the shared objective fitness function (5)
are given in Fig. 4 and show a slightly different behavior.
Again, the landscapes 𝑓𝑠𝑢𝑏(𝑥, 𝑘) of population 𝑃1 are shown
as red lines and 𝑓𝑠𝑢𝑏(𝑦, 𝑘) of population 𝑃2 as blue lines.
We have a single landscape for each generation as there
is just one landscape for all individuals in compositional
coevolution. All subjective landscapes are slices through
the shared objective landscape. Thus, the landscapes could
also be directly derived from the shared fitness landscape
in Fig. 2b by looking from the 𝑥–axis (or 𝑦–axis) and
considering the value for 𝑦 = 𝑦𝑏𝑒𝑠𝑡(𝑘) (or 𝑥 = 𝑥𝑏𝑒𝑠𝑡(𝑘))
as slices of the 𝑆𝑥 (or 𝑆𝑦) space. Again, a difference in
cooperative and competitive coevolution can be observed by
the landscapes in cooperation (Fig. 4b) converging while
the landscapes in competition diverging. Also, it might be
that the subjective landscape at a given generation does
not include the maximum (or minimum) of the objective
landscape, thus making it impossible to search for it. The
codynamic landscapes for the other problems show similar
characteristics, but are not depicted here for sake of brevity.

B. Similarity measures

As instructive as these pictorial descriptions of land-
scapes might be, they also clearly show the limitations of
geometrical conceptualization. The pictures are widely open
to interpretation and bound to maximally two–dimensional
search spaces. Therefore, we next study properties of cody-
namic landscapes based on analytic quantities. In doing so
we define landscape measures of codynamic landscapes. It
has been argued that coevolutionary failure, intransitivity and
pathological behavior is a consequence of subjective fitness
dissociating from objective fitness [4], [21]. Hence, it ap-
pears to be interesting to analyze how measures of similarity
between the objective and subjective landscape behave over
coevolutionary run–time. As the minimal substrates allow
to analytically describe both the subjective and objective
landscape, a calculable (geometric) similarity measure is
Euclidean distance (dist), which we define as

dist(𝑘) =
1

dist𝑚𝑎𝑥
∥𝑓𝑜𝑏𝑗(𝑥𝑗)− 𝑓𝑠𝑢𝑏(𝑥𝑗 , 𝑘)∥, (9)

where 𝑥𝑗 are a countable number of search space points
in 𝑆𝑥, and dist𝑚𝑎𝑥 is the maximal fitness difference in the
landscape. For the compositional landscape 𝑓𝑜𝑏𝑗(𝑥, 𝑦), the
component 𝑦 is set to the global 𝑦𝑚𝑎𝑥 or 𝑦𝑚𝑖𝑛, respec-
tively. For test–based problems, the subjective landscape
𝑓𝑠𝑢𝑏(𝑥𝑗 , 𝑘) is built by averaging over the samples. We
further test two statistical difference measures. A first is

Kullback–Leibler divergence (kld), e.g., see [3], p. 19:

kld(𝑘) =
∑
𝑗

𝑓𝑜𝑏𝑗(𝑥𝑗) log2

(
𝑓𝑜𝑏𝑗(𝑥𝑗)

𝑓𝑠𝑢𝑏(𝑥𝑗 , 𝑘)

)
, (10)

which is calculated with a countable number of search space
points 𝑥𝑗 and normalized subjective and objective fitness
values 𝑓𝑜𝑏𝑗 and 𝑓𝑠𝑢𝑏(𝑥𝑗 , 𝑘). This normalization allows to
view subjective and objective fitness as quantities similar
to distributions. Hence, the kld in (10) measures the en-
tropic distance from objective fitness to subjective fitness.
As a third similarity measure of landscapes we consider
the Bhattacharyya coefficient (bhatt) [2] which assesses the
similarity of two probability distributions. It is obtained by
partitioning the objective and subjective fitness landscapes
into normalized histograms ℎ𝑜𝑏𝑗(𝑥𝑗) and ℎ𝑠𝑢𝑏(𝑥𝑗 , 𝑘) with
bin centers specified by 𝑥𝑗 and calculating

bhatt(𝑘) =
√
1−

∑
𝑗

ℎ𝑜𝑏𝑗(𝑥𝑗) ⋅ ℎ𝑠𝑢𝑏(𝑥𝑗 , 𝑘). (11)

Hence, the bhatt in (11) measures the amount of overlap
between objective and subjective fitness. The equations
(9), (10) and (11) are for calculating the measures of the
landscape over 𝑆𝑥, For the measures over 𝑆𝑦 , replace 𝑦 for
𝑥.

Fig. 5 shows the result for the codynamic landscape mea-
sures (9), (10) and (11) for all minimal substrates considered.
For the test–based problem specified by the smooth objective
fitness function (3), refer to Fig. 5a-c and for the piece-wise
linear function (2), see Fig. 5d-f. The results of the compo-
sitional problem specified by the sinusoid shared objective
fitness function (5) are given in Fig. 5g-i and the landscape
measures for the ridge function (4) are shown in Fig. 5j-
l. As the landscapes measures depend on the outcome of
coevolutionary runs, the averages for 100 runs and the 95%
confidence intervals are given for coevolutionary generations
𝑘 = 0 to 𝑘 = 10. Again the red curves indicate the results
for the subjective landscape 𝑓𝑠𝑢𝑏(𝑥, 𝑘) of population 𝑃1,
while the blue curves are for 𝑓𝑠𝑢𝑏(𝑦, 𝑘) of population 𝑃2.
A first interesting feature of the two test–based problems
(see Fig. 5a-f) is that the measures for the landscapes of
cooperating populations are almost indistinguishable. This
indicates that the cooperation leads to landscapes that be-
come very similar. This similarity, however, is only between
the two subjective landscapes, but not between subjective
and objective landscape. Here, the distance for cooperative
interaction is very often larger than for competitive interac-
tion. This is particularly visible for the similarity measure
Euclidean distance, see Fig. 5a,d. The Euclidean distance
being larger for cooperative interaction than for competitive
interaction becomes plausible considering the dynamics of
the subjective landscapes for the problem (3). As can be
seen in Fig. 3b, the subjective landscapes contract around
the solution peak. This contraction is much stronger for
cooperative than for competitive interaction. The contraction,
on the other hand, also implies a strong deviation from
the objective landscape, which in turn means a stronger
differences between objective and subjective landscape. This
effect is clearly visible in Fig. 5a. For the two compositional
problems (see Fig. 5g-l), the closeness of the measures
for cooperative interaction is also observable, albeit the
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Fig. 5. Landscape measures for the minimal substrates: the test–based problems specified by the objective fitness (3), (a-c), and (2), (d-f). The compositional
problem specified by the shared objective fitness function (5), (g-h), and (4), (j-l). The red curves indicate measures over 𝑆𝑥, blue curves over 𝑆𝑦 , solid
lines competitive, and dotted lines cooperative interaction, see also the color and line style code in a-c, which applies for all graphs of this figure.

similarity between the codynamic landscapes is not as strong
as for the test–based cases. Another general features is that
for the two compositional problems, the confidence intervals
of the measures are generally much larger than for the test–
based problems, which implies that the subjective landscapes
have a larger variety. Particularly, for the problem modeled
by the ridge function (4) (Fig. 5j-l) we can see that the
landscape over 𝑆𝑥 varies much weaker than the codynamic
cooperating landscape over 𝑆𝑦 . Two further observations are
that the measures do stop to change with run–time after
a certain number of coevolutionary generations (indicating
that a kind of steady state has been reached), and that the

statistical similarity measures (kld and bhatt) largely reflect
the geometric measure Euclidean distance (and hence might
be usable as an substitute if the geometric measure cannot be
calculated), but may also add further clues for discriminating
the codynamics between objective and subjective fitness.

V. CONCLUSIONS

In this paper an approach has been presented for analyz-
ing coevolution using the theoretical framework of fitness
landscapes. It has been shown that the approach can be
applied for test–based as well as compositional problems.
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For these two classes of coevolutionary problems, simple
and abstract models, called minimal substrates, were studied
for both cooperative as well as competitive interaction.
An important design question in coevolution is whether
and under what circumstances subjective fitness implies
objective fitness. The dynamic fitness landscape approach
aims specifically at addressing this question. Therefore,
objective and subjective landscapes for the minimal sub-
strates were defined and analyzed. The results have shown
that between these landscapes there emerges codynamics
where the evolutionary development of one population has
effect upon the other population and therefore deforms its
subjective fitness landscape. As this process works in both
ways the landscapes are coupled and codynamic. We further
defined three different landscape measures that are designed
to account for differences between objective and subjective
fitness. The numerical results suggest that these similarity
measures are suitable for quantifying and discriminating the
codynamics between objective and subjective fitness.

The results have also shown that the coevolutionary pro-
cess in one population generates the landscape of the other
population and vice versa. In this sense the coevolutionary
process creates the landscape in which the process of opti-
mization takes place. As a consequence a strict separation
between problem and problem solving algorithm ceases to
exist. The fitness landscape of the problem (objective fitness
landscape) still sets the background and framework for (co–
)evolutionary dynamics, but how the coevolutionary algo-
rithm perceives the problem is governed by the subjective
landscape and how strongly the latter deviates codynami-
cally from the former. Therefore, an important question in
analyzing coevolutionary algorithms is what features in the
codynamic fitness landscapes the algorithm produces. The
paper has shown how codynamic landscape measures can
be helpful for addressing this question. Another value of
landscape analysis is that it permits posing questions of how
the properties of the landscape reflect, explain and allow
predicting expectable behavior (and possibly performance)
of evolutionary search algorithms. More specifically, the
topology of the landscape can be seen as a predictor of
algorithmic behavior. It may be reasonable to assume that
these relationships also extend to coevolution. Thus, for
a landscape analysis capable of assessing coevolutionary
performance, the similarity measure introduced in this paper
should be amended with topological landscape measures,
see e.g. [9] for a recent review. In this context, it might
be tempting to assume that the expectable algorithmic per-
formance is best if the average subjective landscape reflects
maximally the objective landscape. If this is indeed the case
could be studied experimentally using the proposed minimal
substrates and recorded performance data, for instance av-
erage objective fitness, average subjective fitness, and how
both quantities correlate [4]. These studies could also go
along with considering the influence of coevolutionary de-
sign parameters, e.g. population size, sample size, mutation
strength and rate, and so on.
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