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Abstract— In this paper, we introduce a Scatter Search
algorithm which is driven using a set of four chaos maps. The
chaos maps of Tinkerbell, Delayed Logistics, Lozi and Burgers
are used as chaotic pseudorandom number generators in the
Scatter Search algorithm. These variants of the algorithm are
used to solve the flowshop with blocking problem. The results
are compared with the Mersenne Twister version of Scatter
Search. The new chaos driven Scatter Search algorithm is
shown to have superior performance when compared with state
of the art heuristics in literature.

I. INTRODUCTION

EVOLUTIONARY algorithms (EA’s) have been used to
solve a number of diverse and difficult engineering

problems. The uniqueness of EA’s arises from the method-
ology underpinning its premise. Broadly stated, each EA’s is
different from each other based on some criterion.

Genetic Algorithms (GA) was founded on the basis of
evolution, and how evolutionary systems pass on knowledge
and information throughout generations [1]. Ant Colony
Optimisation [2] was based on the foraging behaviour of
ant, and how the laying of the pheromone trail can lead to
optimal paths in a graph. Differential Evolution (DE) [3] is
another promising algorithm developed around 1995, which
used vector differentials in a search space for exploration.

The late 1990’s saw a proliferation of swarm algorithms.
Swarm algorithms are those, which use the herding and flock-
ing behaviour of various species to model EA’s, which can
then be applied to solve complex problems. The most famous
of these is the Particle Swarm Optimisation (PSO) [4], which
is modelled on the flocking and homing behaviours of mi-
gratory birds. Another quite important algorithm, which has
been used quite effectively is the Tabu Search (TS) [5]. TS
is based on implicit memory usage, using the fact that tabus
(implying that certain things cannot be touched, they are
scared) as normally conceived are transmitted by means of a
social memory, which is subject to modification over time.
This use of these memory management techniques, allows
the evaluation of different search space for the algorithm.
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TS is heavily influenced and guided by information collected
during its search.

A superset of the TS is the Scatter Search (SS) algo-
rithm [6]. SS further improves on the memory management
technique of TS, by incorporating a reference set, a spe-
cialised population, which contains intensified and diversified
individuals. These individuals are the most extreme placed
individuals in the population, therefore the search itself can
now take place over a larger area. Another important aspect
is that the reference set is quite small, compared to generic
EA’s.

This paper analyses the canonical SS and how it can be
further enhanced using a new methodology of chaos.

Chaos has been shown to play a more distinct role in EA’s
over recent years [7]. One of these most important trends
has been the use of chaotic maps as chaos pseudorandom
number generators (CPRNG’s), in place of pseudorandom
number generators (PRNG’s) in EA’s. Generally, standard
PRNG’s such as the venerable Mersenne Twister [8], with
a proven long period has been used as stock PRNG’s in
EA’s. However, a number of experiments have shown that
chaos maps, particularly the discrete dissipative systems can
improve on the performance of EA’s ([9], [10], [11]).

A number of chaotic maps have been shown to possess
certainty, ergodicity and stochastic property. The choice of
chaotic sequences is justified theoretically by their unpre-
dictability, i.e. by their spread-spectrum characteristic, non-
periodic, complex temporal behaviour, and ergodic properties
[12].

An extended family of enhanced CPRNG’s with very long
series of PRNG’s has been developed by [13] accomplished
through the ultra weak coupling of the Tent Map, which is
enhanced in order to conceal the chaotic genuine function
[14].

DE has been improved using chaos maps ([15], [16] [17],
[12]), whereas PSO has been successfully modified using
different chaotic maps ([18], [19]). A highly improved chaos
induced SOMA has been described in [20] and [21].

This research looks to expand this class of chaos driven
algorithms and to validate if chaos can improve the canonical
SS algorithm. For comparison, we utilise the Mersenne
Twister as the canonical PRNG in SS, and compare it with
four different chaotic maps for the flowshop with blocking
problem.

The paper is organised as follows: section II introduces the
SS algorithm and section III introduces the chaos drive SS
algorithm. The four different chaos maps used in this work
and its mathematical description is given in section IV.

The flowshop with blocking problem with its mathematical
description is given in section V. The experimentation results
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TABLE I
SCATTER SEARCH NOTATION.

Parameter Representation

RefSet Reference set of individuals
b Size of the reference set
P Size of the main population
X Individuals generated by diversification generator

are presented in section VI and the analysis with different
published algorithms in given in the subsequent subsections.
Finally, the work is concluded in section VII.

II. SCATTER SEARCH

Scatter Search (SS) and its generalised form Path Relink-
ing (PR) are heuristics, which are build on the principles
of surrogate constraint design [22]. In particular, they are
designed to capture information not contained separately
in the original individuals, and take advantage of auxiliary
heuristic individual methods to evaluate the combinations
produced and generate new individuals, based only on the
original elements.

A. Basic Principles

The SS methodology is very flexible, since each of its
elements can be implemented in a variety of ways and
various degrees of sophistication. The notation of SS is given
in Table I.

In general, there are five main routines or methods which
make up the template [23].

1) A Diversification Generation Method to generate a
collection of diverse trial individuals, using an arbitrary
trial individual (or seed individual) as an input.

2) An Improvement Method to transform a trial individ-
ual into one or more enhanced trial individuals. (Nei-
ther the input nor the output individuals are required
to be feasible, though the output individuals will more
usually be expected to be so. If there is no improvement
of the input trial individual results, the “enhanced”
individual is considered to be the same as the input
individual.)

3) A Reference Set Update Method to build and main-
tain a reference set (RefSet) consisting of the b best
individuals found (where the value of b is typically
small, e.g., no more than 20), organised to provide
efficient accessing by other parts of the method. Indi-
viduals gain membership to the reference set according
to their quality or their diversity.

4) A Subset Generation Method to operate on the
reference set, to produce a subset of its individuals
as a basis for creating combined individuals.

5) A Solution Combination Method to transform a given
subset of individuals produced by the Subset Gener-
ation Method into one or more combined individual
vectors.

The basic outline is given in Figure 1.

Repeat until |P| = PSize 

P 

Diversification Generation  
Method 

Improvement  
Method 

Improvement  
Method 

No more new 
solutions 

Reference Set 
Update Method 

RefSet 

Subset Generation  
Method 

Solution Combination 
Method 

Fig. 1. Scatter Search Outline

The two principles that govern SS are:
1) Intensification,
2) Diversification.

Intensification refers to the role of isolating the best per-
forming individuals from the populations in order to obtain
a group of good individuals. Diversification, in turn, isolates
the individuals which are the furthest from the best indi-
viduals and combined them with the best individuals. This
new pool of individuals is the reference set, where crossover
occurs in order to create individuals from new individual
regions by the combination of the intensified individuals and
diversified individuals. Intensification and diversification are
commonly termed as adaptive memory programming.

B. Reference Set Generation

The reference set is generated by two aspects of the
population; intensified individuals and diversified individuals.
The size of the reference set is defined at the beginning. It is
usual to have half individuals in the refset as intensified and
the rest as diversified. Intensified individuals are obtained by
evaluating the population and moving the specified refset/2
best individuals from the population into the refset.

Campos et. al. [24] outlined how the diverse individuals
are obtained from a population. The way diverse individuals
are computed is through the computation of the minimum
distances of each individual in the population to the indi-
viduals in refset. Then the individual with the maximum of
these minimum distances is selected. Population individuals
are included in refset according to the maxmin criterion,
which maximises the minimum distance of each candidate
individual to all the individuals currently in the refset.
Sequentially, the refset is updated with an individual X

i

(i = 1, 2, . . . , N , with N being the size of the individual)
from the population P. Consequentially, this individual is
removed from the population, whose size is decreased by 1.
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Thereafter, the distance of the newly included individual X
i

in the refset, to every individual currently in the population
is computed to make possible the selection of a new refset
individual according to the maxmin criterion. More formally,
the selection of a population individual is given by:

Xi = argmax min
i=1,...,|refset|

{ςi,j : j = 1, . . . , |P |} (1)

where ς is the diversity measure, which is the distance
between individuals X

i
and X

j
, which differ from each other

by the number of edges which follows as:

ςi,j =
∣∣(X

i
∪X

j

)
\
(
X

i
∩X

j

)∣∣ (2)

For extended details regrading the refset generation, the
interested reader is directed to [24].

C. Solution Combination Method

A number of individual combination methods exist, how-
ever through experimentation, we have narrowed down the
choice of the method to the generic two point crossover as
implemented in Genetic Algorithms (GA).

The advantages of the two point crossover operator is that
there is no requirement for domain conversion, as all values
are inherently discrete. Therefore, the only application is
to check for in-feasibility and correct the individuals. The
individuals are corrected using the repairment schema given
in [25].

D. Improvement method

SS employs the 2 Opt local search as its improvement
strategy. The 2 Opt local search is a very simple rou-
tine. It utilises two iterators; one for the outer loop k =
1, 2, . . . , N − 1 and one for the inner loop l = k+1, . . . , N .
Using the iterators as indexes to the individuals, the in-
dexed variables in the individuals are exchanged Xi =
{. . . , xi,l, . . . , xi,k, . . .} and the new trial individual evalu-
ated. If any improvement is seen, the individual is adapted in
the population. The complexity of this local search is O

(
n2
)
,

where n is the input schedule.

III. CHAOS INDUCED SCATTER SEARCH

The chaos induced SS algorithm (SSc) is one where the
generic PRNG is replaced by a chaos map. Essentially, two
aspects are required pertaining to random number; real and
integer random numbers. A chaos sequence is one where a
two dimensional coordinate is generated for each point, the x
or y coordinate. For our needs, we can utilise either of these
points, as both are aperiodic.

For a given chaos sequence R, a specific x coordinate at
index j where j ∈ R can be changed to a real number rreal
as given in equation (3).

rreal = mod (abs |xj | , 1.0) (3)

The corresponding integer value rint can be calculated as
in equation (4).

rint = mod (abs |xj | , 1.0) · UB + 1 (4)

The SSc algorithm is described in Algorithm 1. Each
occasion where the chaos used variable is used is marked
with ← Cr.

input : Population (P ), Generations (G), RefSet
(RS), ChaosMap (C)

output: Best individual (Xbest)

Start Chaotic Sequence Cr ← (rreal, rint);
Generate Population (P ) ← Cr;
Calculate Fitness of P ;
fitnessP ← evaluate f(P );

Reference Set Generation;
maxminP ← evaluate fmaxmin(P );

Create Refset (RS);
RS ← maxminP ∪ fitnessP ;

for i← 1 to G do
for j ← 1 to RS do

Solution Combination Method;
Xt ← {RSj ⇔ RSj+n} ← Cr;
fitnessXt

← evaluate f(Xt);
Employ 2 OPT local search;
fitnessXt ← evaluate f(LS(Xt));

if fitnessXt
< fitnessRSworst

then
RSworst ← Xt;

end
end
if No refset update in previous iteration then

Obtain best solution from RefSet (Xbest);
Regenerate Population (P ) ← Cr;
Insert Xbest into P ;
P ← Xbest;
fitnessP ← evaluate f(P );
maxminP ← evaluate fmaxmin(P );

Regenerate RefSet;
RS ← maxminP ∪ fitnessP ;

end
end
Output best solution (Xbest);

Algorithm 1: SSc algorithm

IV. CHAOS MAPS

Discrete dissipative systems, which are based on linear
set of equations, and which can be easily formulated, is
of the most interest as CPRNG’s. For this research, four
promising chaotic map of Burgers, Delayed Logistic, Lozi
and Tinkerbell have been selected. The four chaotic maps
are described in the following sections.

A. Burgers Map

The Burgers map arose from the study of hydrodynamics,
where the discretization of coupled differential equations led
to a bifurcation effect of the system. The control parameters
are α = 0.75 and β = 1.75 [26].
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Xn+1 = (αXn)− Y 2
n

Yn+1 = (βYn) + (XnYn)
(5)

B. Delayed Logistic
The Delayed Logistic is a two-dimensional map, which is a

phase shifted one-dimensional logistic equation. The control
parameter α = 2.27 [26].

Xn+1 = αXn (1− Yn)
Yn+1 = Xn

(6)

C. Lozi Map
The Lozi map is a simple discrete two-dimensional chaotic

map. The control parameters are α = 1.7 and β = 0.5 [26].

Xn+1 = 1− (α |Xn|) + (βYn)
Yn+1 = Xn

(7)

D. Tinkerbell Map
The Tinkerbell map is a two-dimensional complex

discrete-time dynamical system. The operating parameters
as given by [26] are α = 0.9, β = -0.6, ρ = 2 and υ = 0.5.

Xn+1 = X2
n − Y 2

n + (αXn) + (βYn)
Yn+1 = (2 ·XnYn) + (ρXn) + (υYn)

(8)

V. FLOW SHOP WITH BLOCKING

Consider m machines in series with zero intermediate
storage between successive machines, which have to process
n jobs. If a given machine finishes the processing of any
given job, the job cannot proceed to the next machine while
that machine is busy, but must remain on that machine, which
therefore remains idle. This phenomenon is refereed to as
blocking [27].

In this paper, only flow shops with zero intermediate
storage are considered (FSSB), since any flow shop with
positive (but finite) intermediate storage between machines
can be modelled as a flow shop with zero intermediate
storage. This is due to the fact that the storage space capable
of containing one job may be regarded as a machine on which
the processing time of all machines is equal to zero.

Pinedo [27] has defined the problem of minimising the
makespan in a flow shop with zero intermediate storages is
referred to in what follows as:

Fm |block |Cmax

Let Di,j denote the time that job j actually departs machine i.
Clearly Di,j ≥ Ci,j . Equality holds that job j is not blocked.
The time job j starts its processing at the first machine is
denoted by D0,j . The following recursive relationship hold
under the job sequence j1, . . . , jn:

Di,j1 =
i∑

l=1

pl,j1 i = 1, . . . ,m (9)

Di,jk = max
(
Di−1,jk + pi,jk , Di+1,jk−1

)
i = 2, . . . ,m k = 2, . . . , n

(10)

Dm,jk = Dm−1,jk + pm,jk (11)

TABLE II
SS OPERATING PARAMETERS

Parameter Value

Population size 60
RefSet size 20
Local Search 2 Opt
Crossover 2 Point
Generations 100

VI. EXPERIMENTATION

The Taillard benchmark problems used for the experiments
is referenced from [28]. These benchmarks comprise of
12 different sets of problems ranging from 20 jobs and 5
machines to 500 jobs and 20 machines. Each set contains 10
unique instances, hence a total of 120 instances [29].

Each instance has 10 independent replications and in
each replication, the percentage relative difference (PRD) is
computed as follows:

PRD =
100×

(
CRon − CSSC

)
CRon

(12)

where CRon is the referenced makespan provided by [30],
and CSSC is the makespan found by the SSc algorithm.
Furthermore, average percentage relative difference (APRD),
maximum percentage relative difference (MaxPRD), mini-
mum percentage relative difference (MinPRD) and the stan-
dard deviation (SD) of PRD are calculated. The average
execution time for each set (T(s)) is also displayed.

The operating parameters of SS is given in II. The popula-
tion size is kept at 60, which is basically three times the size
of the reference set. The number of generations is kept at 100.
These parameters are kept stagnant for all experimentations.

A. Comparison between different Chaos maps and Mersenne
Twister

The initial experiment was conducted on the SS algorithm
with the Mersenne Twister and with the four variants of the
chaos map. A total of ten (10) experiments was conducted
on each instance, resulting in a total of 1200 experiments per
SS variant. Therefore, a cumulative total of 6000 experiments
were conducted on the data sets to validate the findings of
this research.

The average results for each problem size is given in
Table III. From the obtained results, Tinkerbell is the best
performing variant, with eight better average values out of
the twelve instance sizes. Most importantly, it performs better
for the lager instances of 200 x 10, 200 x 20 and 500 x 20.
The second best performing variant is the Delayed Logistic
with three better averages. A total cumulative average is also
computed for all the data sets and Tinkerbell obtains the best
value of 3.56.

When comparing with Mersenne Twister, the stock PRNG,
it is obvious that the chaos variant are better performing
for all data sets. In total average comparisons, Mersenne
Twister is the worst performing for all the problem instances.
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TABLE III
COMPUTATION COMPARISON OF DIFFERENT VARIANTS OF SS

J x M Mersenne Tinkerbell Burgers Lozi Delayed
Twister Logistic

20 x 5 0.32 0.44 0.36 0.42 0.39
20 x 10 2.16 2.39 2.14 2.21 2.28
20 x 20 2.94 3.14 2.87 3.02 3.12
50 x 5 4.24 4.55 4.42 4.54 4.65
50 x 10 5.65 6.04 5.96 5.85 6.14
50 x 20 6.12 6.21 6.04 5.96 6.13
100 x 5 1.43 1.53 1.61 1.32 1.68

100 x 10 4.53 4.92 4.42 4.76 4.72
100 x 20 4.65 4.72 4.79 4.67 4.71
200 x 10 2.87 3.11 2.88 2.97 3.02
200 x 20 3.01 3.32 3.21 3.05 3.21
500 x 20 2.33 2.45 2.32 2.29 2.36

Mean 3.35 3.56 3.41 3.41 3.53

1 MacBook Pro, 2.3GHz Intel Core i7 (2nd gen), 8 GB RAM

It obtains 3.35 compared to 3.56 for Tinkerbell, 3.53 for
Delayed Logistic and 3.41 for both the Burgers and Lozi
maps.

Therefore, based on the obtained results, we can infer
that the chaos maps, when used as CPRNG’s, improve the
basic performance of SS algorithm for the FSS with blocking
problem. The graphical plot for all the variants is given in
Figure 2.

B. Comparison of SSc with DE/HDE algorithms

The chaos based SS algorithm (SSc) is compared with
some state-of-the art heuristics from literature. The first
comparison is done with the Differential Evolution (DE) and
Hybrid DE algorithm of [31].

The best results obtained from all the chaos variants of SS
is compared with DE and HDE and presented in Table IV.

From the results, SSc has better performance indices for
all the specifications compared to HDE and DE. It has better
ARPD values for all the 12 different sets and on average
obtains a better APRD, MinPRD and MaxPRD.

C. Comparison of SSc with DDE/HDDE algorithms

The second comparison is done with the Discrete Differen-
tial Evolution (DDE) and Hybrid DDE (HDDE) of [32]. The
hybrid component of HDDE is a novel insert-neighbourhood-
based speed-up method. The comparison results is given in
Table V.

From the results obtained, SSc performs better than both
DDE and HDDE in the APRD, where it obtains 3.58 com-
pared to 2.79 for DDE and 3.54 for HDDE. In eight out of
twelve data classes, SSc has a superior APRD. HDDE, on
the other hand has better ARPD on the largest data sets, and
it generally obtains higher Maximum PRD values compared
to SSc. The total execution time is generally 3 sec more for
the SSc algorithm.

TABLE VI
COMPUTATION COMPARISON OF SSC WITH GA OF [33].

J x M SSc
1 GA2

APRD MinPRD MaxPRD SD T(s) PRD T(s)

20 x 5 0.44 0.00 0.93 0.30 0.09 -6.36 0.1
20 x 10 2.39 1.27 4.32 0.53 0.6 -4.35 0.2
20 x 20 3.14 1.76 4.77 0.54 0.67 -1.26 0.4
50 x 5 4.65 1.03 6.75 1.54 0.78 -8.53 0.3
50 x 10 6.14 4.32 6.82 0.33 1.32 -5.97 0.5
50 x 20 6.21 4.43 7.53 0.43 3.43 -4.33 1.1
100 x 5 1.68 0.76 3.21 0.56 4.22 -14.4 0.5

100 x 10 4.92 3.43 6.32 0.43 6.34 -7.89 1.1
100 x 20 4.79 3.65 5.64 0.32 13.44 -5.64 2.1
200 x 10 3.11 2.21 3.86 0.43 24.33 -11.04 2.2
200 x 20 3.32 2.16 3.98 0.34 30.45 -7 4.3
500 x 20 2.45 1.33 3.63 0.32 50.24 -8.08 10.8

Mean 3.58 2.19 4.81 0.50 11.32 -7.07 1.97

1 MacBook Pro, 2.3GHz Intel Core i7 (2nd gen), 8 GB RAM
2 Pentium P-IV 1000MHz

TABLE VII
COMPUTATION COMPARISON OF SSC WITH TS AND TS+M OF [34].

J x M SSc
1 TS2 TS+M2

APRD MinPRD MaxPRD SD T(s) PRD T(s) PRD T(s)

20 x 5 0.44 0.00 0.93 0.30 0.09 -1.64 2.4 -0.34 2.7
20 x 10 2.39 1.27 4.32 0.53 0.6 1.45 4.1 1.76 4.6
20 x 20 3.14 1.76 4.77 0.54 0.67 2.88 7.1 2.94 7.6
50 x 5 4.65 1.03 6.75 1.54 0.78 -0.55 6 0.55 6.2

50 x 10 6.14 4.32 6.82 0.33 1.32 1.98 10.6 3.52 10.8
50 x 20 6.21 4.43 7.53 0.43 3.43 3.68 19 4.26 19.3
100 x 5 1.68 0.76 3.21 0.56 4.22 -3.03 12.2 -2.62 12.4
100 x 10 4.92 3.43 6.32 0.43 6.34 1.71 21.9 2.66 22.1
100 x 20 4.79 3.65 5.64 0.32 13.44 2.01 39.2 3.03 39.4
200 x 10 3.11 2.21 3.86 0.43 24.33 -0.6 44.1 0.58 44.3
200 x 20 3.32 2.16 3.98 0.34 30.45 1.24 79.2 2.31 79.4
500 x 20 2.45 1.33 3.63 0.32 50.24 0.63 207 1.47 209

Mean 3.58 2.19 4.81 0.50 11.32 0.81 37.73 1.68 38.15

1 MacBook Pro, 2.3GHz Intel Core i7 (2nd gen), 8 GB RAM
2 Pentium P-IV, 1000 MHz

D. Comparison of SSc with GA algorithm

The third comparison of SSc is done with the GA algo-
rithm of [33] and is given in Table VI. For all the problem
instances, SSc produces better results for the PRD.

E. Comparison of SSc with TS and TS+M

The final comparison is done with the Tabu Search (TS)
and its hybrid variant TS+M algorithms of [34]. TS is
considered one of the best constructive heuristics, and it
has successfully been applied to a number of complex
optimisation tasks [34].

The comparison of results are given are Table VII. Based
on the results, SSc is the better performing heuristic in all 12
problem sets. Overall, it obtains significantly better results
in the APRD than the TS+M algorithm (3.58 - 0.81). As
the termination criteria of TS and TS+M are set to 100
generations, the average execution time of SSc is significantly
lower (11.32 sec compared to 38.15 sec).

VII. CONCLUSION

A recent trend has emerged where the contribution of
pseudorandom number generators are being analysed in
evolutionary algorithms. To this effect, different stochasticity
generators are being analysed in terms of propagators of
evolutionary algorithms.
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Fig. 2. Mean plot of different variants

TABLE IV
COMPUTATION COMPARISON OF SSC WITH DE AND HDE OF [31]

J x M SSc
1 DE2 HDE2

APRD MinPRD MaxPRD SD T(s) APRD MinPRD MaxPRD SD T(s) APRD MinPRD MaxPRD SD T(s)

20 x 5 0.44 0.00 0.93 0.30 0.09 -0.78 -1.32 -0.05 0.4 0.5 0.26 0 0.44 0.16 0.5
20 x 10 2.39 1.27 4.32 0.53 0.6 1.73 1.29 2.14 0.3 1 2.3 2.13 2.39 0.1 1
20 x 20 3.14 1.76 4.77 0.54 0.67 2.86 2.49 3.18 0.22 2 3.25 3.14 3.3 0.06 2
50 x 5 4.65 1.03 6.75 1.54 0.78 -4.32 -5.2 -3.33 0.61 1.25 3.09 2.59 3.62 0.36 1.25
50 x 10 6.14 4.32 6.82 0.33 1.32 -0.3 -0.89 0.43 0.44 2.5 4.57 4.1 5.06 0.31 2.5
50 x 20 6.21 4.43 7.53 0.43 3.43 1.99 1.47 2.51 0.33 5 5 4.58 5.51 0.3 5
100 x 5 1.68 0.76 3.21 0.56 4.22 -13.99 -14.62 -13.06 0.48 2.5 -0.32 -0.84 0.31 0.36 2.5

100 x 10 4.92 3.43 6.32 0.43 6.34 -5.7 -6.25 -5.11 0.35 5 3.4 2.88 3.99 0.35 5
100 x 20 4.79 3.65 5.64 0.32 13.44 -2.42 -2.8 -1.93 0.29 10 3.05 2.69 3.47 0.26 10
200 x 10 3.11 2.21 3.86 0.43 24.33 -11.12 -11.46 -10.63 0.26 10 0.33 -0.14 0.88 0.34 10
200 x 20 3.32 2.16 3.98 0.34 30.45 -5.82 -6.1 -5.46 0.2 20 1.36 1 1.82 0.26 20
500 x 20 2.45 1.33 3.63 0.32 50.24 -8.2 -8.33 -8.02 0.1 50 0.25 -0.06 0.59 0.2 50

Mean 3.58 2.19 4.81 0.50 11.32 -3.84 -4.31 -3.28 0.33 9.15 2.21 1.84 2.62 0.26 9.15

1 MacBook Pro, 2.3GHz Intel Core i7 (2nd gen), 8 GB RAM
2 Pentium P-IV, 3.0 GHz, 512 MB

TABLE V
COMPUTATION COMPARISON OF SSC WITH DDE AND HDDE OF [32]

J x M SSc
1 DDE2 HDDE2

APRD MinPRD MaxPRD SD T(s) APRD MinPRD MaxPRD SD T(s) APRD MinPRD MaxPRD SD T(s)

20 x 5 0.44 0.00 0.93 0.30 0.09 0.34 0.18 0.45 0.1 0.5 0.43 0.33 0.46 0.05 0.5
20 x 10 2.39 1.27 4.32 0.53 0.6 2.34 2.16 2.39 0.08 1 2.38 2.36 2.4 0.02 1
20 x 20 3.14 1.76 4.77 0.54 0.67 3.25 3.15 3.3 0.06 2 3.29 3.24 3.3 0.02 2
50 x 5 4.65 1.03 6.75 1.54 0.78 4.15 3.73 4.61 0.28 1.25 4.24 3.88 4.67 0.25 1.25
50 x 10 6.14 4.32 6.82 0.33 1.32 5.36 4.94 5.83 0.28 2.5 5.75 5.43 6.12 0.23 2.5
50 x 20 6.21 4.43 7.53 0.43 3.43 5.55 5.25 5.87 0.2 5 6.03 5.74 6.34 0.2 5
100 x 5 1.68 0.76 3.21 0.56 4.22 0.37 0.03 0.79 0.24 2.5 1.42 1.04 1.86 0.26 2.5

100 x 10 4.92 3.43 6.32 0.43 6.34 3.9 3.59 4.25 0.21 5 5.17 4.92 5.56 0.21 5
100 x 20 4.79 3.65 5.64 0.32 13.44 3.62 3.36 3.88 0.16 10 4.68 4.39 5.01 0.19 10
200 x 10 3.11 2.21 3.86 0.43 24.33 1.29 1.04 1.58 0.17 10 3.09 2.8 3.47 0.2 10
200 x 20 3.32 2.16 3.98 0.34 30.45 2.17 1.99 2.35 0.11 20 3.57 3.31 3.86 0.17 20
500 x 20 2.45 1.33 3.63 0.32 50.24 1.19 1.08 1.34 0.08 50 2.47 2.16 2.78 0.2 50

Mean 3.58 2.19 4.81 0.50 11.32 2.79 2.54 3.05 0.16 9.15 3.54 3.3 3.82 0.17 9.15

1 MacBook Pro, 2.3GHz Intel Core i7 (2nd gen), 8 GB RAM
2 Pentium P-IV, 3.0 GHz, 512 MB
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This research aims to extend this field of knowledge by
analysing the SS algorithm in terms of its performance under
different stochasticity generators. To this effect, the Mersenne
Twister was selected as the best PRNG in literature. Ad-
ditionally, four unique chaos maps of Tinkerbell, Burgers,
Delayed logistic and Lozi were selected as CPRNG’s. Using
the same operating parameters, the five variants were used
to solve the flowshop with blocking problem.

From the obtained results, it can be concluded that all the
chaos variants performed better than the Mersenne Twister
for the entire problem data sets. Tinkerbell was the best
performing variant, followed by Delayed logistic, Burgers
and Lozi map.

The chaos variant of SS was then compared with the
current best algorithms in literature. SSc was shown to
be better performing than DE, HDE of [31] and DDE,
HDDE of [32]. Additionally, SSc was shown to have superior
performance to GA of [33] and TS and TS+M of [34] for
all the data sets and on all performance indices.

Therefore, it can be summarised that the performance of
SS is improved with the usage of different chaos maps and
SSc is a competitive algorithm for the flowshop with blocking
problem.
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