
Investigation on Efficiency of

Optimal Mixing on Various Linkage Sets

Shih-Ming Wang

Department of Electrical Engineering

National Taiwan University

Email: r01921055@ntu.edu.tw

Yu-Fan Tung

Department of Electrical Engineering

National Taiwan University

Email: r02921044@ntu.edu.tw

Tian-Li Yu

Department of Electrical Engineering

National Taiwan University

Email: tianliyu@ntu.edu.tw

Abstract—The optimal mixing operator (OM) utilizes linkage
sets (LSs) to exchange the information of variables between a
pair of solutions, and the result of such exchange is adopted only
if the exchange leads to improvement of the solution quality.
The performance of OM highly depends on the LS it uses. This
paper demonstrates that previously proposed LS, the linkage tree
model (LT), does not yield the optimal performance. To measure
the efficiency of OM on different LSs, the cost-performance (CP)
index is defined. Both our CP index and experiments indicate
(1) that for fully separable problems, the most suitable LS is
the marginal product model (MP), and (2) that for separable
problems with overlap, LT is more suitable than MP, and (3)
that properly pruned LT leads to higher efficiency and yields a
better performance, and (4) that the LS that properly reflects
the problem structure yields the best performance on both fully
separable problems and problems with overlap.

I. INTRODUCTION

One of the key properties of estimation of distribution
algorithms (EDAs) is their abilities to juxtapose partial so-
lutions that jointly represent an important contribution to the
solution quality. In EDAs, a probabilistic model is built and a
corresponding probability distribution is sampled to generate
new solutions [9], [12]. For model building, selection in EDAs
reduce noise by filtering the population. However, selection is
typically not a very strong process unless the selection intensity
is high which drives up the required population size to ensure
sufficient diversity for the multi-generational search.

Local search techniques combined with evolution algo-
rithms [1], [13], on the other hand, strongly reduce noise
while keeping the diversity as long as different local optima
are found. Optimal mixing (OM) [1], [16] introduced after
the linkage tree genetic algorithm (LTGA) [11], [15] performs
stochastic local search on the learned model. For OM, the
learned model is a set of masks, each of which consists of
several indices of variables. In this paper, we call such model
linkage set (LS), which is formally defined in section III.
To generate a new solution, OM starts from a parent and
utilizes each mask to donate variables to the parent from
random selected parent(s). Each donation is adopted only if
the donation leads to improvement of the solution quality. The
order of utilizing the masks affects the result and should be
predetermined. Since donation is accepted only when improve-
ment happens, the mixing operator of OM is like local search.
Such property of OM reduces required population. However,
it comes with the price of a higher possibility of convergence
of the population to local optima.

The performance of OM depends on the LS it learned.
OM can be combined with various LSs such as the marginal
product model or the linkage tree model [15]. The linkage tree
model consists of nested masks and is robust when adopted
with OM to solve problems difficult for genetic algorithms
(GAs). However, adopting nested masks is less likely to gain
continuous improvement of the solution quality due to the local
search property of OM. Donations without improvement lead
to waste of function evaluations. Hence, robust LSs might suf-
fer from inefficiency. In this paper, we analyze the efficiencies
of applying OM with different LSs to different problems. From
the experiment results, we observe that previously proposed
LSs do not achieve optimal performances on all problems and
we derive general rules for more suitable LSs for different
problems. The results indicate that some efforts could be done
to strike a balance between the efficiency and the robustness
of LSs.

This paper continues as follows. In Section II, we describe
OM in detail. In Section III , we state our assumptions
on the problems and describe two proposed LSs and their
limitations. In Section IV , the definition of LS efficiency is
given. In Sections V and VI, we adopt different LSs on two
types of problems, fully separable problems and problems with
overlap. Some general rules for choosing LS are derived from
the experiment results. Finally, we conclude with discussions
and possible future work.

II. OPTIMAL MIXING

In this section, we briefly introduce OM. We rewrite some
algorithms and borrow some notations from [16]. In all the
algorithms, we denote the population and the offspring by P
and O respectively. We also assume |O| = |P | = n, where
|S| denotes the number of elements in the set S. The ith

chromosome is denoted by P i, and P i
M represents a part of

P i, where M is a mask describing the indices of the part. For
example, let M = {1, 3, 9}, P 5

M represents the 1st, 3rd and
9th variables of the 5th chromosome.

The common EDA framework is outlined in Algorithm 1.
LEARNMODEL produces a model which is utilized by MIX-
SOLUTION. OM adopts OptimalMixing as its MIXSOLUTION

which take a LS as its model. For OptimalMixing shown
in Algorithm 2, every chromosome in the parent pool is picked
as an receiver once. The receiver is cloned. For every mask in
the LS, a donor is chosen and some variables of the donor
are donated into the clone according to the mask. If the
donation makes no change to the clone, it is skipped. Otherwise

2475

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Algorithm 1: EDA

for i← 1 to n do
Pi ← CREATERANDOMSOLUTION()
EVALUATEFITNESS(Pi)

while ¬TERMINATIONCONDITIONSATISFIED() do
P ′ ← SELECTION(P)
M ← LEARNMODEL(P ′)
O ← MIXSOLUTION(P ′,M)
P ← MUTATION(O)

the clone is reevaluated. If the fitness of the clone after the
donation is higher than that of the receiver, the receiver is
replaced by the clone. The final clone after all the masks have
been adopted is the offspring of the next generation.

For most EDAs, the reevaluations of the chromosomes is
required only in SELECTION while MIXSOLUTION requires
no extra function evaluations. As for OM, the reevaluations
of the chromosomes are required in MIXSOLUTION and the
first run of SELECTION. No more reevaluation is needed in
the following runs of SELECTION since the chromosomes
are already evaluated in MIXSOLUTION. Therefore, when
analyzing OM, we focus on the efficiency of the mixing
operator.

Recombinative optimal mixing evolutionary algorithm
(ROMEA) and gene-pool optimal mixing evolutionary algo-
rithm (GOMEA) are two different OMs. ROMEA randomly
chooses a donor and uses it for all the masks while GOMEA
randomly chooses a donor for each mask. The two different
methods are shown in Algorithms 3 and 4. GOMEA is similar
to sampling a probability distribution, which is reminiscent
of EDA. Experiments [16] show that GOMEA outperforms
ROMEA. However, to analyze the efficiency of sequentially
adopted masks that might overlap, this paper focus on analyz-
ing ROMEA.

Algorithm 2: OptimalMixing(P,M)

for i← 1 to n do
D ← GENERATEDONORINDEX(|M |, n)
for j ← 1 to |M | do

if (P i
Mj
6= P

Dj

Mj
) then

P i ←MIX(P i, PDj ,Mj)

Oi ← Pi

return O
FUNCTION MIX(P 0, P 1,m) begin

C ← P 0

Cm ← P 1
m

EVALUATEFITNESS(C)
if fitness[C] ≥ fitness[P 0] then

P 0 ← C
fitness[P 0] = fitness[C]

return P 0

III. DEFINITION AND NOTATION

In this section, we state the assumptions on the problems
and describe two proposed LSs and their limitations.

Algorithm 3: GOMEA::GenerateDonorIndex(m,n)

Initialize integer Array D[m]
for i← 1 to m do

D[i] = RANDOMNUMBER(1, n)

return D

Algorithm 4: ROMEA::GenerateDonorIndex(m,n)

Initialize integer Array D[m]
d← RANDOMNUMBER(1, n)
for i← 1 to m do

D[i] = d

return D

A. Problem Definition

According to the building block hypothesis [3], we consider
two types of nearly-fully separable problems in this paper, fully
separable problems and separable problems with overlap.

Definition 3.1: A fully separable problem is a problem
whose fitness function can be written as a summation of a
series of sub-functions, and the parameter list for each sub-
function is independent.

Definition 3.2: A problem with overlap is a problem whose
fitness function can be written as a summation of a series
of sub-functions, but the parameter list for each sub-function
might share some common variables.

In this paper, we consider carefully designed sub-functions
that make the parameters of each sub-function form strongly
connected group such that EDAs should treat them together
in the mixing phase to solve the problem. A group of such
variables are called a building block (BB).

Even for problems with overlap, the BBs can be grouped
into several independent chunks such that each chunk share no
common variables. The synthetic function for each chunk is
the summation of the sub-functions for all BBs of the chunk.
For simplicity of analyzing, we consider only homogeneous
problems with identical chunks.

Definition 3.3: A homogeneous problem is a separable
problem that can be divided into groups of independent chunks,
and the synthetic functions of each chunk are identical.

In the experiments, we consider two homogeneous, binary
encoded fully separable problems, the one-max problem and
the m-k trap problem. The one-max problem is composed of
independent bits, and the fitness function is defined as:

fonemax(~x) =

ℓ∑
i=1

xi. (1)

where ℓ is the length of the solution. The m-k trap problem
is defined as:

ftrap(~x) =

m−1∑
i=0

trapk(u(yik+1, yik+2 · · · , yik+k)), (2)

where ~y = (y1, y2 · · · , yℓ) is a random permutation of ~x and
u(.) is the unitary function that counts number of ones in a

2476

bit string, and trapk(.) is a deceptive function [2] which leads
GAs toward converging to its sub-optimal solution. The trapk
function is defined as:

trapk(u) =

{
1 u = k
0.9(k−u)

k
otherwise

, (3)

As for problems with overlap, we design a problem called
aggregate trap (atrap) problem. The atrap problem is composed
of some basic BBs of size k. The function of Each BB is the
trap function. Two BBs share 1 bit and form a chunk. In the
experiments, we have k = 5. The atrap problem is defined as:

fatrap(~x) =

m

2∑
i=0

(trapk(u(y2ik+1, y2ik+2 · · · , y2ik+k)) +

trapk(u(y2ik+k, y2ik+k+1 · · · , y2ik+2k−1))), (4)

where m is an even number representing the number of BBs.

B. Linkage Set Definition

EDAs model problem structures with different linkage
models. For example, cGA [8], one of the simplest EDAs, uses
the probability vector as its linkage model, and BOA [10], one
of the most powerful EDAs, uses Bayesian network to model
problem structures. In this paper, we focus on OM which use
the linkage set as its linkage model. Suppose the problem is
of ℓ variables. Let the indices of the problem variables be
V = {1, 2, · · · , ℓ}. We define mask and linkage set as follows.

Definition 3.4: A mask is a subset of V . A linkage set
M is a set of masks. M = {M1,M2, . . . ,M|M|} such that
M1 ∪M2 ∪ . . . ∪M|M| = V .

In practice, what OM needs is a sequence of masks instead
of a set of masks. Hence, we need to specify the order of the
masks. In this paper, the elements of a set of masks are written
in the order with which OM utilizes them.

Since we consider homogeneous problems, we use some
specific homogeneous LSs in this paper. A homogeneous LS
can be divided into some isomorphic parts, each containing
some masks.

Definition 3.5: A homogeneous LS is a LS M such that
there exists a partition {M1,M2, . . .} of M and M1,M2, . . .
are all isomorphic.

For example, let M1 = {{1}, {2, 3}} and M2 =
{{4}, {5, 6}} be two set of masks. M1 and M2 are then
disjointed and isomorphic. Formally, let S and T be be two
subsets of V and let MS and MT be two set of masks
covering variables in S and T correspondingly. MS and MT

are isomorphic if there is a mapping from S to T such that
one can transform MS to MT by applying the mapping to the
elements of S in MS .

C. Marginal Product Model

Definition 3.6: The marginal product model (MP) is a
partition of V .

For example, {{1, 2, 3}, {4}, {5, 6}} is a MP for the problem
with 6 variables. In MP, all problem variables indices are
contained in exactly one mask. Any two different masks are

disjoint. In this paper, we consider two specific homogeneous
MP. The (m, k)-MP, and the (ℓ, 1)-MP.

Definition 3.7: A (m, k)-MP is a homogeneous MP com-
posed of m masks, each of size k, and k = ℓ

m
, where ℓ is the

number of problem variables. A (ℓ, 1)-MP is a homogeneous
MP composed of ℓ masks, each of size 1.

For example, {{1, 2}, {3, 4}, {5, 6}} is the (3, 2)-MP and
{{1}, {2}, {3}, {4}, {5}, {6}} is the (6, 1)-MP.

D. Linkage Tree Model

Definition 3.8: A binary tree set MS is a set of masks
covering the variables in S, a subset of V . MS =
{M1,M2, . . . ,M|MS |} such that ∀Mi ∈ Ms, (|Mi| 6= 1) ⇒
(∃!j∃!k, j 6= k,Mj 6= ∅,Mk 6= ∅,Mj ∩Mk = ∅,Mj ∪Mk =
Mi)

1.

For example, {{1, 2, 3}, {1}, {2, 3}, {2}, {3}} is a binary
tree set.

Definition 3.9: The linkage tree model (LT) MLT is a
binary tree set of V such that ∃!Mi∃!Mj ∈ MLT ,Mi 6=
Mj ,Mi ∪Mj = V .

The examples of LT are shown in Table I. LT is a binary
tree LS. It can be generated by a hierarchical clustering
procedure. The clustering starts from the (ℓ, 1)-MP, which
means that each problem variable is independent at first. Then,
two masks are combined according to the marginal product
metric. Both the combined mask as well as its constituent
masks are in LT. The combining of masks continues until
only two masks remain that together contain all the problem
variables. In this paper, we analyze a pruned version of LT,
the (m, k)-LT, which is defined as follows.

Definition 3.10: The (m, k)-LT is a homogeneous LS
which is the union of m independent and isomorphic binary
tree sets, each of which contains some masks and the largest
mask is of size k.

The examples of the (m, k)-LT are shown in Table I. The
(m, k)-LT is similar to the (m, k)-MP but each mask of the
(m, k)-MP is split into hierarchical sub-masks. In our settings,
the (m, k)-LT is generated as follows. Starting with all masks
of the (m, k)-MP in a queue, add the first mask of the queue
to the (m, k)-LT and then separate it into two sub- masks
(skip if it is of size 1) and add the two sub-masks back to the
queue. The process stops when the queue is empty. If during
the process of constructing the (m, k)-LT, the sizes of two
separated sub-masks differ at most 1, we call it the balanced
(m, k)-LT.

For LT and the (m, k)-LT, the order with which OM utilizes
the masks affects the performance. LTGA utilizes the masks in
LT in the reverse order of masks creation which is generally a
top-down order. In this paper, we consider both top-down order
and bottom-up order for LSs with hierarchical structures.

E. Linkage Set

All masks in MP are disjoint while LT and the (m, k)- LT
might contain overlapping masks. However, their abilities to

1∃! indicates that the following variable exists and is unique

2477

v={1,2,3,4,5,6}
(m, k)-MP (ℓ, 1)-MP

{{1, 2, 3}, {4, 5, 6}} {{1}, {2}, {3}, {4}, {5}, 6}}
top-down LT bottom-up LT

{{1, 2, 3, 4}, {1, 2}, {1}, {2},
{3, 4}, {3}, {4}, {5, 6}, {5}, {6}}

{{1}, {2}, {1, 2}, {3}, {4}, {3, 4},
{1, 2, 3, 4}, {5}, {6}, {5, 6}}

top-down (m, k)-LT bottom-up (m, k)-LT

{{1, 2, 3}, {1}, {2, 3}, {2}, {3},
{4, 5, 6}, {4}, {5, 6}, {5}, {6}}

{{1}, {2}, {3}, {2, 3}, {1, 2, 3},
{4}, {5}, {6}, {5, 6}, {4, 5, 6}}

TABLE I. EXAMPLES FOR THE SIX LSS

describe overlapping structures are limited. For example, {{ 1
, 2 , 3 } , { 3 , 4 , 5 }} is a LS but it can not be represented by
any LT. Moreover, both LT and the (m, k)-LT require masks
covering single variable, which results in many small masks
and might lead to inefficiency.

In this paper, we try to figure out the most suitable LSs for
different problems. A naive guess is that a good LS represents
the problem structure and contains masks corresponding to
the BBs of the problem. The (ℓ, 1)-MP and the (m, k)-MP
represent the structures of the one-max problem and the m−k
trap problem, which we describe later in Section V. And the
two LSs indeed outperform the other LSs. Hence, we believe
that LSs that can represent the problem structure are suitable
LSs. Throughout, we derive some general rules for suitable
LSs for different problems.

IV. MODEL EFFICIENCY

While OM succeeds by reducing population noise and
combining promising sub-solutions. The efficiency of OM
depends on the LS it utilizes. The more masks the LS contains,
the more number of function evaluations (NFEs) are required.
For example, adopting nested masks such as LT is less likely
to gain continuous improvement.

A. Definition of Model Efficiency

As the first step, we analyze the efficiencies of homoge-
neous LSs on homogeneous problems. A homogeneous LS can
be partitioned into several parts. Each part contains several
masks and different parts share no common variables. If all
masks in one part cover only some variables of one BB, every
time OM mixes variables with a mask, only one BB is affected.
Hence, we can focus on how OM affects the BBs’ quality
instead of the total solution quality.

Suppose the variables are discrete, and each of them has
ν possible values. A BB of size k has νk possible schemata,
each with a corresponding fitness. We define the rank of each
schema as follows.

Definition 4.1: The rank of a schema s is the number of
possible fitness values that are smaller than the fitness value
of s.

As an example, the rank of schemata of the 3-bit trap
function is listed in Table II.

Consider applying OM to a pair of receiving and donating
BB with a set of masks M = {M1,M2, . . .}, the improvement
of the receiving BB quality could be quantified by the increase
of its fitness rank. The required NFEs is smaller or equal to
|M| since no function evaluation is required for some masks

Schemata fitness rank

000 0.9 2

001,010,101 0.6 1

011,101,110 0 0

111 1 3

TABLE II. RANKS OF THE SCHEMATA OF THE 3-BIT TRAP FUNCTION.

r : 000 d : 111
M COST(r, d,M) GAIN(r, d,M)

{{1, 2, 3}} 1 1

{{1}, {2, 3}, {1, 2, 3}} 2 1

TABLE III. EXAMPLES OF THE COST AND GAIN FUNCTION.
APPLYING DIFFERENT MASKS ON THE TWO SCHEMATA OF THE 3-BIT TRAP

FUNCTION MIGHT RESULTS IN DIFFERENT COST AND GAIN. NOTICE THAT

THE MASKS ARE ADOPTED IN THE ORDER AS THEY ARE WRITTEN.

if the donated bits are equal to the original ones. Hence, we
define GAIN(r, d,M) as the function of the rank improvement
and COST(r, d,M) as the function of the required NFEs when
donating variables from a BB of schemata d to a BB of
schemata r with a set of masks M. For all r, d, M, both
GAIN(r, d,M) and COST(r, d,M) can be pre-calculated and
recorded in a table. Table III shows the cost and gain for
applying different masks on two schemata.

Let R,D denote random variables of schemata and M be
one independent part of a homogeneous LS. We define cost-
performance (CP) index of M:

CP (M) =
E[GAIN(R,D,M)]

E[COST(R,D,M)]
. (5)

CP (M) summarizes the overall rank increase for NFEs cost by
M. A higher CP value indicates a more efficiency set of masks.
Although CP is defined on an independent part of a LS, the
efficiency of a LS is the same as the efficiency of its separable
isomorphic parts. Note that when donating variables to an
receiver with all the masks, GOMEA might choose different
donors while ROMEA always choose the same donor. Hence,
the definition of CP is more suitable for ROMEA.

B. Dual CP Value

We can calculate the CP values when running real EDAs by
recording the distribution of all schemata in each generation.
Then we can compare the efficiencies of different LSs by the
CP values. However, it would be better if we could directly
prove that one LS is always less efficient than another LS
without running EDAs. For this purpose, we introduce the
concept of dual CP.

Consider mixing a pair of BBs with schemata r, d with a
set of masks M. The probabilities of choosing (r, d) or (d, r) as
(receiver, donor) pair are both Pr[r]Pr[d], where Pr[∗] is the
ratio of the corresponding schemata in the population. Hence
we define

CPdual(r, d,M) =
GAIN(r, d,M) + GAIN(d, r,M)

COST(r, d,M) + COST(d, r,M)
, (6)

where the probability Pr[r]Pr[d] is canceled from both
the numerator and the denominator. Note that dual CP
value is only valid when COST(r, d,M)+COST(d, r,M)>
0. Hence a dual pair (r, d) is a legal dual pair only if
COST(r, d,M)+COST(d, r,M)> 0.

2478

The dual CP enables us to inspect the efficiency of a LS
on each pair of schemata. The following lemma describes the
relation of CP and dual CP:

Lemma 4.2: For a set of masks M, if for all legal dual
pairs r, d, CPdual(r, d,M) < c where c is a constant, then
CP (M) < c.

Proof: Let D denote number of legal dual pairs and gi,
ci, pi denote the numerator, the denominator and the ratio of
the ith legal dual pair. We need to prove that if gi/ci < c for i

from 1 to D, then (
∑D

i=1 pigi/
∑D

i=1 pici) < c. By observing

that gi < c × ci for all i, we get
∑D

i=1 pigi < c
∑D

i=1 pici.

Hence, (
∑D

i=1 pigi/
∑D

i=1 pici) < c.

In some cases, we could use Lemma 4.2 to prove that one
LS is less efficient than another by inspecting the dual CP
values of all legal dual pairs.

C. Population Sizing

Model efficiency could be regarded as the rate of popula-
tion converging. However, the total NFEs is still affected by
the population size. Some facet-wise models, such as initial-
supply [5], decision making [4], [6] and model building [17],
have been developed to model different bounds on population
sizing for EDA success.

For OM, recognized BBs are compared separately, so
fitness variance of other BBs do not affect the decision of
choosing better BBs. Therefore, the population size is more
possible to be bounded by initial-supply or model building.
In this paper, to compare efficiencies of different LSs, we run
EDAs with perfect model information. In other words, we do
not consider model building.

As a facet-wise model, LS efficiency is not a direct
predicator of total performance. Throughout, we discuss LS
selection by considering both LS efficiency and population
sizing although we only describe the latter quantitatively.

V. ANALYSIS ON FULLY SEPARABLE PROBLEMS

By applying different LSs to different problems, we would
like to see which LS is more suitable for each problem.
Moreover, we would like to see if there are general rules of
LS choosing. In this section, we analyze the onemax problem
and the m-k trap problem.

A. Experiments Setting

In all our experiments, instead of learning LS from the
population, the LSs required by OM are given manually.
In the section, we test the m-k trap problem and the one-
max problem with four LS, the (ℓ, 1)-MP, the (m, k)-MP, the
top-down (m, k)-LT and the bottom-up (m, k)-LT. In all the
experiments, we use the binary tournament selection [7], full
replacement as EDA operators. No mutation operator is used,
and the termination condition is convergence of the population.
If not specified explicitly, unbiased initial population is used.

Model Required population Required NFEs

(ℓ, 1)-MP 316* 101497

(m, k)-MP, k = 5 316 49982

top-down (m, k)-LT, k = 5 264 129300

bottom-up (m, k)-LT, k = 5 179 133868

TABLE IV. SUMMARY OF APPLYING THE FOUR LSS TO A 180-BITS

m-k TRAP PROBLEM WITH k = 5. NOTICE THAT THE (ℓ, 1)-MP LS FAILS

TO SOLVE THE PROBLEM.

B. Applying Models on the Trap Problem

The result of applying the four LSs to the m-k trap problem
is shown in Table IV and Figure 1. For the (m, k)-MP, we have
k equal to the size of the ground truth BBs. For the (m, k)-LT,
we consider the balanced (m, k)-LT. The required population
is derived by running the bisection [14]. The population fails
to converge to the optimum solution with (ℓ, 1)-MP, so we use
the same population size required by adopting the (m, k)-MP.

Since higher CP values indicate higher efficiency, Figure 1
shows that the (m, k)-MP is always more efficient than the
other three LSs. The (ℓ, 1)-MP leads to nearly no improvement
at the end of the process. This is because most of the schemata
are 00000 and 11111 at the late phase, each of which is
the local optimum and the global optimum of the BBs. Both
injecting a bit from 11111 to 00000 and injecting from 00000
to 11111 lead to no rank increase and thus all evaluations are
wasted.

The (m, k)-LT also solves the trap problem, however, it
is less efficient than the (m, k)-MP. However, the (m, k)-LT
might still be more efficient than the (m, k)-MP in some cases.
We could exhaustively list all possible functions and check
the efficiencies of both LSs. For example, for k = 3, there
are 8 possible schemata for a BB. Hence there are 8! possible
functions if we consider only the ranks of fitness. Experiment
results show that for all the 8! functions, the (m, k)-LT is
always less efficient than the (m, k)-MP.

Note that the bottom-up (m, k)-LT is less efficient than the

top-down (m, k)-LT since the former leads to 0(5), the local
optima of a BB, more frequently. However, we shall later see
that bottom-up structure is usually a better choice if the masks
represent the problem structure.

By the comparison of the four LSs, we conclude that for
strongly connected variables that form a BB, we should have
a mask that cover all the variables of the BB and we should
avoid dividing that mask into sub-masks for efficiency concern.

C. Applying Models on One-max Problem

Next, we apply the LSs to the one-max problem. We use
a biased initial population such that each bit is set to 0 with
probability 0.9. For the (m, k)-MP and the (m, k)-LT, larger
population size is required if we fix masks in every generation
due to BB supply [5]. However, if a model builder is used to
solve the one-max problem, the masks are not fixed in every
generation. Thus, to simulate real model building, we random
partition the problem variables into m chunks and let each
independent part of the two LSs generate masks corresponding
to one chunk.

2479

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

C
P

(l,1)−MP

(m,k)−MP, k=5

top down (m,k)−LT, k=5

bottom up (m,k)−LT, k=5

Fig. 1. CP values of different LSs to the m-k trap problem. Note that the
convergence time are not all the same for the LSs.

As we see in Figure 2, the (m, k)-MP is always more
efficient than the (ℓ, 1)-MP. Moreover, the lager k is, the
more efficient the (m, k)-MP is. For the MP series LSs, the
cost of no improvement trial is always 1 while for larger k,
the expectation gain is greater. Hence, efficiency of a MP is
positive relative to k. However, from Table V we see that as k
increases, the required population size increases accordingly,
which results in higher NFEs. The population increases is like
the punishment of linkage model complexity. For the one-
max problem, it seems that concerning both model efficiency
and model punishment, the most suitable MP is the (ℓ, 1)-MP.
However, if same population is used, a MP with larger k leads
to fewer NFEs since it is more efficient.

The result of the one-max problem gives us some insight
into more complex problem. For example, for the m-k trap
problem, by treating optimal BBs as 1s and non-optimal BBs
as 0s, it is then similar to the one-max problem. The initial
ratio of the optimal BBs would be about 1/2k if unbiased
population is used. Therefore, we could extend our conclusion
that to achieve optimal performance, we should use a LS with
each mask containing the variables of one BB, and the masks
should not be combined to form larger masks. By experiments,
this extension is correct on the m-k trap problem.

Figure 2 indicates that the efficiencies of the top-down
(m, k)-LT and the bottom-up (m, k)-LT are the lowest among
all the LSs. The reason is that when a mask leads to improve-
ment, the receiver is less likely to be improved again since it
is of a better schemata. Hence, the probability that the other
masks lead to improvement is lower. This implies that a tree
structure might waste some NFEs. As we see in Table VI, for
the top-down (m, k)-LT, there is no possible schemata pairs
that leads to dual CP value larger than 0.5. By Lemma 4.1,
we know the CP value of the top-down (m, k)-LT is always
smaller than 0.5, which means the top-down (m, k)-LT is
always less efficient than (l, 1)-MP. The same inference applies
to the bottom-up (m, k)-LT.

Table V shows that the bottom-up (m, k)-LT requires rel-
atively small NFEs comparing to the top-down (m, k)-LT due
to the small population size it requires. Unlike the experiment
for the trap problem, when each mask of the (m, k)-LT covers
at least a BB of the problem, it is less possible to lead to a
local optima by applying it. Hence, bottom-up structures are a
better choice for LSs with tree structures if the masks represent
the problem structures.

We summarize this section with three rules of LS selection
for fully separable problems:

1) The most suitable LS should contain some masks,
each covering a BB that is formed by strongly con-
nected variables.

2) For each mask corresponding to a BB, further divi-
sion of each mask leads to inefficiency and worse
performance.

3) For each mask corresponding to a BB, further com-
bination of each mask leads to higher model punish-
ment and worse performance.

Model Required population Required NFEs

(ℓ, 1)-MP 137 39356

(m, k)-MP, k = 5 181 45889

(m, k)-MP, k = 9 240 50013

top-down (m, k)-LT, k = 5 160 91393

top-down (m, k)-LT, k = 9 188 113440

bottom-up (m, k)-LT, k = 5 126 71393

bottom-up (m, k)-LT, k = 9 136 85139

TABLE V. SUMMARY OF APPLYING DIFFERENT LSS TO A 180-BITS

ONE-MAX PROBLEM.

0 2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generation

C
P

(l,1)−MP

(m,k)−MP, k=5

(m,k)−MP, k=9

top down (m,k)−LT, k=5

top down (m,k)−LT, k=9

bottom up (m,k)−LT, k=5

bottom up (m,k)−LT, k=9

Fig. 2. CP values of applying different LSs to the one-max problem. Note
that biased initial population is used to simulate the initial ratio of optimal
BBs of complex problems.

(ℓ, 1)-MP (m, k)-LT, k = 5 (m, k)-LT, k = 9
dual CP< 0.5 0 9.98E-01 9.99E-01

dual CP= 0.5 1 2.02E-03 7.64E-06

dual CP> 0.5 0 0 0

TABLE VI. RATIO OF LEGAL DUAL PAIRS ON DIFFERENT CONDITION.

VI. ANALYSIS ON PROBLEMS WITH OVERLAP

Real world problems often have complex structures. By
regarding strongly related variables as a BB, there might be
overlap between BBs, which means some BBs share several
common variables. A possible way of solving such problems is
to combine two overlapping BBs together with a larger mask,
which results in a larger population size. A better way might
be using masks corresponding to the original two BBs and the
larger BB as well. In this section, we analyze performances of
different LSs to the designed atrap problem.

A. More General Linkage Sets

As stated, the abilities of MP, LT to describe overlap
is limited. The problem structure of atrp can not be fully

2480

represented by any of MP and LT. Hence, in the experiments,
we compare the (m, k)-LT and some general LSs that describe
the structure of the atrap problem.

From previous results, we know that small masks lead to
inefficiency. Hence, we consider two properly pruned (m, k)-
LT, the (9, 5, 4)-LS and the (5, 4, 9)-LS, where each number
corresponds to the size of a mask. For this two LSs, one of the
BB of an isomorphic part is not correctly covered by the mask
of size 4. Hence, we further consider three LSs, the (5, 5)-LS,
the (9, 5, 5)-LS, and the (5, 5, 9)-LS. The examples of the LSs
are shown in Table VII. The order of the masks utilized by
OM when calculating the CP values are as the order in the
examples. However, to simulate real model building, for all
these LSs, the order of the two smaller masks (of size 4 or 5)
of each isomorphic part is randomly determined.

Underlying BBs:

{1, 2, 3, 4, 5}, {5, 6, 7, 8, 9}
(5, 5)-LS

{1, 2, 3, 4, 5}, {5, 6, 7, 8, 9}
(9, 5, 4)-LS (5, 4, 9)-LS

{1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 5}, {6, 7, 8, 9}

{1, 2, 3, 4, 5}, {6, 7, 8, 9},
{1, 2, 3, 4, 5, 6, 7, 8, 9}

(9, 52)-LS (52, 9)-LS

{1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 5}{5, 6, 7, 8, 9}

{1, 2, 3, 4, 5}{5, 6, 7, 8, 9},
{1, 2, 3, 4, 5, 6, 7, 8, 9}

TABLE VII. EXAMPLES FOR THE GENERAL LSS. NOTICE THAT WE

ONLY SHOW MASKS FOR AN ISOMORPHIC PART FOR THE LSS.

B. Applying Models on the Atrap Problem

The experiment results are shown in Table VIII and Fig-
ure 3. We observe (1) that (5, 5)-LS failed to solve the problem,
and (2) that pruned LT is more efficient than (m, k)-LT and
leads to better performance, and (3) that (9, 5, 4)-LS requires
more NFEs than (9, 5, 5)-LS due to larger population size
while the their efficiencies are close, and the result for (5, 4, 9)-
LS and (5, 5, 9)-LS is the same, and (4) that for properly
pruned LSs, bottom-up structure is better due to smaller
population size.

From the observations, we summarize this section with the
following rules for choosing LS for separable problems with
overlap :

1) Combining masks corresponding to overlapping BBs
is necessary and hence LT is more suitable than MP.

2) Properly pruned LT is more efficient than LT and
hence is more suitable.

3) Considering both model efficiency and population
sizing, LS reflecting the problem structure is more
suitable than properly pruned LT

4) Bottom-up structure is a better choice for LSs reflect-
ing the problem structure.

VII. CONCLUSION

We use the cost-performance index to measure the LS
efficiency for OM. With some experiments, rules of an efficient
LS are derived. In a LS, large mask usually leads to higher
efficiency yet larger population size. On the other hand,
smaller masks reduce population size while they usually cause
inefficiency. Suppose the problem structure can be separated
into several independent chunks and each chunk can not be

Model Required population Required NFEs

(5, 5)-LS 461* 339962

(9, 5, 4)-LS 509 115387

(9, 5, 5)-LS 461 106036

top-down (m, k)-LT, k = 9 470 288119

(5, 4, 9)-LS 371 101291

(5, 5, 9)-LS 337 91628

bottom-up (m, k)-LT, k = 9 322 295812

TABLE VIII. SUMMARY OF APPLYING THE SEVEN LSS TO A 180-BITS

ATRAP PROBLEM WITH k = 5. NOTICE THAT (5, 5)-LS FAILS TO SOLVE

THE PROBLEM.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

C
P

(5,5)−LS

(9,5,4)−LS

(9,5
2
)−LS

top down (m,k)−LT, k=9

(5,4,9)−LS

(5
2
,9)−LS

bottom up (m,k)−LT, k=9

Fig. 3. CP values of applying different LSs to the one-max problem.

divided into non-overlapping sub-chunks. For each chunk, the
LS should contain a mask corresponding to it, which we
called a top mask. If all the variables of a chunk are all
strongly related, the LS should contain no sub-masks of the
corresponding top mask. In contrast, if a chunk can be further
divided into some overlapping BBs, masks corresponding to
each BB should be in the LS. To sum up, the LS that describes
the problem structure leads to optimal performance.

One feature of OM is that it usually solves the problem
with a smaller population than traditional EDAs. However, the
NFEs are affected by the adopted LSs. Our investigation on
the efficiency of LSs indicates that some efforts could be done
to strike a balance between the efficiency and the robustness of
the LSs. We believe that further study of population sizing and
the efficiency of LSs is essential to advance the development
of more competent mixing operators.

2481

REFERENCES

[1] P. A. Bosman and D. Thierens. The roles of local search, model
building and optimal mixing in evolutionary algorithms from a bbo
perspective. In Proceedings of the 13th Annual Conference Companion

on Genetic and Evolutionary Computation, GECCO ’11, pages 663–
670, New York, NY, USA, 2011. ACM.

[2] K. Deb and D. E. Goldberg. Analyzing deception in trap functions.
Foundations of Genetic Algorithms 2, pages 93–108, 1993.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, Reading, MA, 1989.

[4] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise,
and the sizing of populations. Complex Systems, vol. 6:333–362, 1992.

[5] D. E. Goldberg, K. Sastry, and T. Latoza. On the supply of building
blocks. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2001), pages 336–342, 2001.

[6] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s
ruin problem, genetic algorithms, and the sizing of populations. Pro-

ceedings of the 1997 IEEE International Conference on Evolutionary

Computation, pages 7–12, 1997.

[7] G. R. Harik. Finding multimodal solutions using restricted tournament
selection. In ICGA, pages 24–31, 1995.

[8] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algo-
rithm. Proceedings of IEEE International Conference on Evolutionary

Computation, pages 523–528, 1998.

[9] J. A. Lozano, P. Larrañaga, I. n. Inza, and E. Bengoetxea. Towards a

New Evolutionary Computation: Advances on Estimation of Distribution

Algorithms (Studies in Fuzziness and Soft Computing). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[10] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. BOA: The bayesian
optimization algorithm. Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-1999), pages 525–532, 1999.

[11] M. Pelikan, M. W. Hauschild, and D. Thierens. Pairwise and problem-
specific distance metrics in the linkage tree genetic algorithm. In Pro-

ceedings of the 13th Annual Conference on Genetic and Evolutionary

Computation, GECCO ’11, pages 1005–1012, New York, NY, USA,
2011. ACM.

[12] M. Pelikan, K. Sastry, and E. Cantu-Paz, editors. Scalable Optimization

via Probabilistic Modeling: From Algorithms to Applications. Springer,
Berlin, 2006.

[13] E. Radetic, M. Pelikan, and D. E. Goldberg. Effects of a deterministic
hill climber on hboa. In Proceedings of the 11th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’09, pages 437–444,
New York, NY, USA, 2009. ACM.

[14] K. Sastry. Evaluation-relaxation schemes for genetic and evolutionary
algorithms. Master thesis, University of Illinois at Urbana-Champaign,
Urbana, IL, 2002.

[15] D. Thierens. The linkage tree genetic algorithm. In Proceedings of

the 11th International Conference on Parallel Problem Solving from

Nature: Part I, PPSN’10, pages 264–273, Berlin, Heidelberg, 2010.
Springer-Verlag.

[16] D. Thierens and P. A. Bosman. Optimal mixing evolutionary algo-
rithms. In Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’11, pages 617–624, New York,
NY, USA, 2011. ACM.

[17] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing
for entropy-based model building in discrete estimation of distribution
algorithms. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2007), pages 601–608, 2007.

2482

