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Abstract—An improved Chaotic Particle Swarm Optimization 
(CPSO) algorithm for a jobshop scheduling problem, with 
minimization of makespan as the criterion, is proposed in this 
research. A real-valued encoding scheme based on a matrix 
representation is developed, which converts the continuous 
position value of particles in PSO to the processing order of job 
operation. A compound chaotic search strategy that integrates 
both Tent and Logistic chaotic search process is employed to the 
global best particle to enhance the local searching ability of PSO. 
In addition, a gaussian disturbance technology is embedded in 
the CPSO algorithm to improve the diversity of the particles in 
the swarm. The performance of CPSO is compared with the 
standard PSO algorithm on a benchmark instance of jobshop 
scheduling problems. The results show that the proposed CPSO 
algorithm has a superior performance to the PSO algorithm. 

Keywords—scheduling; particle swarm optimization; chaotic 
search 

I.  INTRODUCTION 
Among all types of scheduling problems, job shop 

scheduling problem (JSSP) has important applications in 
different industries. This problem is known to be NP-hard in 
the strong sense [1]. Thus, it is unlikely to obtain the optimal 
schedule through polynomial time-bounded algorithms. Over 
the years there has been a great deal of research to develop 
efficient approaches for the problem. A new hybrid swarm 
intelligence algorithm to solve the job-shop scheduling 
problem is proposed by Tsung-Lieh Lin et al. [2]. Roshanaei et 
al. [3] develop new solution methodologies including 
mathematical modelling and a meta-heuristic for the flexible 
job shop scheduling problem. Mencia et al. [4] apply a hybrid 
search algorithm that interleaves best-first and depth-first 
search to the job shop scheduling problem. Yuan and Xu [5] 
integrate hybrid harmony search (HHS) and large 
neighborhood search (LNS) for the flexible job shop 
scheduling problem with makespan criterion. Among these 
solution methodologies of JSSP, intelligent optimization 
algorithms are relatively easy to implement and they could 
conveniently be adapted for different kinds of scheduling 
problems. This has made the research on them increasingly 
popular in the recent years. PSO is one of the latest 
metaheuristic methods in the literature. Based on the metaphor 
of social interaction and communication such as bird flocking 
and fish schooling, PSO was introduced to optimize both 

continuous and discrete problems. Recently, PSO algorithms 
were successfully applied to a wide range of applications such 
as aggregate production planning by Wang and Yeh [6], data 
envelopment analysis by Meng [7], trajectory planning 
problem of underactuated spacecrafts by Zhuang and Huang 
[8], and medical technology by Yang et al. [9]. However, the 
converging processes of the standard version of PSO algorithm 
tend to be too slow for practical-scale JSSPs. In this paper, 
some effort has been devoted to the modification and 
improvement of PSO algorithm that is applied to the JSSP. 

 The reminder of the paper is organized as follows: In the 
following section, details of the JSP are described. Then we 
give a brief introduction to PSO algorithm and its inspiration. 
The structure of the proposed PSO algorithm is presented in 
Section 3. A series of comparative experiments are conducted 
in Section 4 to evaluate the performance of the proposed 
algorithm. Finally, conclusions are given in Section 5. 

II. PROBLEM DESCRIPTION 
Scheduling for job shops is an important topic in production 

management. Generally for the job-shop scheduling  problem 
there are a set of n jobs  are waiting to be processed on a set of 
m machines where the processing of each job consists of m 
operations performed on these machines in a specified 
sequence. In this paper we consider the deterministic and 
static job-shop scheduling problem. Some basic assumptions 
are in the following: 
1) All the jobs are available at time zero. 
2) Each machine can process only one job at a time. 
3) Each job can be processed by only one machine at a time.  
4) Once started operations cannot be interrupted. 
5) All the machines are continuously available throughout the 
production stage. 
6) The transportation time to deliver relevant jobs between 
different machines is neglected. 
7) The setup time for the machines to switch between different 
jobs is neglected. 

The manufacturing procedure to be performed on any one 
machine is called an operation of the job. The operation of job i 
has to be performed on machine j with deterministic processing 
time tij. The goal for optimization is to minimize the makespan 
(Cmax). In other words, the scheduling objective considered in 
this paper is to determine the processing sequence of the 
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operations on each machine such that the completion time of 
the last operation could be minimized, i.e., 
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where Ci is the completion time of job i. 

III. CPSO ALGORITHM FOR JOB SHOP SCHEDULING 

A. Standard PSO 
Particle swarm optimization (PSO), originally designed by 

Kennedy and Eberhart [10] in 1995, is inspired by observing 
the bird flocking or fish school. In the PSO algorithm, birds 
are called particles, each representing a potential solution. All 
particles have their position, velocity, and fitness values. To 
find the optimal solution, each particle adjusts its flying 
according to its own flying experience and its companions’ 
flying experience. For n-dimensional search space, each 
particle in the swarm population has the following attributes: a 
current position represented as ],,,[ 21
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kkk gggG =  denote the current global best position. 
During the evolution process of the swarm, the new position 
and velocity of each particle i are determined by the following 
equations: 
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B. Coding Scheme and Initial Population Generation 
In solving the jobshop scheduling by PSO, first task is to 

represent a solution of a problem as a particle. We utilize a 
priority-based representation where a particle is encoded as a 
matrix. Suppose n jobs are to be scheduled on m machines. An 
n×m matrix is given by a particle as follows: 
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where xij  denotes the priority value of job i which is processed 
on machine j. Then, we use Giffler and Thompson's heuristic 
[11] to create a feasible schedule based on the priorities values 
of job operations for each particle. Below is a brief outline of 
the G&T algorithm for obtaining schedules. Let Φ contain the 
schedulable operation of each job and eij denote the earliest 
time at which the operation (i, j) can start. 
Step 1. Let eij =0, for all operation (i, j) in Φ. 
Step 2. Compute }{min ),(

*
ijijji tef += Φ∈

 where tij is the 
processing time of operation (i, j). Let m* denote the 
machine on which the minimum is achieved. 

Step 3. Find out the conflict set Ψ of all operations (i, m*) on 
machine m* such that *

* feim < . 

Step 4. Select the operation r* with the largest priority value 
from Ψ and schedule it. If more than one operation 
exists according to the priority values, tie is broken by a 
random choice. 

Step 5. Delete the operation r* from Φ, and put its immediate 
successor into Φ.  

Step 6. Update eij in Φ and return to step 2 until all operation 
are scheduled. 

An initial population is generated randomly where ijx  is 
drawn from [ low

ijx , up
ijx ]. low

ijx  and up
ijx  are the lower and upper 

bounds of xij, respectively. As for the range of particle velocity, 
we clip the range of particle velocities ijv within [ )( low

ij
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ij xx −− , 
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C. A Compound Chaotic Search Technology for the Global 
Best Particle 

Chaos is a deterministic, random-like process found in non-
linear, dynamical system, which is non-period, non-
converging and bounded. The two main characteristics of the 
chaos method concentrate on randomicity and ergodicity that 
will strengthen the performance of the traditional PSO 
algorithm. In order to emphasize exploitation ability, a 
compound chaotic search for the global best particle is 
embedded in the proposed PSO algorithm. The chaotic search 
process integrates Tent and Logistic chaotic maps which are 
defined as equations (3) and (4) respectively.  

    11   |,|211 ≤<−−=+ nnn xxx                                        (3) 
40  ,10   ),1(1 ≤<<<−=+ λλ nnnn xxxx                       (4) 

A compound chaotic map can be obtained by incorporating 
the above two maps as follows: 

10   ),1(211 ≤<−−=+ nnnn xxxx λ                               (5) 
Some good results have been shown in some applications 
when λ is set to 2 [12]. Let low

ijx  and up
ijx  be the lower and 

upper bounds of xij in a particle matrix respectively. The local 
search algorithm is described in the following: 
Step 1. Set k = 1. 
Step 2. Map matrix variables k

ijx  to chaotic variables k
ijcx  in 

terms of (6): 
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Step 3. Generate chaotic variables 1+k
ijcx  based on the 

compound chaotic map (5) where λ is set to 2, i.e.: 
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Step 4. Translate the chaotic variables 1+k
ijcx into matrix 

variables 1+k
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Step 5. Decode the matrix representation of the particle into a 
feasible processing sequence of the operations on all 
machines.  

Step 6. Compute the fitness fk+1of the particle. 
Step 7. Update the best position of the particle if a better 

fitness (fk+1< fk) is obtained by the chaotic search. 
Step 8. Set k = k +1. Go to step 2 until the maximum number of 

iteration for chaotic search is achieved. 

D. Gaussian Disturbance Strategy 
One of the major drawbacks of the PSO is its premature 

convergence, especially while handling problems with more 
local optima. Particles tend to be stagnant when their 
velocities are near to zero. In this paper, a gaussian 
disturbance strategy is introduced in the proposed PSO to 
solve the global optimization problem. When matrix variables 
xij of a particle are unchanged in μ consecutive iterations, the 
disturbance strategy will be applied to the particle in the 
swarm. Suppose mn

k
ij

k gG ×= ][  be the current global best 

position in the kth iteration of CPSO. Formula (9) gives the 
gaussian disturbance process. 
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where C is a predefined constant parameter. N(0,1) 
represents the standard normal distribution where mean is set 
to 0 and variance is set to 1. For each matrix variable xij to be 
disturbed, a random value rnd is generated uniformly from [0, 
1]. Whether a gaussian disturbance or a random immigrant 
technique will be applied in terms of the value of rnd. 

E. The Framework of Proposed CPSO 
Based on the above design, the procedure of the proposed 

CPSO algorithm for solving JSSP is summarized as follows. 
Step 1. Generate randomly an initial population within the 

range of position and velocity values. 
Step 2. Translate matrix representations of particles into 

feasible scheduling schemes. 
Step 3. Evaluate all particle individuals in the population 

based on the fitness. 
Step 4. Update the personal best particle Pbest as well as 

global best particle Gbest in the swam. 
Step 5. Apply the gaussian disturbance strategy to each 

particle in the current population. Update the personal 
best position and the current global best position 
whenever a better fitness is obtained by the gaussian 
disturbance. 

Step 6. Perform the chaotic local search algorithm on the 
current global best particle Gbest. 

Step 7. Update the velocities and positions of particles 
according to equations (1) and (2). 

Step 8. Go back to Step 2, unless the termination condition is 
met. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Experiment Design 
To test the performance of the proposed CPSO algorithm 

for solving JSSP, some comparative experiments are carried 
out. A benchmark instance of JSSP which is prefixed by LA01 
and described by Lawrence [13] is employed in the 
experiments. There are 10 jobs to be processed on 5 machines 
in LA01 and the optimal objective function value of the test 
problem is 666 as reported in the literature for the makespan 
criterion. Table I and II list the processing machine sequence 
and processing time of each job on all the machines in details. 

In the experiment, the parameters for the proposed CPSO 
algorithm are assigned as follow. The number of the 
population size of the particles is set to 30. Default values for 
the parameters c1 and c2 have been used: c1 = c2 = 2.  The 
inertia weight w is set to decrease linearly from 0.9 to 0.4 
during a run of the PSO. The time decreasing inertia weight 
allows the PSO to explore a large area at the start of the run, 
and to refine the search later by using a smaller inertia weight. 
To clip the range of positions and velocities for the encoding 
scheme of particles, we set up

ijx  (i=1, 2, …, n; j=1, 2, …, m) to 

be 4 while low
ijx  is set to −4. The maximum number of iteration 

for compound chaotic search is set to 10. The gaussian 
disturbance parameter C is set to 0.9. The termination criterion 
of the proposed CPSO is the maximum of 1000 iterations in 
population evolution.  

TABLE I.  PROCESSING MACHINE SEQUENCES OF JOBS 

 M1 M2 M3 M4 M5 
J1 2 1 5 4 3 
J2 1 4 5 3 2 
J3 4 5 2 3 1 
J4 2 1 5 3 4 
J5 1 4 3 2 5 
J6 2 3 5 1 4 
J7 4 5 2 3 1 
J8 3 1 2 4 5 
J9 4 2 5 1 3 
J10 5 4 3 2 1 

TABLE II.  PROCESSING TIME OF JOBS  

 M1 M2 M3 M4 M5 
J1 21 53 95 55 34 
J2 21 52 16 26 71 
J3 39 98 42 31 12 
J4 77 55 79 66 77 
J5 83 34 64 19 37 
J6 54 43 79 92 62 
J7 69 77 87 87 93 
J8 38 60 41 24 83 
J9 17 49 25 44 98 
J10 77 79 43 75 96 
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All of the compared algorithms are coded in Visual C++ 
and the experiments are executed on a Pentium PIV 3.0 GHz 
PC with 512 MB memory. 

B. Computational Results 
Firstly, some experiments are designed in order to find an 

optimal value for parameter μ in the gaussian disturbance 
strategy. The experiments of the JSSP optimization are done 
three times using the CPSO algorithm by adjusting the values 
of μ from 1 to 100. Three values including 1, 10 and 100 are 
tested for μ. The results of the experiments are presented in 
Figure 1. The results show that the performance of CPSO 
varies when μ set to different values. When μ is set to 100, 
CPSO is to be stagnant in local minima and does not converge 
to the global minima in the end. CPSO with μ=1 converges 
much faster than CPSO with μ=10 although both of them 
converge to the optimal makespan value. It seems that a 
smaller μ will achieve more improvement in solution than a 
larger one. Thus, we select μ=1 for CPSO. 

Fig. 1.  The results of CPSO with different μ. 

Fig. 2. The representative convergence curves for PSO and CPSO. 

Then, we compare the experimental results of proposed 
CPSO with standard PSO. Table III summarizes the results of 
the experiments. From Table III it can be seen that the best and 
average solutions found by PSO are 671 and  672.6 
respectively while the results of CPSO is much better than the 
original design. CPSO obtains the optimal solution 666 and its 
average solution is 668 which are much closer to the optimal 
solution. The convergence trends of PSO and CPSO are shown 
in Fig. 2. The proposed CPSO algorithm can reach the best 
solution in 60 iterations. Whereas the particles of PSO do not 
converge to global optima after 1000 iterations. The 
performance of CPSO can be attributed to the compound 
chaotic search and gaussian disturbance improvements which 
enhance search behavior of PSO and allow it to avoid local 
optima. 

TABLE III.  COMPUTATIONAL RESULTS OF STANDARD PSO AND CPSO 

PSO CPSO 
Best Worst Average Best Worst Average 
671 724 672.6 666 740 668 

V. CONCLUSION 
In this research, the idea of applying chaotic search 

principle in particle swarm optimization to the jobshop 
scheduling problems has been explored. By applying a special 
encoding mechanism, the continuous position values of 
particles in PSO are converted to the processing order of job 
operation. A compound chaotic local search strategy is 
designed to perform exploration for promising solutions within 
the entire region. The approach also incorporates a gaussian 
disturbance technique that is used to enhance diversity to the 
population. Simulation results and comparisons demonstrate 
the effectiveness of the proposed CPSO in terms of searching 
quality and robustness. The future work is to investigate the 
applications of the proposed method to some other kinds of 
combinatorial optimization problems. 
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