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Abstract—Due to the intrinsic complexity of the remote 
sensing image and the lack of the prior knowledge, clustering 
for remote sensing image has always been one of the most 
challenging works in remote sensing image processing. The 
proposed algorithm constructs a bi-objective memetic-based 
framework, exploiting the feature space more efficiently. In the 
framework, two objective functions, Jm and XB, are used as 
the objective functions for bi-objective optimization. 
Furthermore, an adaptive local search method which can 
dynamically adjust its parameter value according to the 
selection probability has been developed and incorporated into 
the proposed algorithm. In order to speed the convergence and 
obtain more non-dominated solutions in the pareto front, a 
new strategy is newly devised in the local search process, which 
considers more solutions as the candidate for the next 
generation. To evaluate the proposed algorithm, some 
experiments on two multi-spectral images are conducted. The 
results show that the proposed algorithm can achieve better 
performance, compared with related methods. 

Keywords—memetic; multi-objective; remote sensing; fuzzy 
clustering 

I. INTRODUCTION 
Clustering is one of the most important techniques in 

remote sensing image processing. The aim of remote sensing 
clustering is to partition a given image into groups such that 
pixels in the same group are as similar to each other as 
possible, while those assigned to different groups are 
dissimilar. Among the clustering methods, fuzzy clustering is 
popular and has been widely used in remote sensing image 
clustering. The fuzzy clustering approach can retain more 
information from the original image than the crisp or hard 
clustering methods such as K-means and ISODATA, which 
usually do not perform well when the mixed pixel problem 
appears. 

In literature, the remote sensing image clustering was 
completed by minimizing or maximizing the corresponding 
objective function, which models the structure of the remote 
sensing image. However, different types of remote sensing 

images have different structures. It is unreasonable to use 
only one objective function for the clustering task because of 
the fact that no single clustering objective function works 
equally well for different kinds of remote sensing images, 
especially considering the complexity of remote sensing 
images. Thus, it is natural to simultaneously optimize 
multiple clustering objective functions for capturing different 
characteristics of the remote sensing images, which is 
usually named as multi-objective optimization [1]. Recently, 
some multi-objective evolutionary clustering algorithms for 
remote sensing image are available in the literature [2], [3], 
In [2], zhong et. al design a two-layer system comprising an 
optimization layer and classification layer. In the 
classification layer, NSGA-II [4] is utilized to minimize the 
Jm value and Xie-Beni index. In [3], Andrea Paoli et al 
present new methodology for clustering hyperspectral 
images within a multi-objective particle optimization 
framework, which can implement feature selection, 
determination of cluster number and clustering 
simultaneously. However, the traditional optimization 
methods such as differential evolution algorithm (DE) or 
simulated annealing, cannot capture the global search 
capability and local search capability simultaneously. For 
example, DE, as one of the stochastic search algorithms, has 
powerful global search capability [5]. Although DE can 
locate the promising solutions of the search space, it is 
difficult for them to refine the solutions in the space due to 
lack of local search capability, which can result in 
unsatisfactory remote sensing image clustering results. 

In this paper, in order to resolve the above problem in 
remote sensing image clustering, an adaptive bi-objective 
memetic fuzzy clustering algorithm for remote sensing 
imagery (ABOMC) is proposed. Our contributions are as 
follows: 

 A bi-objective memetic framework is used to cluster 
remote sensing image. In this framework, two 
objective functions Jm and XB are optimized by 
memetic algorithms (MAs) [6], which are 
computational framework based on the cultural 
evolution that can exhibit local refinement. MAs 
consist of global search and local search, which can 
combine the global search capability of evolution 
algorithm and individual refining of local search. In 
the proposed framework, differential evolution 
algorithm (DE) is used as the global search method 
because of its powerful global search capability [5] 
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and it has also been used to many applications of 
remote sensing image processing [7]-[10]. Gaussian 
local search is used as the local search method. In 
MAs, a meme is often taken as a local search 
method. The selection of meme is essential to the 
performance of MAs. The bad meme cannot enhance 
the search capability but deteriorates its performance. 
Hence, the selection of meme is also important to 
remote sensing clustering result. 

 In the bi-objective memetic framework, a strategy is 
used to resolve the above problem by determining 
the parameter in MAs, which can control the local 
search capability, resulting in much more satisfactory 
remote sensing clustering result.  

 In the process of local search, a new strategy is 
proposed to speed up the convergence and obtain 
more non-dominated solutions in the process of local 
search. 

The rest of the paper is organized as follows. Section II 
introduces some related background, including multi-
objective optimization (MO), the objective function used in 
this paper, and memetic algorithms (MAs). Section III 
describes the proposed algorithm in detail. The experimental 
results are shown in Section IV, and Section V provides the 
conclusion. 

II. BACKGROUND 
A. Multi-Objective Optimization 

A multi-objective optimization problem can be generally 

defined to search the vector 
* * * *

1 2[ , ... ]T
nx x x x= of decision 

variables which satisfies the p equality constraints: 

( ) 0; 1, 2,..., ;ih x i p= =  (1) 

the m inequality constraints: 

( ) 0; 1,2,..., ;ig x i m≥ =  (2) 

and optimizes the vector function: 

( ) 0; 1,2,..., ;ig x i m≥ =  (3) 

The constraints shown in (2) and (3) define the feasible 
region which contains all the admissible solutions. Any 
solution outside this region is inadmissible since it violates 
one or more constraints. To describe the multi-objective 
optimization problem, the following concepts need to be 
defined.  

(1) If 1 2 1 2[1, 2, ..., ] ( ) ( ), ( ) ( )i i i ii k f x f x f x f x∀ ∈ ≤ ∃ ≠  

1x dominates 2x . 

(2) The vector *x  denotes an optimal solution when no 
any other solution can dominate *x . The set contains all 
optimal solutions is called Pareto Front. 

In literature, different methods have been proposed to 
resolve the multi-objective optimization. In [11], in order to 
resolve the multi-objective optimization, a weight sum of the 
several normalized cluster validity functions is proposed. In 

[12], decomposition-based MOEA (MOEA/D) is proposed, 
which decomposed a multi-objective optimization problem 
into a number of scalar optimization subproblems and 
optimizes them simultaneously. In [13], Aimin Zhou et al 
survey the development of MOEAs primarily during recent 
years. It covers algorithmic frameworks such as 
decomposition-based MOEA (MOEA/D), memetic MOEAs, 
coevolutionary MOEAs, MOEAs for multimodal problems 
etc.  

The most popular multi-objective optimization algorithm 
is the fast and elitist non-dominated sorting genetic algorithm 
for multi-objective optimization (NSGA-II), in which the 
crowding distance is introduced to increase the diversity of 
the population. The strategy of NSGA-II has got most 
experts’ approval and is often the comparison method with 
the newly proposed multi-objective-based methods. In this 
paper, NSGA-II is also accepted as our multi-objective 
optimization framework. 

In this paper, two objective functions are tested: XB and 
Jm, the formulas of which are (4) and (5). 
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where kx  is the gray-level value of the k-th pixel as for the 
original remote sensing image; N is the total number of 
pixels; C is the number of clusters; iv  is the value of the i-th 
cluster center; and iku  represents the fuzzy membership of 
the k-th pixel. 

 

B. Memetci Algorithms (MAs) 

The traditional clustering algorithms, such as K-means 
and FCM, belong, in essence, to mountain-climbing 
methods. That is, it is easy for them to get stuck in a local 
optimum. Some global optimization methods such as the 
genetic algorithm, differential evolution algorithm, and 
clonal selection algorithm have been used to optimize the 
corresponding objective functions. Although these global 
optimization methods can locate the promising solutions of 
the search space, it is difficult for them to refine the solutions 
in the space. Hence, the optimization performance is usually 
unsatisfactory if only one optimization method is utilized to 
optimize the objective function. Hence, a memetic algorithm 
is needed, which can be seen as a population-based search 
method that is coupled with one or more local search 
methods. 

As can be seen from Fig. 1, the general framework of the 
memetic algorithm is the same as a traditional evolution 
algorithm such as the genetic algorithm or differential 
evolution algorithm, except for the addition of a local search 
procedure that refines some individuals of the population. 
The success of the memetic algorithm is therefore largely 
dependent on the selection of the local search method or its 
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local search capability, which often incorporates domain 
knowledge of the specific problem. Recently, some memetic-
based method has been proposed to tackle the problem [14], 
[15]. 

 

Input: an instance, size of population, 

Output: a feasible individual 

Initialization: Generate an initial population 
While stopping criteria are not satisfied do 

Evaluate all individuals in the population 
Evolve a new population using evolutionary operator
for each suitable individual  

Perform local search around it 
end 

end 
Fig. 1 General framework of the memetic algorithm 

  

III. THE PROPOSED METHOD 
In this paper, an adaptive bi-objective memetic fuzzy 

clustering algorithm for remote sensing imagery (ABOMC) 
is proposed. 

A. ABOMC 

In ABOMC, a bi-objective memetic framework is used 
for remote sensing image clustering. NSGA-II is accepted as 
the bi-objective optimization framework. Meanwhile, a 
variant of differential evolution, jDE [16], is set as the 
evolution algorithm in bi-objective optimization. The 
flowchart of ABOMC is as Fig. 3, which will be described in 
detail below. 

Step 1. Initialization of the population. 

In jDE, the mutation scale factor F and the crossover 
constant CR need to be encoded into individual. An example 
of individual encoding is shown in Fig. 2. In the process of 
initialization, the pixels are randomly selected from the 
whole image as the cluster centers in the corresponding 
individual. 

 

9.8 15.6 8.2 17.3 7.5 14.6 0.8 0.3
Center 1 Center 2 Center 3 CRi Fi

Fig. 2 An example of individual encoding 
 

Step 2. Calculation of the objective function value of 
each individual, namely the corresponding clustering validity 
indices (4) and (5). 

Step 3. Adaptive mutation and crossover.  

In DE, the mutation operator amounts to creating a donor 
vector ,1 ,2 ,( ) [ ( ), ( ),..., ( )]i i i Dt v t v t v t=iV  for changing each 
individual of the population. The mutation process can be 
expressed as follows: 

1 2 3
( ) ( ) ( ( ) ( ))i i iir r r
t t F t t= + −iV X X X

 (6)  

where 
1 2 3
( ), ( ), ( )i i ir r r
t t tX X X  are picked up randomly from 

the population. 

 

 
Fig. 3 The flowchart of ABOMC 

 

After the mutation operator, crossover is undertaken 
between the donor vector ( )i tV  and the target vector ( )i tX , 
generating a trial vector ,1 ,2 ,( ) [ ( ), ( ),..., ( )]i i i i Dt u t u t u t=U . 
The crossover operator can be implemented as follows: 

i, j i, j i rand
i, j

i, j

v (t), if (rand (0,1) CR or j j )
u (t)

x (t), otherwise

≤ =⎧⎪= ⎨
⎪⎩  

(7)  

There are two main parameters, F and CR, in DE. As is 
shown in Fig. 2, each individual not only encodes the cluster 
centers but also the parameters F and CR, enabling their 
update in the process of evolution. iF  and iCR can be 
updated according to (8) and (9). 

' 0.1 0.9 (0,1), (0,1) 0.1
,i

i

rand if rand
F

F otherwise
+ × <⎧

= ⎨
⎩  

(8)  

' (0,1), (0,1) 0.1
,i

i

rand ifrand
CR

CR otherwise
≤⎧

= ⎨
⎩  

(9)  
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where '
iF  and '

iCR  are the updated values of the 
corresponding individual. 

Step 4. Calculation of the objective function values of 
each individual by using (4) and (5). 

Step 5. Non-dominated ranking 

Among the population, different individuals are 
compared with the concept of pareto domination. If one 
individual are not dominated by all other individuals, then 
label its pareto front number with 0. All individuals with 
pareto front number 1 should be deleted temporally. Among 
the remaining individuals, different individuals are compared 
with the concept of pareto domination. If one individual are 
not dominated by all other individuals, then label its pareto 
front number with 2. Repeat the above population until all 
the individuals are labelled with its pareto front number. 

Step 6. Crowding distance ranking 

After the stochastic operation on the population, the size 
of the whole population becomes 2*NP. Hence, NP 
individuals need to be selected to enter the next generation. 
However, the competition happens when the individuals are 
in the same non-dominated front. Crowding distance need to 
calculate in order to estimate the density of the solutions. The 
individuals with larger crowding distance will be selected to 
enter the next generation. The crowding distance can be 
calculated as below: 

1 1 1 1 2 1 2 1
max min max min

1 1 2 2

( ) ( ) ( ) ( )i i i i
i

f x f x f x f x
DIS

f f f f
− + + −− −

= +
− −  

(10) 

Where 1(.)f and 2 (.)f  are the objective functions (4) and 
(5). max min max min

1 1 2 2, , ,f f f f are the maximum and minimum 
value of different objective functions.The process of pareto 
ranking and crowding distance ranking is shown in Fig. 4. 

 

 
Fig. 4 Pareto ranking and crowding distance ranking 

 

Step 7. After step 5 and step 6, NP individuals are 
selected to enter the new population. Then the local search is 
performed on the new population, which will be described in 
detail in the next part. 

Step 8. In the process of local search, a population 
NS_new will be obtained. Then NS_new population and the 
refined population will be combined to generate a new larger 
population. In general, the size of the new larger population 
is larger than NP. The operations in step 5 and step 6 will be 
used to select NP individuals from the new larger population. 

Step 9. Repeat step 3 to step 8 until the terminal 
condition can be fulfilled.  

Step 10. The cluster in the pareto front will be used to 
cluster the remote sensing image. 

B. Local Search- Gaussian Local search (GLS) 

As for each individual in the population, a local search is 
performed on the individual j whenever a random number 
between 0-1 is larger than FLS. A Gaussian mutation is 
performed on each cluster of the individual. In this paper, 
FLS is 0.5, namely 50 percent of the individuals in the 
population need to local search. 

Local search is an important part of the memetic 
algorithm. The role of the local search is fundamental, and 
the selection of its search rule and its balance with the global 
search scheme determine the success of the memetic 
framework. The local search method used in this paper is as 
follows. 

Suppose that 1 2( ) { ( ), ( ),..., ( )}Nx k x k x k x k=  is a vector 
with N dimensions that represents a cluster center. The 
Gaussian mutation can be represented as (11). 

2'( ) ( ( 1), )i ix k N x k= − δ  (11)  

Where [1, ]i N∈ , and 2( ( 1), )iN x k δ−  is a normal 
distribution with a mean of ( 1)ix k −  and standard deviation 
δ . 

The Gaussian mutation is performed on each dimension 
of the vector. As for the minimization problem, the 
individual with the best fitness obtained by the global search 
can be updated as follows. 

 

Input: individual to local search 

Output: better individual and non-dominated 
individuals in population NS_new 

For each dimension in the individual 
Perform the Gaussian mutation to produce a trial

individual. 
Evaluate the trial individual by (8) and (9).
Pareto_Judge the trial individual and target 

individual. 

end 
Fig. 5 Gaussian local search 

 
Fig. 5 shows the process of GLS. Trial individuals are 

generated by performing Gaussian mutation on the target 
individual. The operator Pareto_Judge will be performed 
between the trial solution and the target solution, which will 
be described in detail in the part C and Fig. 6. 

As can be seen from (11), the parameter δ is crucial to the 
GLS. In this paper, a new strategy is applied to adaptively 
determine the parameter δ, which will be described in detail 
in part C. 

C. Update Parameter of Local Search 

In the process of evolution, many individuals are 
generated. However, the information encoded in them is not 
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utilized fully. For example, the individual fitness increment 
between before and after local search can be gathered and 
used to determine the parameter δ in local search. The bigger 
the individual fitness increment is, the bigger the probability 
of the parameter δ value is. The whole process of updating 
parameter δ in local search is listed in Fig. 7. The strategy 
can be described as follows. 

In order to simplify the parameter δ determination, there 
are only four parameter δ values, namely 0.01, 0.1, 1, 10. As 
for each value, the probability that they could be selected is 
stored in PLS. The initial value of PLS for each parameter δ 
is 0.25. 

Step 1. As for each individual individuali that needs to 
local search, a roulette selection strategy is applied on PLS to 
select the parameter δ value j. 

Step 2. individualinew is generated when Gaussian local 
search is applied on the individuali. Then an operator named 
Pareto_Judge is performed between individuali and 
individualinew. If individualinew dominates individuali, 
individualinew substitutes individuali to enter the population. 
If they both don’t dominate each other, then individualinew 
enter a new population named NS_new. An example is 
shown in Fig. 7. In the example it is assumed that it is a 
minimization problem. As for the individual (red) that needs 
to be local search, the individual (green) will substitute the 
individual (red) and the individual (blue) will enter the new 
population NS_new. The individual (yellow) will be 
rejected. 

Step 3. When individualinew dominates individuali , the 
individual fitness increment of jth parameter parameter δ can 
be calculated with (12), in order to score the jth parameter δ. 

 

 
Fig. 6 Pareto_Judge strategy 

 

1 1 2 2
j

1 2

ˆ ˆf f f f
Score ˆ ˆf f

− −
= +

 
(12)  

Where f1 and f2 represent the values of Jm and XB before 
local search. 1̂f  and 2f̂  represent the values of Jm and XB 
after local search. 

Step 4. ASj is can be calculate by using (13). ASj can be 
seen as the average score for the j-th parameter parameter δ. 
Numj indicates the number of times that the j-th parameter 
parameter δ is selected. Then the probability that the j-th 
parameter value δ is selected can be calculated by using (14). 

j
j

j

Score 1
AS

num 1
+

=
+  

(13)  

j
j

AS
PLS

AS
=
∑  

(14)  

Step 5. Considering the fact that the information in the 
initial stage is less useful to the later stage, the PLS is 
initialized with 1/LS.size when the number of times that 
local search is performed is beyond a threshold. LS.size 
indicates how many there are parameter δ values, which is 4. 

 

 
Fig. 7 Adaptive parameter determination in local search 

 

IV. EXPERIMENT 
A. Parameter setting and comparison methods 

The proposed algorithm, ABOMC, is compared with 
several other clustering algorithms: the fuzzy c-means 
clustering algorithm (FCM), automatic fuzzy clustering 
using an improved differential evolution algorithm (FCIDE) 
[17] and NSDE-II. As should be noted that NSDE-II is to use 
differential evolution algorithm (DE) to substitute genetic 
algorithm in NSGA-II because of the powerful global search 
capability of DE. 

In ABOMC, The probability for each individual to 
undergoing local search is 0.5. the maximum number of 
generation is 20. The size of population is 50. 

 

B. Experiment 1-FLC Multispectral Image 

In experiment 1, a Flightline C1 image of Tippecanoe 
County, Indiana, US, is used, which was acquired from the 
M7 scanner, at a resolution of 36.25 m × 36.25 m and a size 
of 97×102 pixels, in June 1966. Twelve bands are contained 
in this image. This image contains four classes: corn, oat, red 
clover, and wheat. The original image and the ground truth 
image are shown in Fig. 8 (a)–(b). 

Fig. 8 (c)–(f) illustrates the clustering results of the FLC 
image using FCM, FCIDE, NSDE-II, and ABOMC, 
respectively. Visually, the clustering results of FCIDE, 
NSDE-II, and ABOMC are better than FCM due to the 
application of differential evolution algorithm. Because of 
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the application of multi-objective optimization, NSDE-II, 
and ABOMC are better than FCIDE, especially for the corn 
class and red clover class. ABOMC achieves the best 
because there is less misclassification between corn class and 
red clover class. 

 

   
(a) FLC image (b) Ground truth (c) FCM

   
(d) FCIDE (e) NSDE-II (f) ABOMC

 corn          oat        red clover        wheat 

Fig. 8 FLC image and the classification results 
 

Table I Comparison of the classification accuracy for 
the FLC image 

Classes FCM FCIDE NSDE-II ABOMC
Producer's accuracy (%) 

Corn 97.90 92.90 97.88 93.86
Oat 96.90 88.50 94.69 97.48
Red 

clover 
60.40 72.20 74.88 97.29 

Wheat 99.50 100.0 99.52 97.28
User's accuracy (%) 

Corn 71.40 77.20 79.94 96.24

Oat 94.70 89.70 92.61 92.93

Red 
clover 99.40 96.00 98.84 94.68 

Wheat 100.0 95.20 99.19 99.93

OA 87.09 87.98 90.96 96.35
Kappa 0.8228 0.8349 0.8759 0.9486
 

To compare the above algorithms quantitatively, the 
overall accuracy (OA) and kappa coefficient [18] for the 
image are listed in Table I. As can be seen from Table I, 
ABOMC obtains the best OA, 96.35%, with gains of 9.26%, 
8.38%,  and 5.39% over FCM, FCIDE, and NSDE-II, 
respectively. Overall, the quantitative comparison of the five 
algorithms is consistent with the above qualitative finding. 

ABOMC achieves the best performance both visually and 
quantitatively. The reason for this may be that FCM can 
easily get stuck in a locally optimal solution, due to the lack 
of a global search capability. FCIDE is a single objective 
optimization method, which considers less information, 
compared with multi-objective optimization such as NSDE-
II and ABOMC. Because of the application of the memetic 
algorithm with an adaptive parameter, ABOMC performs 
better. 

 

C. Experiment 2-Wuhan TM Image 

In order to further test the validity of the proposed 
algorithm, another image is used, which is a 30 m resolution 
multispectral Landsat TM image of Wuhan City, China, with 
a size of 400×400 pixels, and six bands. This region of the 
image was expected to contain five classes: river, vegetation, 
lake, bare soil, and building. The original Wuhan TM image 
and the ground truth image are shown in Fig. 9 (a)–(b). 

 

 
(a) FLC image (b) Ground truth (c) FCM

 
(d) FCIDE (e)NSDE-II (f) ABOMC

River Vegetation Lake Bare soil Building 

Fig. 9 WuhanTM image and the classification results 
 
 

Fig. 9 (c)–(f) illustrates the clustering results of the FLC 
image using FCM, FCIDE, NSDE-II, and ABOMC, 
respectively. Firstly, as for the clustering result of FCM, 
there are many pixels that are misclassified into vegetation 
class, which is unreal. NSDE-II, and ABOMC perform better 
visual results, especially for the vegetation class in the right 
part of image. Furthermore, as for the vegetation class in the 
bottom right part of the image, ABOMC achieves a little 
better, compared with NSDE-II. On the whole, ABOMC 
achieves the best visual accuracy. 

To compare the above algorithms quantitatively, the OA 
and kappa coefficient for the image are listed in Table II. 
ABOMC obtains the best OA, 91.29%, with gains of 9.63%, 
5.6%, and 2.41% over FCM, FCIDE, and NSDE-II, 
respectively. The quantitative comparison of the four 
algorithms is consistent with the above qualitative finding: 
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based on the above analysis, ABOMC outperforms the three 
other classifiers. 

 

Table II Comparison of the classification accuracy for 
the Wuhan TM image 

Classes FCM FCIDE NSDE-II ABOMC
Producer's accuracy (%) 

River 100.00 100.00 100.00 100.00
Vegetation 82.50 89.18 86.04 93.68

Lake 99.80 100.00 99.55 99.87
Bare soil 71.80 67.93 81.51 85.35
Building 61.20 71.58 81.92 79.59

User's accuracy (%) 

River 100.0 100.00 100.00 100.00

Vegetation 75.10 82.20 96.97 98.23

Lake 91.90 96.34 90.02 95.46

Bare soil 85.10 84.41 73.13 67.65

Building 67.40 72.86 79.26 88.89

OA 81.66 85.69 88.88 91.29
Kappa 0.7619 0.8154 0.8574 0.8882

 

D. Analysis of parameter in Gaussian local search 

One contribution of the paper is to adaptively determine 
the parameter in Gaussian local search, which controls the 
searching range and searching capability of local search. Fig. 
10 lists the selection probability PLS of each local search 
with respect to the number of local search for Wuhan TM 
image. As has mentioned above, the PLS is initialized with 
1/LS.size when the number that local search is performed is 
beyond a threshold. In this paper, the threshold is set as 80. 
As can be seen from Fig. 10, in different stages of the 
generation, different parameter values are selected for the 
local search, which is much suitable for the corresponding 
individual. 

 

 
Fig. 10 The curve of PLS of each parameter value for 

Wuhan TM image 
 

E. The Selection of Non-dominated Solutions from Pareto 
Front 

As for ABOMC, Finally, many non-dominated individual 
will be generated in the pareto front. Here, we select the 
individual in the pareto front by trial and error to cluster the 
remote sensing image, i.e the individual with the best 
classification accuracy will be set as the clustering result. 
Fig. 11 lists the pareto fronts of ABOMC for Wuhan TM 
image. As for Wuhan TM image, the selected individual is in 
the middle part of the image. 

 
Fig. 11 The pareto front of Wuhan TM image 

 

V. CONCLUSION 
In this paper, an adaptive bi-objective memetic fuzzy 

clustering algorithm for remote sensing imagery (ABOMC) 
is proposed. In ABOMC, a bi-objective memetic framework 
is used to remote sensing image clustering. In addition, a 
parameter in local search can be determined adaptively by 
calculating the individual fitness increment before and after 
local search. A Pareto_Judge strategy is proposed to speed 
up the convergence and obtain more non-dominated 
individuals. Experiments are conducted to show the 
effectiveness of the proposed method. The proposed 
strategies make the information stored in the newly 
generated individuals fully utilized, resulting in more 
satisfactory remote sensing image clustering results. 

56



However, one disadvantage of the proposed method is 
that it needs to select the non-dominated solution form the 
pareto front to cluster the remote sensing image manually, 
which is time-consuming. In our future work, more 
intelligent methods will be tested to select non-dominated 
solution from the pareto front. Also, spatial information is 
important in remote sensing image clustering. We will 
hybrid the spatial information the multi-objective memetic 
framework in the furture. 
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