
Hybrid ACO/EA Algorithms applied to the
Multi-Agent Patrolling Problem

Fabrice Lauri
IRTES-SeT

Rue Thiery-Mieg, 90010 Belfort, FRANCE
Email: fabrice.lauri@utbm.fr

Abderrafiaa Koukam
IRTES-SeT

Rue Thiery-Mieg, 90010 Belfort, FRANCE
Email: abder.koukam@utbm.fr

Abstract—Patrolling an environment consists in visiting as
frequently as possible its most relevant areas in order to supervise,
control or protect it. This task is commonly performed by a team
of agents that need to coordinate their actions for achieving
optimal performance. We address here the problem of multi-
agent patrolling in known environments where agents may move
at different speeds and visit priorities on some areas may be
specified. Two classes of patrolling strategies are studied: the
single-cycle strategies and the partition-based strategies. Several
single-core and multi-core variants of a template state-of-the-
art hybrid algorithm are proposed for generating partition-
based strategies. These are experimentally compared with a
state-of-the-art heuristic-based algorithm generating single-cycle
strategies. Experimental results show that: the heuristic-based
algorithm only generates efficient strategies when agents move
at the same speeds and no visit priorities have been defined; all
single-core variants are equivalent; multi-core hybrid algorithms
may improve overall quality or reduce variance of the solutions
obtained by single-core algorithms.

I. INTRODUCTION

A patrol is a mission involving a team of several individuals
whose goal consists in continuously visiting the relevant

areas of an environment, in order to efficiently supervise,
control or protect it. A group of drones searching for wildfires
in order to contribute in the forest conservation, a team of
vaccum cleaning robots searching for dirt, postmen on their
daily rounds, or a squad of marines securing an area are all
examples of patrols. Performing such a task implies that all of
the involved members coordinate their actions efficiently.

The techniques that solve the multi-agent patrolling prob-
lem (MAPP) are divided into two families. The techniques of
the first family have a complete knowledge of the environment.
In this case, the environment to patrol can be represented by
a graph. Each node of this graph represents a convex area
in the environment. Techniques of the second family have
only a local knowledge of the environment. In this case, each
patrolling member has to maintain a cognitive map from the
perception of its environment, in order to properly act. In this
paper, we focus on the problem of the multi-agent patrolling
of a known environment.

Techniques of the first family can be used in numerous
applications, ranging from network management [15], the
rescue by robots of people in danger after a disaster [14], [6]
to the protection of a territory to face enemy threats [5], [14],
[2], [11].

The multi-agent patrolling problem in known environments
has been formulated recently [12]. This problem consists
in determining a patrolling strategy that minimizes a given
performance criterion. A patrolling strategy is made up of
several individual patrolling strategies, one for each involved
agent. An individual strategy represents the graph nodes an
agent has to visit. It can be defined prior to the patrol or while
the agents are patrolling.

In this paper we address the problem of multi-agent pa-
trolling where agents may move at different speeds and visit
priorities on nodes may be specified. We propose studying
especially two classes of patrolling strategies, namely the
single-cycle strategies and the partition-based strategies [3].
The strategies belonging to the first class may be computed
by an algorithm based on the Lin-Kernighan heuristic [10], as
pointed out by Chevaleyre [3]. The strategies of the second
class may be computed by an hybrid algorithm based on a
combination of an Evolutionary Algorithm (EA) and an Ant-
Colony Optimization (ACO) algorithm [9]. We propose single-
core and multi-core variants for solving this problem. All these
algorithms are experimentally compared on different graph
topologies, agent populations, with or without the same agent
speeds and visit priorities on nodes.

The remainder of this paper is organized as follows. Section
II formalizes the patrolling problem and Section III gives an
overview of the related works. Section IV presents the hybrid
algorithms for solving this problem, with an emphasize on a
biggest class whose single-cycle strategies and partition-based
strategies belong to: the cyclic patrolling strategies. Section
V presents and discusses the experimental results. Finally,
concluding remarks and future research issues are given in
section VI.

II. PROBLEM FORMULATION

The environment that has to be patrolled consists of a
directed connected graph G = (V,E). V represents the
strategically relevant areas and E ⊂ V 2 the means of transport
between them, such that for any x, y ∈ V :

• (x, x) ∈ E.

• (x, y) ∈ E =⇒ (y, x) ∈ E.

• there exists a path (x1, x2, . . . , xn) linking node x =
x1 to node y = xn, where n > 1 and for any i =
1, . . . , n− 1, (xi, xi+1) ∈ E.

250

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

A cost c(x, y) ∈ R is associated with any edge (x, y) ∈ E.
It may measure the distance (in meters for example) required
to reach node y from node x. The cost function c : E → R
satisfies the following properties:

• c(x, y) ≥ 0 for any (x, y) ∈ E

• c(x, y) = 0 iff x = y,

Let r < |V| denote the number of agents patrolling graph
G. Each agent i is assumed to be located at node sni ∈ V
prior to the patrolling and to possess a movement speed si > 0
(in m/s for instance). Node sni represents the deployment site
of agent i. Agent i reaches node y from node x after c(x,y)

si
units of time (seconds for instance).

With any node x is associated an instantaneous node
idleness, which represents the time period this node remains
unvisited, and a discount factor γx ∈ R+∗

1, which influences
the increase in the node idleness. When any node receives the
visit of an agent, its idleness drops to zero. If node x has been
left unvisited for a period ∆t, its idleness equals γx∆t.

Let I = (G, r,−→sn,−→s ,−→γ) be an instance of the multi-agent
patrolling problem, where G is the patrolling graph, r the num-
ber of patrolling agents, −→sn ∈ V r the agent deployment sites,−→s ∈ Rr+∗ the agent speeds and −→γ ∈ Rr+∗ the discount factors
of the nodes. Solving the multi-agent patrolling problem on I
consists in elaborating a coverage strategy πI of graph G by r
agents such that any node of G is visited infinitely often. Such
a patrolling strategy must optimize a given quality criterion.
For the sake of clarity, a multi-agent patrolling strategy will
be from now on noted π whenever there is no ambiguity on
the instance I.

Let Π be the set of all the multi-agent patrolling strategies
π defined as follows:

• π = (π1, π2, · · · , πr) is made up of r individual
strategies.

• Any individual strategy πi : N∗ → V maps a discrete
time space into the node set, with πi(1) = sni.
πi(j) denotes the j-th node that agent i has to visit,
with πi(j + 1) = x only if (πi(j), x) ∈ E.

We are concerned to determining patrolling strategies that
minimize the idleness of any node x ∈ V . Several criteria
have been devised in [12] in order to evaluate the quality
of a multi-agent patrolling strategy on a graph. For the sake
of theoretical analysis, only the criterion based on the worst
idleness will be used in this paper. The interested reader
can consult Machado et al. [12] for other evaluation criteria.
Knowing that the chosen criterion, that is the worst idleness of
the graph, upper bounds the others ([3]), minimizing it implies
minimizing the others.

All of the evaluation criteria can be formulated from the
notion of instantaneous node idleness (INI). Assuming the
agents follow strategy π on graph G, the INI Iπt (x) ∈ R+∗ of
node x at time t is the elapsed discounted duration since this
node has received the visit of an agent. If node x has been
visited at time t by an agent and if ∆t is the elapsed time

1R+∗ = {x ∈ R|x > 0}

Fig. 1. Snapshot of a multi-agent patrolling strategy involving 5 agents on
a 50-node graph. Blue circles represent nodes. Sliced circles are agents. The
instantaneous idleness of a node is indicated by the size of its circle. Colored
edges link the nodes visited infinitely often by the agents in their cycles. Black
edges are not taken by any agent during cycles.

since the last visit at node x, then the instantaneous idleness
of node x at time t+ ∆t is given by:

Iπt+∆t(x) = γx∆t (1)

Discount factors can be used to set visit priorities on nodes.
The higher the discount factor, the faster the idleness of the cor-
responding node grows. By convention, at initial time, Iπ0 (i) =
0, for any strategy π and for any node i = 1, 2, · · · , |V|.

A snapshot of a multi-agent patrolling strategy is depicted
in the Fig. 1.

Evaluating the multi-agent patrolling strategy π using the
worst idleness criterion consists in using the following equa-
tion:

WIπ = lim sup
t→+∞

WIπt (2)

where WIπt denotes the instantaneous worst graph idleness
which is the highest instantaneous node idleness over the set
V of nodes of G at time t, that is:

WIπt = max
x∈V

Iπt (x) (3)

Solving the multi-agent patrolling problem thus consists
in determining a strategy π∗ such that for any strategy π,
WIπ

∗ ≤WIπ , that is:

π∗ ∈ argmin
π∈Π

WIπ (4)

III. RELATED WORKS

The papers by Machado [12], [11] are the seminal works
about multi-agent patrolling on a graph. More recent works
are those by Almeida [1], Chevaleyre [3], [4], Santana [16],
Lauri [7], [9], Marier [13] and Poulet [14].

In [12], [11], several multi-agent architectures and multi-
agent patrolling strategy evaluation criteria were addressed.
Each architecture was a combination of some parameters, such
as the agent communication (allowed vs forbidden), the agent
perception (local vs global), the heuristic of selection of the
next node (randomly, using the individual idleness or a shared
idleness, the path length...), etc.

251

[1] improved the best architectures proposed by [11]. They
have devised agents able to exchange messages freely and
conduct negotiations about the nodes they have to visit. Each
agent randomly receives a set of nodes to visit and uses a
system of auctions to trade its undesirable nodes with the other
agents. Each agent tries to keep the nodes that are reachable
within a reasonable amount of time. Thus negotiations allow
agents to attain a mutual agreement.

Chevaleyre [3] has formulated the patrolling problem in
terms of a combinatorial optimization problem. He first proved
that a patrolling strategy involving one agent could be ob-
tained using an algorithm that solves the Graphical Traveling
Salesman Problem. In this variant of the Traveling Salesman
Problem, graphs are not necessarily complete. He then studied
several possible classes of multi-agent patrolling strategies and
showed that they all were able to represent close to optimal
solutions.

In [16], the agents learn to patrol using the Reinforcement
Learning (RL) framework. Each agent implements a Markov
Decision Process (MDP) that is employed to know which
action to perform in each environment state. An action allows
an agent to go to the adjacent nodes in the graph. An
environment state stands for the minimal information required
by an agent to precisely decide what to do. Two architectures
were addressed: one in which agents cannot communicate, and
one in which they can indirectly (i.e. through the environment)
communicate their intention for the next action. The latter
agent architecture, named Gray-Box Learner Agents (GBLA),
was the most successful of both in this paper.

All of the previously described approaches were evaluated
in [1] and were compared in twelve configurations (i.e. for
six graph topologies with 5 and 15 agents). It was shown
that the single-cycle based strategy, one of the classes of
multi-agent patrolling strategies presented in [3], gave the best
results in all of the configurations except one, whereas the two
most efficient architectures proposed in [12], [11] yielded the
worst results for these experiments. All of the other schemes
presented in [1], [16] gave equivalent performances.

Lauri et al. [7], [9] proposed several Ant Colony Optimiza-
tion (ACO) techniques. In [7], the proposed ACO algorithms
seek for patrolling strategies that constraint all the agents to
start patrolling from and end patrolling at the same initial
deployment node. Some of the strategies found by the ACO
techniques in [7] are clearly suboptimal, due to the strong
assumption imposed on them. In [9], an attempt toward ex-
tending the class of the multi-agent patrolling strategies is
investigated. An hybrid algorithm combining an evolutionary
algorithm (EA) with an ACO algorithm is proposed in order to
allow agents to visit some nodes prior to patrolling. This stage
prior patrolling consists in spreading the agents over the graph
so that they are at the most distant distances from each other.
Spreading them over the graph allow them to perform precyles,
that is agents may visit some nodes once before entering
their patrolling cycle. This technique has proven its efficiency
over GBLA for the majority of the evaluated graphs and
for populations composed of 2 to 20 agents. Most strategies
computed by [9] are partition-based strategies, according to
the terminology by [3].

Marier et al. [13] define the multi-agent patrolling problem

as a Generalized Semi-Markov Decision Process (GSMDP).
This mathematical model can handle continuous time and un-
certainties in the execution of a patrol. The authors present an
anytime algorithm based on a GSMDP-state search heuristic.
Validation experiments address graphs patrolled by two agents
and with at most 50 nodes.

Finally, Poulet et al. [14] formulate another version of the
multi-agent patrolling problem, by introducing priorities on the
nodes, metric performance criteria and an agent population
whose size is dynamic. They lead several experiments for
evaluating the performance of the algorithms proposed in [1]
and [3] on instances of the new defined problem. Empirical
results show that the single-cycle strategies by [3] and those
generated from one of the heuristics proposed by [1] are clearly
better than others.

IV. HYBRID ALGORITHMS FOR THE MAPP

Due to the relative success of the single-core hybrid al-
gorithm based on ACO and EA for solving the multi-agent
patrolling problem [9], we investigate hereafter some new
single-core and multi-core variants of this hybrid algorithm.
Before reviewing these algorithms, let us define first the search
space of the multi-agent patrolling strategies commonly used
by all these algorithms.

A. Search space of the multi-agent patrolling strategies

All the subsequent algorithms seek for multi-agent pa-
trolling strategies that belong to the class of consistent cyclic
multi-agent patrolling strategies. They are generalizations of
single-cycle strategies, partition-based strategies and mixed
strategies as defined by Chevaleyre [3]. In single-cycle strate-
gies (Fig. 2a), the same cycle involving all the graph nodes is
performed by every agent in the same order and in the same
direction but with time lags between agents. In partition-based
strategies (Fig. 1 and Fig. 2b), the graph nodes are partitioned
among agents, so that two given agents visit different nodes
during their cycles. Mixed strategies (Fig. 2c) are partition-
based strategies among groups of agents, so that agents of the
same group visit the same set of nodes in the same order and
direction but with time lags.

A multi-agent patrolling strategy π is cyclic iff each of
its individual strategy πi is parameterized by a tuple (µi, li)
where:

• µi = (µi(1), . . . , µi(li), . . . , µi(Ni)) is a finite se-
quence of Ni nodes,

• µi(1) = sni,

• li represents the index of the node that begins and
ends the cycle of agent i, that is: µi(li) = µi(Ni).

and such that:

πi(j) =

{
µi(j) for j < Ni

µi(li + (j − li) mod (Ni − li)) for j ≥ Ni
(5)

The individual patrolling strategies in a cyclic multi-agent
patrolling strategy are characterized by the existence of a
cycle and possibly of a precycle. Both definitions follow.

252

1 2 3

4
5

6

7 8

1 2 3

4
5

6

7 8

a) Single-cycle strategy b) Partition-based strategy

1 2 3

4
5

6

7 8

1 2 3

4
5

6

7 8

c) Mixed strategy d) Cyclic strategy

Fig. 2. Examples of patrolling strategies involving 3 agents. Dashed arrows
emphasize the time lags encountered by agents patrolling the same set of
nodes.

The patrolling cycle cyc(π, i) of agent i in a cyclic multi-
agent patrolling strategy π is the finite sequence of nodes
of πi visited infinitely often by agent i, that is cyc(π, i) =
(πi(li), πi(li + 1), · · · , πi(Ni)). The precycle of agent i in
a cyclic multi-agent patrolling strategy π is the sequence of
nodes of πi visited only once by agent i from its deployment
site sni to the node πi(li) beginning its patrolling cycle.
Whenever li = 1, there is no precycle in πi. A cyclic multi-
agent patrolling strategy is consistent if any node of G is
visited infinitely often by at least one agent in its patrolling
cycle. This hypothesis of consistency is a necessary and
sufficient condition for the worst idleness of a multi-agent
patrolling strategy to be bounded. Fig. 2d is an example of a
consistent cyclic multi-agent patrolling strategy that is neither
single-cycle, nor partition-based, nor mixed. In this strategy
example, nodes 4, 5 and 6 are visited infinitely often by all
agents and nodes 2 and 5 are visited infinitely often by two
agents.

In the sequel, Πcyclic denotes the set of all the consistent
cyclic multi-agent patrolling strategies for a given instance of
the multi-agent patrolling problem. The search spaces of all
the following algorithms are included in Πcyclic.

B. Single-core algorithms for the MAPP

The single-core hybrid ACO/EA algorithm named EA-
AD+GG-AA whose general architecture is depicted in Fig. 3
has been defined and experimentally validated by Lauri [9].

This hybrid algorithm seeks for an optimal partition-based
strategy, by applying an evolutionary algorithm followed by
an ACO algorithm. The EA consists in determining the set
of the most distant nodes to which agents will head for
from their deployment sites −→sn. They also represent the first
and last nodes visited by agents during their cycles. These
starting cycle nodes are determined once by the EA and
remain fixed afterward during the execution of ACO. The
ACO algorithm consists in choosing the nodes that will be
visited infinitely often by agents during their cycles. The ACO
algorithm uses several competitive ant colonies. Each colony

Fig. 3. Flowchart of a Single-Core ACO/EA Algorithm

represents a complete patrolling strategy π. Any ant k of a
colony progressively builds an individual strategy πk. So there
are as many ants in a colony as patrolling agents, that is r.
Each ant move probabilistically toward an available node y
by considering the distance between its current node x and y
and the amount of pheromone deposited on the edge (x, y) of
a complete graph G′. The available nodes of an ant are those
that have not been visited yet by ants of its colony. They are
stored in a tabu list. A tabu list is associated with each colony.
The probability that ant k of colony l moves to node y from
node x is given by:

pk,lxy =


[τxy(T)]α [ηxy]β∑

u∈allowedl
[τxu(T)]α [ηxu]β

if y ∈ allowedl

0 otherwise
(6)

where allowedl = V − tabul is the set of the unvisited nodes
of colony l, τxy(T) is the pheromone intensity on edge (x, y)
at iteration T of the algorithm, ηxy = 1

c(x,y) is the visibility of
node y from node x, and α and β are parameters that control
the relative importance of pheromone intensity and visibility.

G′ is obtained from the initial graph G by adding all
the missing edges and setting their cost to the shortest-path
distance between pairs of nodes (see Fig. 4).

a) Initial Graph G b) Complete Graph G′

Fig. 4. A complete graph is used by ACO from the initial patrolling graph.
Costs of the missing edges are the cumulated distances of the shortest paths.

Once all the nodes have been visited by the ants of a colony,
they deposit on the edges appearing in the tour built from
the complete graph an amount of pheromone that is inversely

253

proportional to the quality (worst idleness) of the associated
strategy, as follows:

τxy(T + 1) = (1− ρ) τxy(T) + ∆τxy (7)

where ρ is the evaporation coefficient, τxy(T + 1) and τxy(T)
are the pheromone intensities on edge (x, y) at iterations T+1
and T , respectively. ∆τxy is the pheromone quantity deposited
on edge (x, y).

Several variants of ACO may be considered for improving
the average performance or the variance of the found solutions
by exploring in a more efficient way within the search space
of the partition-based strategies. All these variants follow the
template algorithm presented below.

ACO template algorithm for generating multi-agent
patrolling cycles

Require: TMax ∈ N∗: number of iterations, Nc ∈ N∗: number
of colonies in competition, −→s ∈ V r : starting cycle nodes,
parameters c, α, β, ρ ∈ R

Ensure: Multi-agent patrolling strategy.
1: For each edge of each pheromone graph, set the initial

pheromone quantities to c.
2: n← 1
3: for Each iteration T = 1, 2, . . . , TMax do
4: for Each colony l = 1, 2, . . . , Nc do
5: Empty the tabu list tabul associated with colony l

(all the nodes are available).
6: Place each ant k of colony l on the starting cycle

node −→s k.
7: Add the starting cycle node of each ant of colony l

into tabul.
8: Generate solution sn by moving all the ants of colony

l and keeping their node sequence until tabul = V .
Each time an ant is moved to node x, x is added into
the tabu list.

9: Evaluate the performance (worst idleness) f(sn) of
solution sn.

10: n← n+ 1
11: end for
12: Update the pheromone quantities using the perfor-

mances of the solutions found in the last iteration.
13: end for
14: return The best patrolling strategy:

sbest ∈ argmins=s1,s2,...,sn−1
f(s).

Better solutions may be found by proposing new ways of
storing and depositing pheromones. For example:

• Instead of using only one graph of pheromones,
one pheromone graph per agent could be used.
Pheromones deposited on the edges of the pheromone
graph of agent i would be those from the ants of index
i in every colony.

• Instead of being deposited on the edges directly link-
ing the pairs of the nodes appearing in the cycle tour
of an ant, pheromones could be also deposited on the
intermediate edges of a valid path in G, as illustrated
by Fig. 5.

a) Without using b) Using
intermediate edges intermediate edges

Fig. 5. Pheromone updates assuming the node sequence (1, 4) appears in
the cycle of an agent that has to patrol on the graph of Fig. 4a.

• Instead of allowing the ants of all the colonies to
deposit pheromones, only the ants of the best colonies
would be allowed to do it.

These design choices lead to building several algorithm
variants, whose name will explicitly give information on which
previous features are taken into account, as follows:

Acronym Feature
GG Global Pheromone Graph
AG Agent Pheromone Graph
AA All Ants deposit pheromones
BA Only the Best Ants deposit pheromones
IE Deposit pheromone on Intermediate Edges

For example, EA-AD+AG-BA-IE refers to the hybrid algo-
rithm that:

• spreads out the agents over the graph using the Evo-
lutionary Algorithm proposed by [9],

• uses a pheromone graph for each patrolling agent,

• considers that only the ants of the best colonies deposit
pheromones,

• allows ants to deposit pheromones on intermediate
edges.

A subset of algorithms among all these possible variants
will be experimentally studied in section V. All the subsequent
algorithms use the technique proposed in [8] to evaluate the
worst idleness of any consistent cyclic multi-agent patrolling
strategy.

Another approach to enhance the search of a solution
within the partition-based strategy space consists in using
parallel algorithms. This is the subject of the next subsection.

C. Multi-core algorithms

There are several ways to parallelize a population-based
algorithm. One approach is to execute the common opera-
tions made successively on different individual solutions in
the population within several threads that manipulates the
same shared memory representing the population of solutions.
Another approach is to execute several threads that use their
own local population of solutions and synchronizing them to
obtain the best solution, as illustrated in Fig. 6.

We adopted this approach to build the multi-core variants
from all the preceding single-core algorithms, both for its

254

Fig. 6. Flowchart of a Multi-Core ACO/EA Algorithm

simplicity and for the limited number of messages exchanged
between threads.

In next sections, the acronym n-core within the name of
an algorithm indicates that n cores were used. n = 1 refers
to a single-core algorithm, n > 1 refers to a multi-core
algorithm.

V. EXPERIMENTAL RESULTS

Multi-agent patrolling strategies were computed on 4 dif-
ferent graph topologies of various complexity (Fig. 7) with
populations involving from 5 to 30 agents.

A. Experimental Protocol

A subset of the possible hybrid algorithms described pre-
viously were compared experimentally. These algorithms are:
EA-AD+1-core GG-AA [9], EA-AD+1-core GG-AA-IE, EA-
AD+1-core GG-BA-IE, EA-AD+1-core AG-AA-IE, and EA-
AD+1-core AG-BA-IE and EA-AD+8-core GG-BA-IE.

We conducted some preliminary experiments in order to
determine the set of parameters for these hybrid EA/ACO
algorithms that leads to a tradeoff between performance and
computing time. The design parameters chosen for all the ACO
algorithms are shown in table I.

TABLE I. SET OF DESIGN PARAMETERS

Total Generated Solutions (TMax) 300
Colonies (Nc) 128
Pheromone Initialization Constant (c) 0.01
Pheromone Relative Importance (α) 1
Visibility Relative Importance (β) 1
Evaporation Rate (ρ) 0.2

For the multi-core algorithm EA-AD+8-core GG-BA-IE,
each of the 8 threads uses 16 colonies, for a total of 8× 16 =
128 colonies.

B. Comparative results

Fig. 8 presents the performance results of single-cycle
patrolling strategies and partition-based patrolling strategies.

The single-cycle strategies were computed using an algorithm
based on the heuristic Lin-Kernighan [10]. This algorithm
is called LKB thereafter. The partition-based strategies were
computed using the hybrid algorithms presented previously.

For a given instance of the problem (graph, number of
agents, agent speeds and visit priorities), 10 patrolling strate-
gies were computed. Thus, subsequent results represent the
average worst idlenesses over the 10 runs. Also shown on these
figures are the minimum worst idlenesses and the maximum
worst idlenesses over these 10 runs.

1) Comparative results between single-core algorithms:
One may first notice that all these algorithms manage to
generate strategies whose efficiency depends on the number
of involved agents. Generally, the more agents, the smaller
worst idleness. One may also quickly observe that all the
hybrid variants are equivalent. This highlights how difficult
it may be for a given problem to devise ways based on the use
of pheromones that allow cooperative ants to communicate
relevant information between them so that good solutions
rapidly emerge.

Let us now compare hybrid algorithms with LKB. The
hybrid algorithms perform at best equivalently to LKB when
all the agents have the same speeds and no visit priorities on
nodes have been specified. They outperform LKB when some
different agent speeds and visit priorities have been defined.
LKB is based on a heuristic that is commonly used to search for
optimal tours in TSP instances. These results clearly emphasize
the limits of this heuristic approach that does not take into
account the hypothesis on agent speeds and visit priorities.

2) Comparative results with the multi-core algorithm: As
shown in all the figures, the overall quality or the variance
of the solutions obtained by single-core hybrid algorithms can
be enhanced by multi-core algorithms. This can be explained
by the fact that in the single-core variants, all the colonies
of the ACO algorithm exploits the same set of starting nodes
computed by the EA. In the multi-core variants, two ACO
algorithms executed on different threads may exploit possibly
different starting nodes. Thus more promising regions of the
search space can be exploited in these multi-core algorithms.

VI. CONCLUDING REMARKS AND FUTURE WORKS

The problem of multi-agent patrolling where agents may
move at different speeds and visit priorities on nodes may
be specified has been addressed in this paper. Two classes
of patrolling strategies were especially studied: the single-
cycle strategies and the partition-based strategies. Heuristic-
based and hybrid algorithms generating such strategies were
experimentally compared on different graph topologies, agent
populations, with or without the same agent speeds and
visit priorities on nodes. Experimental results show that: the
heuristic-based algorithm only generates efficient strategies
when agents move at the same speeds and no visit priorities
have been defined; all single-core variants are equivalent;
multi-core hybrid algorithms may improve overall quality
or reduce variance of the solutions obtained by single-core
algorithms.

255

MapA (50, 104, 8) MapB (50, 69, 6) Island (50, 84, 7) TownN56 (56, 100, 8)

Fig. 7. Graph Topologies. Numbers within parentheses represent respectively the number of nodes, the number of edges and the degree of the graph. Graph
degree denotes the maximum degree of the graph nodes. The degree of a node is the number of its incident edges.

Several research direction can be explored to find bet-
ter solutions to this complex multi-agent problem by using
metaheuristics. Future works include: enhancing the search of
the single-core hybrid algorithms by devising new ways of
communicating reliable information by the use of pheromones
or other bio-inspired mechanisms, designing more sophis-
ticated parallel hybrid algorithms, proposing algorithms for
generating cyclic strategies, and generating problem instances
whose optimal patrolling strategies are known.

REFERENCES

[1] A. Almeida, G. Ramalho, and al. Recent Advances on Multi-Agent
Patrolling. In 17th Brazilian Symposium on Artificial Intelligence, pages
474–483, 2004.

[2] B. Bos̆anský, V. Lisý, M. Jakob, and M. Pechoucek. Computing Time-
Dependent Policies for Patrolling Games with Mobile Targets. In
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, 2011.

[3] Y. Chevaleyre. Theoretical Analysis of the Multi-Agent Patrolling Prob-
lem. In International Joint Conference on Intelligent Agent Technology,
pages 302–308, 2004.

[4] Y. Chevaleyre. Combinatorial Optimization and Theoretical Computer
Science, chapter The Patrolling Problem: theoretical and experimental
results. Wiley, 2007.

[5] A.X. Jiang, Z. Yin, C. Zhang, M. Tambe, and S. Kraus. Game-theoretic
Randomization for Security Patrolling with Dynamic Execution Uncer-
tainty. In International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 2013.

[6] H. Kitano. RoboCup Rescue : A Grand Challenge for Multi-Agent
Systems. In 4th International Conference on Multi Agent Systems, pages
5–12, 2000.

[7] F. Lauri and F. Charpillet. Ant Colony Optimization applied to
the Multi-Agent Patrolling Problem. In IEEE Swarm Intelligence
Symposium, 2006.

[8] F. Lauri, J.C. Créput, and A. Koukam. The Multi-Agent Patrolling
Problem – Theoretical Results about Cyclic Strategies. In 12th Interna-
tional Conference on Practical Applications of Agents and Multi-Agent
Systems, 2014.

[9] F. Lauri and A. Koukam. A Two-Step Evolutionary and ACO Approach
for Solving the Multi-Agent Patrolling Problem. In IEEE World
Congress on Computational Intelligence, 2008.

[10] S. Lin and B.W. Kernighan. An Effective Heuristic Algorithm for the
Traveling-Salesman Problem. Operations Research, 21:498–516, 1973.

[11] A. Machado, A. Almeida, and al. Multi-Agent Movement Coordination
in Patrolling. In 3rd International Conference on Computer and Game,
2002.

[12] A. Machado, G. Ramalho, and al. Multi-Agent Patrolling : an Empirical
Analysis of Alternatives Architectures. In 3rd International Workshop
on Multi-Agent Based Simulation, pages 155–170, 2002.

[13] J.-S. Marier, C. Besse, , and B. Chaib-draa. A Markov Model for
Multiagent Patrolling in Continuous Time. In International Conference
on Neural Information Processing: Part II, pages 648–656, 2009.

[14] C. Poulet, V. Corruble, A.E.F. Seghrouchni, and G. Ramalho. The Open
System Setting in Timed MultiAgent Patrolling. In IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent
Technology, 2011.

[15] E. Reuter and F. Baude. System and Network Management Itineraries
for Mobile Agents. In 4th International Workshop on Mobile Agents
for Telecommunications Applications, pages 227–238, 2002.

[16] H. Santana, G. Ramalho, and al. Multi-Agent Patrolling with Reinforce-
ment Learning. In 3rd International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 1122–1129, 2004.

256

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

a) Results on "Map A" with b) Results on "Map A" with some different
same visit priorities and same agent speeds visit priorities and agent speeds

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

c) Results on "Map B" with d) Results on "Map B" with some different
same visit priorities and same agent speeds visit priorities and agent speeds

 1500

 2000

 2500

 3000

 3500

 4000

 4500

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

 5000

 10000

 15000

 20000

 25000

 30000

 35000

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

e) Results on "Island" with f) Results on "Island" with some different
same visit priorities and same agent speeds visit priorities and agent speeds

 2000

 2500

 3000

 3500

 4000

 4500

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

 10000

 15000

 20000

 25000

 30000

 35000

 40000

5 10 15 20 25 30

W
or

st
 Id

le
ne

ss

Number of patrolling agents

SingleCycle
EA-AD+1-core GG-AA

EA-AD+1-core GG-AA-IE
EA-AD+1-core GG-BA-IE
EA-AD+1-core AG-AA-IE
EA-AD+1-core AG-BA-IE

EA-AD+8-core GG-BA-IE (8x16 colonies)

g) Results on "TownN56" with h) Results on "TownN56" with some different
same visit priorities and same agent speeds visit priorities and agent speeds

Fig. 8. Comparative Results

257

