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Abstract—Swarm Intelligence (SI) is a nature-inspired 
emergent artificial intelligence. They are often inspired by the 
phenomena in nature. Many proposed algorithms are focused on 
designing new update mechanisms with formulae and equations 
to emerge new solutions. Despite the techniques used in an 
algorithm being the key factor of the whole system, the 
evaluation of candidate solutions also plays an important role. In 
this paper, the proposed algorithm Macroscopic Indeterminacy 
Swarm Optimization (MISO) presents a new search scheme with 
indeterminate moment of evaluation. Here, we perform an 
experiment based on public benchmark functions. The results 
produced by MISO, Differential Evolution (DE) with various 
settings, Artificial Bee Colony (ABC), Simplified Swarm 
Optimization (SSO), and Particle Swarm Optimization (PSO) 
have been compared. The result shows MISO can achieve similar 
or even better performance than other algorithms. 

Keywords—global optimization; evolution strategies; swarm 
intelligence; evolutionary algorithm; artifical intelligence 

 

I. INTRODUCTION 
Swarm Intelligence (SI) has become a robust method for 

dealing with global optimization issues. Swarm behavior is a 
collective motion of a set of self-propelled particles  [1]. It is 
often inspired from nature phenomena, such as collective 
behavior, emergent behavior, self-organization, and etc. 
Particles propose solutions to problem and refine them by 
interacting with neighbor particles. Many algorithms such as 
Differential Evolution (DE) ) [2], Particle Swarm Optimization 
(PSO) [3], and Simplified Swarm Optimization (SSO) [4-7] 
have been successfully employed in some fields. Most of SI 
systems proceed in principle according to the scheme 
illustrated in Fig. 1. 

While a SI system discovers satisfactory solutions after a 
number of iterations, the whole progression is similar to 
animals’ food finding behavior in nature. Individual swarm 
particles move toward to global optima through random walk 
biased by the predefined evaluation criteria and update 
mechanism. In macro scales, the movement of particles is 
continuous in solution space over iteration. Similar to the 
moving object which can be observed by naked eyes is in 
continuous space-time, which can be explained by classical 
mechanics. On the other hand, an object can only exist in one 
place in any one instant of time. In micro scale, the movement 
of particles consists of series of infinitesimal interval states. 
That is, the infinite numbers of discontinuous points in space 
summates to a continuous point set. Before the evaluation 

process taken place, the exact positions of particles are 
indeterminate due to new particle positions often resampled 
with stochastic techniques. 

Similar to the uncertainty principle in quantum mechanics, 
the precise positions of point set cannot be established without 
observation even if the predicted law of motion is known [8]. 

 
Fig. 1. The basic cycle of SI system 

In our previous work, Simplified Swarm Optimization with 
Differential Evolution mutation strategy (SSODE) [9] 
introduced an update mechanism with multiple mutation 
formulae for synthesis new solution candidates. This paper 
extends previous research in SSODE and proposes a new 
algorithm: Macroscopic Indeterminacy Swarm Optimization 
(MISO). But before giving the explanation about MISO, the 
following paragraph summarizes the common iteratively 
refining principle used in many real world applications of 
meta-heuristic optimization. 

By reviewing many algorithms (e.g. SSO[4-7], DE[2], and 
PSO[3]), every time the update mechanism is performed is 
immediately followed by evaluation process. In other words, 
the update mechanism is performed on a particle once per each 
instant of time (iteration). The whole optimization process is 
particles agents reach the region of local or global optima via 
stochastic but determinate trajectories (iteration-ordered sets of 
positions in solution space). 

In this study, MISO presents a new concept Macroscopic 
Indeterminacy, which is inspired from the biased random walk 
in nature life. While observing certain animals such as birds, 
fishes, and insects, their swarming behaviors are coherent and 
synchronized with no leader in a group. Individual swarm 
members are constantly shifting their positions in response to 
the stimuli from 1) their colleagues or 2) the external 
environment (e.g. abstraction of food source). The whole 
optimization process is biased by the concentration gradient of 
food source. During the time interval that animals are randomly 
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moving around in space, they frequently evaluate how close to 
the food source. Since the exact time step for applying 
evaluation process is uncertain, the time interval every time 
swarm members perform random walk is indeterminate. 

This paper presents a new SI based algorithm called, 
Macroscopic Indeterminacy Swarm Optimization (MISO). The 
idea is, in every iteration, the update mechanism is executed 
multiple random times before evaluation process. The paper is 
organized as follows: Section II presents the literature review 
on the algorithms which bring new inspiration. Section III 
presents the proposed algorithm MISO. Section IV presents the 
experimental results while Section V concludes the paper. 

II. REVIEWS FOR OPTIMIZATION ALGORITHMS 
In many SI based algorithms, the initial population  ܺ is 

randomly generated and evaluated by objective function as 
well as fitness function. The system iteratively generates new 
solutions by reproduction process. The generated trial solution 
is accepted, if and only if it achieves the better evaluation 
result. TABLE I.  shows the common steps for SI system [2, 
10]: 

TABLE I.  SI SYSTEM COMMON STEPS 
1. Initialize Population X with NP particles 
2. Initial Evaluation:  eval(X) 
3. Update  the best solutions 
4. Repeat until terminal criteria met 

a. Reproduction process 
• Emerge trial population U 
• Evaluation:  eval(U) 
• Re-constitute population  X   

b. Update the best solutions 
5. END 

Differential Evolution (DE) uses the vector difference 
equation for generating new solutions, which is inspired by the 
mutation (TABLE II. ) and crossover principles (1) in nature. 
There are many mutation schemes for emerge new solutions, 
TABLE II.  lists five of them  [11] [12]. The indices ݎଵ೔,ீ~ݎହ೔,ீ 
are mutually exclusive integers randomly chosen from ሾ1, ܰܲሿ, 
which are different form index ݅. 

TABLE II.  DE MUTATION SCHEMES 
DE/Rand/1:  ௜ܸ,ீ ൌ ܺ௥ଷ೔,ீ ൅ ܨ כ ൫ܺ௥ଵ೔,ீ െ ܺ௥ଶ೔,ீ൯ 
DE/Rand/2: ௜ܸ,ீ ൌ ܺ௥ହ೔,ீ ൅ ܨ כ ൫ܺ௥ଵ೔,ீ ൅ ܺ௥ଶ೔,ீ െ ܺ௥ଷ೔,ீ െ ܺ௥ସ೔,ீ൯ 
DE/best/1:  ௜ܸ,ீ ൌ ܾ݃ ൅ ܨ כ ൫ܺ௥ଵ೔,ீ െ ܺ௥ଶ೔,ீ൯ 
DE/best/2:  ௜ܸ,ீ ൌ ܾ݃ ൅ ܨ כ ൫ܺ௥ଵ೔,ீ ൅ ܺ௥ଶ೔,ீ െ ܺ௥ଷ೔,ீ െ ܺ௥ସ೔,ீ൯ 
DE/rand-to-best/2:  ௜ܸ,ீ ൌ ௜ܺ,ீ ൅ ܨ כ ൫ܾ݃ െ ௜ܺ,ீ ൅ ܺ௥ଵ೔,ீ െ ܺ௥ଶ೔,ீ൯ 

Evaluation plays an important role in DE. The current set of 
solutions X is re-constituted as seen in equation (2). The fittest 
solutions discovered so far and will be used for the 
reproduction process in next generation. The better solutions 
will remain and update the knowledge that algorithm has learnt 

Crossover:  

௜ܷ,௝,ீ  ൌ ቊ ௜ܸ,௝,ீ    ݂݅ ൫݀݊ܽݎ௜,௝ሾ0,1ሿ ൑ ൯ ܱܴ ሺ݆ܴܥ ൌ ݆௥௔௡ௗሻ௜ܺ,௝,ீ       ݁ݏ݅ݓݎ݄݁ݐ݋  (1) 

Re-constitute population X:  

௜ܺ,ீାଵ ൌ ቊ ௜ܷ   ݂݅ ݈݁ܽݒሺ ௜ܷሻ ൐ ݂൫ ௜ܺ,ீ൯௜ܺ,ீ   ݁ݏ݅ݓݎ݄݁ݐ݋  (2) 

Simplified Swarm Optimization (SSO) [4-7] algorithm 
presents a special synthesis algorithm for recombination of 
vectors (TABLE III. ).  

TABLE III.  SSO ALGORITHM 

Control parameters:  ܿ௪ , ܿ௣ , ௚ܿ, ܿ௥  ܿ௪ ൅ ܿ௣ ൅ ௚ܿ ൅ ܿ௥ ൌ ୵ ൌܥ 1 ܿ୵ , ୮ܥ ൌ ୵ ൅ܥ ܿ୮  , ୥ܥ ൌ ୮ܥ ൅ ܿ୥  
௜ܷ,௝,ீ ൌ ۔ۖەۖ 

ۓ ௜ܺ,௝,ீ    ݂݅    0 ൑ ݀݊ܽݎ ൑ ୵ ൑ܥ    ݂݅  ௜,௝ݐݏܾ݁݌  ୵ܥ  ݀݊ܽݎ ൑ ୮ ൑ܥ    ݂݅    ௝ݐݏܾ݁݃  ୮ܥ  ݀݊ܽݎ ൑ ݀݊ܽݎ ୥ܥ  ୥ ൑ܥ    ݂݅ ݀݊ܽݎ ൑  1  

SSODE [9] developed a new update mechanism from SSO 
algorithm structure with four mutation strategies which 
inspired from DE. SSODE pseudo code and mutation formulae 
are shown in TABLE IV.  and TABLE V. . 

TABLE IV.  SSODE ALGORITHM 

Control parameters: ݃݉, ,݌ܿ ,ݎ݃ ݉݃ ݎܿ ൅ ݌ܿ ൅ ݎ݃ ൅ ݎܿ ൌ ௚௠ܯ 1 ൌ ௖௣ܯ   ,݉݃ ൌ ௚௠ܯ ൅ ௚௥ܯ   ,݌ܿ ൌ ௖௣ܯ ൅ ீܺ ݎ݃ ൌ ൛ݔ௜,௝ீ … , ே௉,஽ீݔ ൟ.  for ܩ௧௛  generation 
LOOP Until termination criteria met ܺ௚ ൌ ሺܺீ,ᇱݐݎ݋ݏ  ᇱሻܿݏ݁݀

௜௚ݒ ൌ ۔ۖەۖ
ۓ ,1൫ܺீܨ ,௚௠൯ܯ 1 ൑ ݅ ൏ ൫ܰܲ݀݊ݑ݋ݎ כ ,2൫ܺீܨ௚௠൯ܯ ,௖௣൯ܯ ൫ܰܲ݀݊ݑ݋ݎ כ ௚௠൯ܯ ൑ ݅ ൏ ൫ܰܲ݀݊ݑ݋ݎ כ ,3൫ܺீܨ௖௣൯ܯ ,௚௥൯ܯ ൫ܰܲ ݀݊ݑ݋ݎ כ ௖௣൯ܯ ൑ ݅ ൏ ൫ܰܲ݀݊ݑ݋ݎ כ ,4ሺܺீܨ௚௥൯ܯ ,ሻ݀݊ܽݎ ൫ܰܲ݀݊ݑ݋ݎ כ ௚௥൯ܯ ൑ ݅ ൑ ܰܲ  

௜,௝ீାଵݔ ൌ ቊݒ௜,௝ீ , ൫݊ܽݎ ௝݀ሺ0,1ሻ ൑ ௜,௝ீݔ ൯ܴܥ , ݁ݏ݅ݓݎ݄݁ݐ݋ , ݆ ൌ 1, …   ܦ
# The goal is to minimize the evaluation result ࢒ࢇ࢜ࢋሺ࢞ሻ.  

௜ܾ݌  ൌ ൜ ,௜ݔ ௜ሻݔሺ݈ܽݒ݁ ൏ ,௜ܾ݌௜ܾ݌ ݁ݏ݈݁   ܾ݃ ൌ ൜ܾ݌௜, ௜ሻܾ݌ሺ݈ܽݒ݁ ൏ ܾܾ݃݃, ݁ݏ݈݁   
END-LOOP 

The best solutions discovered by individual particles are 
stored in particle best solutions ܾ݌ ൌ ሼܾ݌௜ሽ, ݅ ൌ 1, … , ܰܲ. The 
global best solution ܾ݃ is the best solution in ܾ݌. 

TABLE V.  SSODE FOUR FORMULAE FOR MUTATION 

Formula 1: ࡲ૚ሺ࢞, ௜ீݒ ሻࡲ ൌ ௜ீݔ ൅ ܨ כ ሺݔ௜ீ െ ௥ଵீሻݔ ൅ ܨ כ ሺݔ௥ଶீ െ  ௥ଷீሻݔ
Formula 2: ࡲ૛ሺ࢞, ௜ீݒ ሻࡲ ൌ ௜ீݔ ൅ ܨ כ ሺܾ݌௥ଵ െ ௥ଶሻܾ݌ ൅ ܨ כ ሺܾ݌௥ଷ െ  ௥ସሻܾ݌
Formula 3: ࡲ૜ሺ࢞, ௜௚ݒ ሻࡲ ൌ ܾ݃ ൅ ܨ כ ൫ݔ௥ଵ௚ െ ௥ଶ௚ݔ ൯ ൅ ܨ כ ൫ݔ௥ଷ௚ െ ௥ସ௚ݔ ൯ 
Formula 4: ࡲ૝ሺ࢞, ௜௚ݒ ࡲ ൌ ௜௚ݔ ൅ ܭ כ ൫ݔ௥ଵ௚ െ ௜௚൯ݔ ൅ ܨ כ ൫ݔ௥ଶ௚ െ ௥ଷ௚ݔ ൯ 

III. PROPOSED ALGORITHM MISO (MACROSCOPIC 
INDETERMINACY SWARM OPTIMIZATION) 

MISO proposes that a particle’s movement in a solution 
space has both continuous and discontinuous properties. 
Individual particles have their own best trajectories and 
continuously move from initial states to final positions. At the 
same time, every trajectory is formed by infinite points in time 
with discontinuous positions. There are operating rules with 
stochastic process to control particles’ moving behavior in a 
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solution space. Therefore, in every instant in time, the exact 
position is indeterminate without evaluation taken place.  

Many algorithms (i.e. DE, PSO, ABC, etc.) evaluate a 
particle every time it shifts one position in space. Thus, a trial 
particle is generated with only one hop away from current one. 
Its positions are evaluated pre and post application, the 
indeterminacy of its movement is eliminated. Hypothetically, a 
function may be applied to particles to achieve better positions 
with continuous repetitions. The problem still remains as to the 
optimal point in time for the evaluation to take place. MISO 
has the advantage of resolving such problem. Algorithm 
efficiency and effectiveness are depended on the regulatory 
coordination between update mechanism and evaluation 
process. As a result, MISO proposes a new update mechanism 
(for synthesis new solution candidates) with uncertain time-
interval for performing evaluation. 

A. MISO algorithm 

MISO is developed from common SI system framework. 
The new approach proposed by MISO is about the 
reproduction process (4.a step in TABLE I.  ). TABLE II.  
shows the pseudo-code for MISO.  

 
1) Crucial vectors for particle interaction 

The behavior of SI system is an emergent behavior from 
particles. Particles in computer are represented as vectors 
which store important knowledge. There are two crucial sets of 
vectors ࢚࢙ࢋ࡮࢘ࢋ࢚࢏ and ࢙ࢋ used in MISO algorithm. 

ሺܾ݃ሻ݈ܽݒ݁ ሻ:  ݂݅ ሺ࢈ࢍሺ࢚࢙ࢋ࡮࢘ࢋ࢚ࡵࢋ࢚ࢇࢊ࢖ࢁ ൐ ௜஻ூௗ௫ሻݐݏ݁ܤݎ݁ݐሺ݈݅ܽݒ݁ כ 0.95ሻ ݅ݔ݀ܫܤ ൌ ݔ݀ܫܤ݅ ൅ ௜஻ூௗ௫ݐݏ݁ܤݎ݁ݐ݅ ;1 ൌ ܾ݃ ݂݁݊݀݅ (3) 

࢚࢙ࢋ࡮࢘ࢋ࢚࢏   is a set of vectors which only stores the 
significantly different gbs (in ascending order) in all previous 
iterations. ࢞ࢊࡵ࡮࢏ is the last element as well as the latest ܾ݃. 
The significant difference is measured by the variance interval 
0.05. ܾ݃ is updated every time a better solution is discovered. 
Thus, ݅ݐݏ݁ܤݎ݁ݐ only records the ܾ݃ which significantly better 
than the last element in ݅ݐݏ݁ܤݎ݁ݐ  (3). This prevents ݅ݐݏ݁ܤݎ݁ݐ from being contaminated by the latest generations’ 
results. 

,ࢄሺ࢙ࢊࢋࢋࡿࢋ࢚ࢇࢊ࢖ࢁ ࢞ࢊࡵ࡮࢏ሺࢌ࢏  :ሻ࢚࢙ࢋ࡮࢘ࢋ࢚࢏ ൏ ଵ~௜஻ூௗ௫݁ݏ ሻࢋࢠ࢏࢙࡭  ൌ ௜஻ூௗ௫ାଵ~ே௉݁ݏ ௜஻ூௗ௫~ଵݐݏ݁ܤݎ݁ݐ݅  ൌ  ௜ܺ஻ூௗ௫ାଵ~ே௉ ݁ݏ ࢋ࢙࢒ࢋଵ~஺ೞ೔೥೐ ൌ ݏ ஺ೞ೔೥೐~ଵݐݏ݁ܤݎ݁ݐ݅ ஺݁ೞ೔೥೐ାଵ~ே௉ ൌ  ஺ܺೞ೔೥೐ାଵ~ே௉ ࢌ࢏ࢊ࢔ࢋ 
(4) 

After many iteration times, particles would be converged to 
local or global optima. The diversities of particles with their 
neighbors are decreased and less likely to produce significantly 
different particles. ࢙ࢋ is a set of vectors which stores the 

important knowledge learnt from previous generations. In order 
to maintain a certain level of diversity, a certain number of 
vectors are taken from ݅ݐݏ݁ܤݎ݁ݐ in descending order and are 
added into ࢙(4) ࢋ. 

2) PUO (Position Update Operator) 

MISO presents a new update mechanism for effectively 
producing a new set of trial vectors ࢂ . In SI system, the 
population of particles can be implicitly categorized into four 
classes [9]. Inspired by SSO algorithm which introduces three 
different thresholds for four different update strategies, MISO 
extends this concept into population level. Therefore, three 
thresholds separate the population into four groups. Unlike 
SSO, the four ratios ݊ܽ ,ܾ݊, ݊ܿ, and ݊݀ control the number of 
particles in individual four classes: Class A, Class B, Class C, 
and Class D (TABLE VI. ). Particles are randomly reordered 
before being regrouped into 4 groups.  

TABLE VI.  POSITION UPDATE OPERATOR ࡻࢁࡼሺࢄ,  ሻࢋ࢙

Control parameters: ݊ܽ, ܾ݊, ݊ܿ, ݊݀ ݊ܽ ൅ ܾ݊ ൅ ݊ܿ ൅ ݊݀ ൌ ୬ୟ ൌܯ 1 na, ௡௕ܯ ൌ ୬ୟ ൅ܯ ܾ݊ , ୬ୡܯ ൌ ୬ୠܯ ൅ ௘௡ௗܣ ܿ݊ ൌ ୬ୟܯሺ݀݊ݑ݋ݎ כ ܰܲሻ ܤ௘௡ௗ ൌ ௡௕ܯሺ݀݊ݑ݋ݎ כ ܰܲሻ ܥ௘௡ௗ ൌ ୬ୡܯሺ݀݊ݑ݋ݎ כ ܰܲሻ ܦ௘௡ௗ ൌ ܰܲ   
# Class A ܨ ൌ ௡௔ܯ ൅ ሺ0,1ሻ݀݊ܽݎ כ ሺܾ݊ሻ ݂݌ ݎ݋ ൌ ࢖ࢂ  ௘௡ௗ ሼܣ~1 ൌ ࡳ,࢖૚࢘ࢄ ൅ ࡲ כ ൫࢘ࢄ૛ࡳ,࢖ െ  ൯ ሽ ࡳ,࢖૚࢘ࢋ࢙
# Class B ܨ ൌ ௡௔ܯ ൅ ሺ0,1ሻ݀݊ܽݎ כ ሺܨ ൅ ݊ܿሻ ݂݌ ݎ݋ ൌ ሺܣ௘௡ௗ ൅ 1ሻ ~ܤ௘௡ௗ ሼ  ࢖ࢂ ൌ ࡳ,࢖૚࢘ࢄ ൅ ࡲ כ ൫࢙ࡳ,࢖ࢋ െ  ൯ ሽ ࡳ,࢖૛࢘ࢄ
# Class C ܨ ൌ ௡௕ܯ ൅ ሺ0,1ሻ݀݊ܽݎ כ ሺܨ ൅ ݊ܿሻ ݂݌ ݎ݋ ൌ ሺܤ௘௡ௗ ൅ 1ሻ ~ܥ௘௡ௗ ሼ ௣ܸ ൌ ܺ௥ଵ೛,ீ ൅ ܨ כ ൫݁ݏ௣,ீ െ ܺ௥ଶ೛,ீ൯ ሽ 
# Class D ܨ ൌ ௡௖ܯ ൅ ݀݊ܽݎ כ ൫ܨ ൅ ሺ1 െ ݌ ݎ݋݂ ௡௖ሻ൯ܯ ൌ ሺܥ௘௡ௗ ൅ 1ሻ ~ܰܲ ሼ ࢖ࢂ ൌ ࢈ࢍ ൅ ࡲ כ ൫࢙ࡳ,࢖ࢋ െ  ൯ ሽࡳ,࢖૚࢘ࢄ

 
return V 
* ଵ೛ݎ ଶ೛are non-repeated random sequence whereݎ ଵ೛andݎ ് ଶ೛ݎ ്  .݌
* Differences between class B and class C are ࡲ and ࢖ 

The scaling rate F amplifies the differential variation 
between vectors which is dynamically generated according to 
different equations for different classes. The recombination 
mechanism shown in TABLE VII.  is similar to crossover 
function in Evolutionary Algorithm (EA), which limits the 
migration only to randomly occur in some vector elements. 

3) Uncertain time-interval for performing evaluation 

Swarm optimization process can be illustrated as the 
movement of a set of particles from initial random positions 
toward to global optimal positions. Evaluation and information 
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update is similar to human factor involved in verifying 
particles’ positions. Each iteration can be considered as a time 
interval. Every time a set of particles changing positions can be 
considered as one instant state.  

The uncertain time-interval means the repetition time of 
executing position update mechanism is indeterminate in every 
iteration.  

TABLE VII.  POSITION . MISO PSEUDO CODE (BASED ON THE FRAMEWORK 
IN TABLE 1) 

1. Initialize Population X with NP particles 
2. Initial Evaluation:  eval(X) 
3. Update  ࢈ࢍ ൌ ݃ݎܽ ݉݅݊௜ୀଵ,…,ே௉ሼ݈݁ܽݒሺ ௜ܺሻሽ 
4. Loop (until terminate criteria met ) ݅ݐݏ݁ܤݎ݁ݐ ൌ ݁ݏ ሻݐݏሺܾ࢚࢙݃݁ࢋ࡮࢘ࢋ࢚ࡵࢋ࢚ࢇࢊ࢖ࢁ ൌ ,ሺ࢙ܺࢊࢋࢋࡿࢋ࢚ࢇࢊ࢖ࢁ ݁ݎ ሻݐݏ݁ܤݎ݁ݐ݅ ൌ ,ሺ1݀݊ܽݎ ሻܦ א Գଵ ݂ݎ݋ ݅ ൌ  ሼ  ݁ݎ~1

V=ࡻࢁࡼሺࢄ, ݆ ݎ݋݂  ሻࢋ࢙ ൌ U୧,୨ ࢔࢕࢏࢚ࢇ࢔࢏࢈࢓࢕ࢉࢋࡾ# ሼ ܦ~1 ൌ ቊ ௜ܸ,௝     ݂݅ ൫݀݊ܽݎ௜,௝ ൑ 0.5൯௜ܺ,௝ீ  ሽ ሽ            ݁ݏ݅ݓݎ݄݁ݐ݋       
#Evaluation and update   

௜ܺ ீାଵ ൌ ቊ ௜ܷ   ݂݅ ݈݁ܽݒሺ ௜ܷሻ ൏ ݂൫ ௜ܺ,ீ൯௜ܺ,ீ   ݁ݏ݅ݓݎ݄݁ݐ݋ , ݅ ൌ 1, … , ܰܲ  
 ܾ݃ ൌ ൜ ௜ܷ, ሺ݈ܽݒ݁ ௜ܷሻ ൏ ܾܾ݃݃, ݁ݏ݈݁   

5. END 

In TABLE VII. ,  ࢘ࢋ  is randomly generated in every 
iteration. It simulates the uncertain number of instants of time 
between current and previous evaluations performed on 
individual particles. ࡻࢁࡼ repeatedly updates the trial vectors ܸ ൌ ሼ ௜ܸሽ, ݅ ൌ 1, … , ܰܲ  for ݁ݎ  times. The recombination 
process is also performed ࢘ࢋ times for synthesizing updated 
solution candidates  ܷ . That is, every particle ௜ܺ  performs ݁ݎ times hops to arrive position ௜ܷ  in a solution space. The 
maximum number of interval states between two evaluations is 
equal to the dimension of search space ܦ . It is because 
excessive updates for particles positions are not only time 
consuming but also renders the output results virtually random.  

IV. EXPERIMENTS AND RESULTS  
The purpose of this experiment is to evaluate the 

performance of proposed algorithm MISO. The default MISO 
algorithm with no control parameter setting is compared with 
DE [2, 14], ABC[15] , SSO [5-7] and PSO[16]. Here, 
DE/best/1 and DE/rand/1 mutation strategies are selected. 
Three recommended setting for DE parameters are chosen [2, 
13]. The benchmark ABC source code is downloaded from 
ABC algorithm homepage [17]. SSO control parameter is set [0.5,0.1 ,0.3 ,0.1]= ݓܥ, which is the same setting as 
Yeh et al. experiment [4].  The setting for PSO is ܿଵ ൌ ܿଶ ൌ2.0  with decaying weight  ݓ ൌ 0.9~0.4 , which is able to 
perform global search at the beginning and local search at the 

end [18, 19]. The population size ܰܲ ൌ 10 ൈ ܦ  for all 
algorithms, except ABC ܰܲ ൌ 40 [17]. Here, the experiment 
is performed in 30 dimensions ܦ ൌ 30. The parameter settings 
for all compared algorithms are summarized in TABLE VIII. . 

TABLE VIII.  PARAMETER SETTINGS FOR ALL COMPARED ALGORITHMS 

 

D NP 

- - 30 300

DE_1_0503 30 300

DE_1_0901 30 300

DE_1_0909 30 300

DE_2_0503 30 300

DE_2_0901 30 300

DE_2_0909 30 300

- - 30 40

30 300

30 300PSO

MISO

ABC

SSO(1,3,5,1)

F=0.5,CR=0.3

F=0.9,CR=0.1

F=0.9,CR=0.9

F=0.5,CR=0.3

F=0.9,CR=0.1

F=0.9,CR=0.9

cw=0.1, cp=0.3,cg=0.5,cr=0.1

c1=2, c2=2, w=0.9~04

DE/Best/1

DE/Rand/1

 
The boundary handling method called Periodic mode [20] 

is applied to solve beyond boundary problem (5). ݁݃݊ܽݎ ൌ ܾݑ െ ݈ܾ
௜,௝ݑ ൌ ൞ܾݑ െ ݀݋݉ ቀ൫݈ܾ െ ,௜,௝൯ݑ ቁ݁݃݊ܽݎ ௜,௝ݑ ܨܫ ൏ ݈ܾ ݈ܾ ൅ ௜,௝ݑ൫ሺ݀݋݉ െ ,ሻܾݑ ௜,௝ݑ ܨܫ ൯ ݁݃݊ܽݎ ൐ ௜,௝ݑܾݑ ܨܫ ௜,௝ݑ א ሾ݈ܾ, ሿܾݑ  

כ ݀݋݉ ൌ ݏݑ݈ݑ݀݋݉
(5) 

All algorithms are implemented in C language. The 
computer specification is: Intel(R) Core(TM) i5-2400 CPU @ 
3.10GHz with 4GB memory. The operating system is 64-bit 
windows 7. The experiment is carried on 28 benchmark 
functions (see TABLE IX.  & TABLE X. ) from CEC 2013 
Special Session on Real-Parameter Optimization [19]. 

 
TABLE IX.  BENCHMARK FUNCTIONS SETTINGS 

No. Function name fbias
Bm1 Sphere Function -1400
Bm2 Rotated High Conditioned Elliptic Function -1300
Bm3 Rotated Bent Cigar Function -1200
Bm4 Rotated Discus Function -1100
Bm5 Different Powers Function -1000
Bm6 Rotated Rosenbrock's Function -900
Bm7 Rotated Schaffers F7 Function -800
Bm8 Roated Ackley's Function -700
Bm9 Rotated Weierstrass Function -600
Bm10 Rotated Griewank’s Function -500
Bm11 Rastrigin’s Function -400
Bm12 Rotated Rastrigin’s Function -300
Bm13 Non-Continuous Rotated Rastrigin’s Function -200
Bm14 Schwefel's Function -100
Bm15 Rotated Schwefel's Function 100
Bm16 Rotated Katsuura Function 200
Bm17 Lunacek Bi_Rastrigin Function 300
Bm18 Rotated Lunacek Bi_Rastrigin Function 400
Bm19 Expanded Griewank’s plus Rosenbrock’s Function 500
Bm20 Expanded Scaffer’s F6 Function 600  
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TABLE X.  COMPOSITION BENCHMARK FUNCTIONS 

No. Function name elements fbias
Bm21 Composition Function 1 (n=5,Rotated) Bm1,Bm3,Bm4,Bm5,Bm6 700
Bm22 Composition Function 2 (n=3,Unrotated) Bm14 800
Bm23 Composition Function 3 (n=3,Rotated) Bm15 900
Bm24 Composition Function 4 (n=3,Rotated) Bm9,Bm12,Bm15 1000
Bm25 Composition Function 5 (n=3,Rotated) Bm9,Bm12,Bm15 1100
Bm26 Composition Function 6 (n=5,Rotated) Bm2,Bm9,Bm10,Bm12,Bm15 1200
Bm27 Composition Function 7 (n=5,Rotated) Bm1,Bm9,Bm10,Bm12,Bm15 1300
Bm28 Composition Function 8 (n=5,Rotated) Bm1,Bm7,Bm15,Bm19,Bm20 1400

 

Two measure criteria are examined: 1) performance within 
limited Function Evaluation times, 2) algorithm complexity 
and 3) overall run-time performance. The main consideration 
for optimization algorithm is the quality of discovered 
solutions. Assume the objective function ܨሺݔሻ, the optimum 
discovered by algorithm כݔ  , and the predefined global 
optimum ݋  , and then the evaluation is based on the error 
value ݁ݎݎ ൌ ሻݔሺ݈ܽݒ݁ ൌ ሻכݔሺܨ| െ    .|ሻ݋ሺܨ

 

A. Experiment based on the solution quality within given 
Function Evaluation times (FEs) 

The maximum number of function evaluation ݏܧܨݔܽܯ ൌ300,000  is set for all algorithms. The statistical analysis is 
based on minimum, maximum and mean of error values, and 
the standard deviation of 30 applications of experiment. 
According to the No Free Lunch Theorem [15], there is no 
algorithm can outperform all others in all problems. Therefore, 
a generalized algorithm should be the one can achieve 
satisfactory results in many of the given problems. Overall 28 
benchmark functions, MISO can achieve better performance 
and generalization ability than DE, ABC, SSO, and PSO 
algorithms in 14 benchmark functions (TABLE XI. ). 

TABLE XI.  SUMMARY OF ALGORITHMS PERFORMANCES  
OVER 28 BENCHMARK FUNCTIONS 

MISO DE(counts of all strategies) ABC SSO PSO Total
max 13 4 11 0 0 28
min 13 3 8 3 1 28
mean 14 3 10 1 0 28
std 8 12 8 0 0 28  

 
Fig. 2. The average of the evaluation results over all 28 functions by MISO, 
DE, ABC, SSO, & PSO. 

Fig. 2 shows the average of the evaluation results over 28 
benchmark functions. It shows the overall performance for 
MISO is significantly better than others. This means even 
though MISO cannot achieve better results than other 
algorithms in some benchmark problems, it can still discover 
acceptable solutions in many of them. TABLE XIII.  lists some 
benchmark functions that MISO outperforms other algorithms 

B. Experiment based on algorithm complexity 

The Performance measurement based on the solution 
quality within ݏܧܨݔܽܯ is not always a fair approach way for 
testing algorithm. One of the key issues is algorithmic 
complexity, which commonly refers to the amount of time for 
an algorithm to run. For solving the same problems within ݏܧܨݔܽܯ, some algorithms finish earlier than others. Based on 
the  evaluation criteria for algorithm complexity in CEC 2013 
Special Session [19], the results is shown in  TABLE XII. . The 
experiment result shows MISO has the highest algorithm 
complexity, which means MISO takes longer time to run. It is 
reasonable because every iteration MISO executes the update 
mechanism multiple times before an evaluation takes place. 

TABLE XII.  SUMMARY OF ALGORITHM COMPLEXITY  
OVER 28 BENCHMARK FUNCTIONS 

DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1

mean 1.48E+01 3.46E+00 3.31E+00 3.22E+00 4.10E+00 3.79E+00 3.35E+00 3.35E+00 1.03E+01 8.51E+00

sum 4.13E+02 9.69E+01 9.27E+01 9.03E+01 1.15E+02 1.06E+02 9.37E+01 9.38E+01 2.87E+02 2.38E+02

SSO PSO
Time
 (sec) Miso

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9

ABC

 

C. Experiment based on the run-time performance 

However, efficiency does not always mean to be effective.  
We perform additional experiments for verifying the run-time 
performance. The function error value is recorded after  ܶ ൌ ሼݐ௜ሽ,   ݐ௜ ൌ 0.5 כ ሺ݅ሻଶ, ݅ ൌ 0~14  in seconds. That is, ሼ 0, 0.5, 2, 4.5, 8, 12.5, 18, 24.5, 32, 40.5, 50, 60.5, 72, 84.5, 98 ሽ
seconds. The statistical analysis is based on of error values of 
30 applications of experiment. Here, we display the 
convergence graphs for some descriptive benchmark functions 
(Fig. 3~ Fig. 14). In the graphs, if error value ൑ 1.00E-08, than 
set it to 1.00E-08.  

The graphs indicate that many algorithms like SSO, DE, 
ABC, and PSO are able to form fast convergence at the 
beginning. However, they may have premature optimization 
issue (see Fig. 3, 4, 5, 7, 6, &10) and suffer from local optima. 
Besides, as it can be seen from Fig. 8, 9, 11, 12, 13, & 14, after 
algorithms running a period of time, the performance of MISO 
is gradually improving. Finally, MISO achieves either fast 
convergence, or discovers the better optimal solutions than 
others. 

After all, according to these three experiments, we can 
conclude that an algorithm with high time complexity can be 
complemented by small number of function evaluation times. 
Despite of the fact that every iteration MISO takes longer time 
to execute, it can achieve satisfactory result within less number 
of function evaluations. Consuming lots of time in every 
iteration would pay off in the end. paper. Do not number text 
heads-the template will do that for you. 
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TABLE XIII.  SUMMARY RESULTS OBTAINED BY MISO, DE, ABC, SSO, & PSO  (MAXFES=300,000) 

MISO DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 DE/best/1 DE/rand/1 ABC PSO
max 3.15E+04 3.99E+07 4.38E+07 4.15E+07 4.02E+07 7.49E+07 8.50E+07 2.14E+07 5.88E+07 1.10E+08

bm2 mean 1.82E+03 2.54E+07 3.34E+07 3.01E+07 3.03E+07 5.49E+07 6.62E+07 1.50E+07 2.85E+07 5.02E+07
min 1.05E+01 1.13E+07 2.01E+07 1.75E+07 1.95E+07 2.92E+07 4.49E+07 9.50E+06 5.42E+06 1.56E+07
std 4.51E+03 6.24E+06 5.92E+06 6.47E+06 5.72E+06 1.12E+07 1.14E+07 3.14E+06 1.34E+07 2.14E+07

max 1.92E+08 4.22E+09 1.37E+10 1.20E+10 1.47E+10 1.45E+10 3.42E+10 2.18E+09 1.33E+10 5.49E+10
bm3 mean 1.84E+07 2.42E+09 1.10E+10 6.81E+09 1.02E+10 1.08E+10 2.41E+10 8.42E+08 3.76E+09 2.51E+10

min 6.54E+05 1.22E+09 5.58E+09 2.66E+09 5.41E+09 7.45E+09 1.35E+10 2.37E+08 4.04E+08 7.86E+09
std 3.23E+07 6.78E+08 2.02E+09 2.11E+09 2.47E+09 2.01E+09 4.25E+09 5.22E+08 3.33E+09 1.08E+10

max 2.95E-03 8.84E+04 9.13E+04 1.01E+05 9.07E+04 7.42E+04 8.61E+04 8.92E+04 2.01E+04 4.03E+04
bm4 mean 6.69E-04 7.17E+04 7.56E+04 7.97E+04 7.75E+04 5.86E+04 6.94E+04 7.12E+04 1.28E+04 1.28E+04

min 2.59E-05 4.47E+04 5.90E+04 5.63E+04 4.60E+04 3.57E+04 4.88E+04 4.99E+04 8.05E+03 3.67E+03
std 7.66E-04 9.06E+03 8.02E+03 1.03E+04 8.55E+03 8.78E+03 8.00E+03 8.22E+03 2.79E+03 7.50E+03

max 7.41E+01 8.15E+01 1.35E+02 5.83E+01 1.29E+02 9.93E+01 3.90E+02 1.88E+01 1.43E+02 1.46E+03
bm6 mean 1.15E+01 3.00E+01 1.12E+02 3.80E+01 1.04E+02 7.45E+01 3.24E+02 1.51E+01 7.14E+01 6.13E+02

min 1.40E-03 1.86E+01 7.30E+01 2.71E+01 7.81E+01 5.53E+01 2.27E+02 8.17E+00 1.58E+01 8.94E+01
std 1.60E+01 1.25E+01 1.45E+01 7.18E+00 1.13E+01 9.73E+00 3.82E+01 2.66E+00 3.33E+01 2.42E+02

max 3.98E+01 1.12E+02 1.38E+02 1.39E+02 1.40E+02 1.24E+02 1.71E+02 1.47E+02 1.89E+02 3.16E+02
bm7 mean 1.40E+01 9.07E+01 1.13E+02 1.11E+02 1.13E+02 1.08E+02 1.42E+02 1.19E+02 1.17E+02 1.40E+02

min 2.73E+00 6.18E+01 8.53E+01 7.67E+01 7.44E+01 8.64E+01 1.15E+02 5.70E+01 4.81E+01 7.64E+01
std 8.62E+00 1.06E+01 1.19E+01 1.26E+01 1.29E+01 1.03E+01 1.49E+01 1.79E+01 2.90E+01 4.55E+01

max 3.44E+01 3.21E+01 3.20E+01 3.20E+01 3.18E+01 3.49E+01 3.55E+01 3.31E+01 3.72E+01 4.11E+01
bm9 mean 2.79E+01 2.97E+01 2.98E+01 2.93E+01 2.93E+01 3.30E+01 3.30E+01 2.97E+01 2.92E+01 3.43E+01

min 2.02E+01 2.63E+01 2.72E+01 2.39E+01 2.39E+01 3.05E+01 2.97E+01 2.42E+01 2.25E+01 2.36E+01
std 3.11E+00 1.35E+00 1.19E+00 1.72E+00 1.72E+00 1.18E+00 1.36E+00 1.83E+00 3.11E+00 4.23E+00

max 1.27E-01 5.33E+01 2.38E+02 9.75E+01 2.06E+02 2.83E+02 8.69E+02 8.09E-01 5.69E+01 1.37E+03
bm10 mean 1.54E-02 3.03E+01 1.83E+02 7.18E+01 1.54E+02 2.03E+02 6.74E+02 3.86E-01 2.58E+01 7.49E+02

min 1.12E-04 1.76E+01 1.20E+02 3.90E+01 9.82E+01 1.34E+02 4.91E+02 1.95E-01 7.73E+00 2.42E+02
std 2.09E-02 7.27E+00 2.60E+01 1.35E+01 2.33E+01 3.00E+01 8.49E+01 1.22E-01 1.11E+01 2.43E+02

max 1.72E+02 1.84E+02 2.83E+02 2.49E+02 2.79E+02 2.50E+02 3.48E+02 3.20E+02 2.86E+02 3.57E+02
bm12 mean 1.19E+02 1.53E+02 2.50E+02 2.10E+02 2.47E+02 2.27E+02 3.09E+02 2.63E+02 1.40E+02 2.35E+02

min 6.22E+01 1.13E+02 2.08E+02 1.65E+02 2.01E+02 1.92E+02 2.65E+02 1.63E+02 6.06E+01 1.24E+02
std 2.66E+01 1.79E+01 1.71E+01 2.03E+01 1.90E+01 1.39E+01 1.74E+01 3.43E+01 4.52E+01 5.44E+01

max 1.93E+02 2.22E+02 3.17E+02 2.87E+02 3.04E+02 2.69E+02 3.59E+02 3.73E+02 3.09E+02 4.20E+02
bm13 mean 1.62E+02 1.85E+02 2.84E+02 2.41E+02 2.78E+02 2.36E+02 3.23E+02 3.12E+02 2.16E+02 3.02E+02

min 7.95E+01 1.46E+02 2.45E+02 1.92E+02 2.32E+02 2.00E+02 2.78E+02 2.21E+02 1.10E+02 1.96E+02
std 2.55E+01 1.63E+01 1.66E+01 1.83E+01 1.50E+01 1.55E+01 1.98E+01 3.18E+01 4.71E+01 4.91E+01

max 2.27E+02 2.58E+02 3.56E+02 3.13E+02 3.64E+02 2.93E+02 4.15E+02 3.89E+02 3.87E+02 3.49E+02
bm18 mean 2.06E+02 2.33E+02 3.26E+02 2.84E+02 3.33E+02 2.70E+02 3.86E+02 3.40E+02 2.57E+02 2.20E+02

min 1.71E+02 1.89E+02 2.85E+02 2.43E+02 2.90E+02 2.32E+02 3.25E+02 2.66E+02 1.58E+02 1.41E+02
std 1.07E+01 1.53E+01 1.75E+01 1.69E+01 1.75E+01 1.28E+01 2.24E+01 2.82E+01 4.42E+01 5.01E+01

max 1.25E+01 1.48E+01 1.47E+01 1.50E+01 1.50E+01 1.43E+01 1.44E+01 1.50E+01 1.32E+01 1.48E+01
bm20 mean 1.19E+01 1.41E+01 1.40E+01 1.43E+01 1.43E+01 1.39E+01 1.39E+01 1.45E+01 1.22E+01 1.35E+01

min 1.11E+01 1.31E+01 1.29E+01 1.32E+01 1.29E+01 1.33E+01 1.27E+01 1.37E+01 1.11E+01 1.18E+01
std 3.05E-01 3.64E-01 4.76E-01 3.65E-01 4.19E-01 2.56E-01 2.96E-01 2.80E-01 4.90E-01 8.74E-01

max 2.47E+02 2.87E+02 2.93E+02 2.94E+02 2.94E+02 2.97E+02 3.04E+02 2.97E+02 3.05E+02 3.33E+02
bm24 mean 2.26E+02 2.77E+02 2.86E+02 2.83E+02 2.85E+02 2.87E+02 2.96E+02 2.87E+02 2.87E+02 3.04E+02

min 2.10E+02 2.63E+02 2.72E+02 2.68E+02 2.62E+02 2.78E+02 2.83E+02 2.75E+02 2.59E+02 2.72E+02
std 7.59E+00 5.60E+00 4.55E+00 5.75E+00 5.31E+00 4.69E+00 4.74E+00 4.96E+00 1.06E+01 1.40E+01

max 2.81E+02 3.07E+02 3.10E+02 3.11E+02 3.10E+02 3.17E+02 3.20E+02 3.15E+02 3.19E+02 3.63E+02
bm25 mean 2.34E+02 2.98E+02 3.03E+02 3.02E+02 3.04E+02 3.10E+02 3.15E+02 3.07E+02 3.01E+02 3.45E+02

min 2.07E+02 2.85E+02 2.88E+02 2.90E+02 2.94E+02 3.02E+02 3.09E+02 2.98E+02 2.77E+02 3.14E+02
std 2.02E+01 4.46E+00 4.07E+00 4.25E+00 3.51E+00 3.55E+00 2.81E+00 4.30E+00 8.59E+00 1.05E+01

max 2.00028E+02 2.03E+02 2.04E+02 2.04E+02 2.04E+02 2.09E+02 2.10E+02 2.0144E+02 3.90E+02 2.04E+02
bm26 mean 2.00007E+02 2.02E+02 2.03E+02 2.03E+02 2.03E+02 2.06E+02 2.06E+02 2.0084E+02 2.43E+02 2.01E+02

min 2.00001E+02 2.01E+02 2.01E+02 2.01E+02 2.01E+02 2.03E+02 2.03E+02 2.0052E+02 2.01E+02 2.00E+02
std 6.75498E-03 5.46E-01 6.15E-01 5.83E-01 6.69E-01 1.36E+00 1.50E+00 2.0228E-01 7.57E+01 9.95E-01

F=0.5 CR=0.3 F=0.9 CR=0.1 F=0.9 CR=0.9 SSO
(1351)

 
 

Bm2: Rotated High Conditioned Elliptic Function 
Fig. 3. . 

 Bm3: Rotated Bent Cigar Function 
Fig. 4. . 
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Bm4: Rotated Discus Function 

Fig. 5. . 

 
Bm6: Rotated Rosenbrock's Function 

Fig. 6. . 

Bm7: Rotated Schaffers F7 Function 
Fig. 7. . 

 
Bm9: Rotated Weierstrass Function 

Fig. 8. . 

Bm12: Rotated Rastrigin’s Function 
Fig. 9. . 

 
Bm13: Non-Continuous Rotated Rastrigin’s Function 

Fig. 10. . 

Bm20: Expanded Scaffer’s F6 Function. 
Fig. 11. . 

 
Bm23: Composition Function 3 

Fig. 12. . 

Bm25: Composition Function 5. 
Fig. 13. . 

 
Bm26: Composition Function 6. 

Fig. 14. . 
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V. CONCLUSION 
The update mechanism, which is a strategy or set of steps 

and equations to produce new solutions, plays important role 
for discovering new solution candidates. Many representative 
algorithms such as SSO, DE, PSO, and ABC, have been 
proposed to solve global optimization problems. Their ideas 
were assured to solve the optimization problems based on their 
hypotheses. However, they do not guarantee success.  Even 
more, they seem to be too ambitious, and try to synthesis better 
solution candidates in every iteration.   

Macroscopic Indeterminacy Swarm Optimization (MISO) 
algorithm is proposed in this paper. In order to improve the 
performance of optimization algorithm, MISO considers well-
designed update mechanism and suitable evaluation strategy 
need to be auxiliary to each other. Macroscopic Indeterminacy 
refers to biased random walk phenomena in nature. Lives find 
ways out to survive. Living organisms constantly change their 
positions in response to the stimuli from colleagues and their 
environment. Similarly, particle agents constantly change their 
positions in response to the stimuli from colleagues, and 
frequently response to conditions (solution quality) in solution 
space. That is, particles may update their positions multiple 
times before evaluation take place.  

Based on benchmark functions provided by CEC 
conference [19], the experiments show MISO is superior SSO, 
DE, PSO, and ABC in many of them. In spite of the fact that 
algorithm complexity for MISO is significantly higher than 
others, it can achieve good results within small number of 
function evaluations. By given enough of processing time, 
MISO is able to come from behind and achieve efficient and 
effective results in many benchmark problems. The overall 
performance of MISO is significantly better than others 
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