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Abstract—Discretization algorithms have been combined with
discrete estimation of distribution algorithms (EDAs) to work on
real-valued problems. Existing discretization algorithms, such as
the fixed-height histogram (FHH) and the split-on-demand (SoD),
utilize merely densities of selected chromosomes to build next-
generation population, and therefore have limited exploration.
This paper adds the concept of model building to FHH and SoD to
solve these problems. The model utilizes a variety of information
from selected chromosomes to improve the abilities of FHH and
SoD to identify promising regions for future exploration.

Specifically, a model of expected values of selected chromo-
somes is combined with FHH and SoD to form expected-value
FHH and expected-value SoD. The expected-value-discretization
algorithms outperform their original versions on an explo-
ration test function as well as the 25 benchmark functions
used in the SoD paper. This paper also introduces a model
of differential-expected-value of selected chromosomes. The
differential-expected-value FHH and differential-expected-value
SoD outperform their expected-value versions when tested on
the exploration test function and the 25 benchmark functions.

I. INTRODUCTION

A simple genetic algorithm (SGA) independently mixes
genes by using the crossover operator. Therefore, SGA is
easily trapped at local optima on problems with important
linkages [1]. Unlike SGA, estimation of distribution algo-
rithms (EDAs) [2], [3] build probabilistic models to recognize
linkages among genes, hence linkages are preserved during
recombination, making EDAs have a high chance to solve
strongly-interconnected problems [4].

Discretization algorithms transform a continuous region into
discrete, so that discrete EDAs can be applied to real-valued
problems [5]. Existing discretization algorithms, such as the
fixed-height histogram [6] (FHH) and the split-on-demand [7]–
[9] (SoD), use only the densities of selected chromosomes to
discretize the continuous region.

The purpose of this paper is to utilize the concept of model
building to improve the performance of existing discretization
algorithms. The rest of this paper is organized as follows.
In the next section, this paper reviews the three existing
discretization algorithms, the fixed-width histogram (FWH),
FHH and SoD. This paper also introduces how discretization
algorithms work with EDAs. A representative EDA called the

extended compact genetic algorithm [10] (ECGA) is taken as
an example to be integrated with discretization algorithms. In
the third section, we introduce a sine-waved exploration test
function to study the limitations of FHH and SoD. After un-
derstanding the limitations, we provide the expected-value and
the differential-expected-value model as add-ons for FHH and
SoD. The newly formed algorithms outperform their original
versions on the sine-waved exploration test function. They are
expected-value FHH (ev-FHH), expected-value SoD(ev-SoD),
differential-expected-value FHH (dev-FHH) and differential-
expected-value SoD (dev-SoD). At the last section, we focus
on comparing these newly formed discretization algorithms
with other discretization algorithms, their original versions,
FHH and SoD. The discretization algorithms are integrated
with ECGA to be tested on the 25 benchmark problems [11]
used in the SoD paper [7]. Results show that ev-FHH and dev-
FHH outperforms FHH, and ev-SoD and dev-SoD outperforms
SoD on about 20 out of 25 benchmark problems [11] with
95% confidence.

II. BACKGROUND

In this section we first introduce three existing discretization
algorithms, FWH, FHH and SoD. We also describe how these
discretization algorithms are integrated with discrete EDAs.
This section also briefly introduces ECGA, a representative
discrete EDA, and describes how to integrate a discretization
algorithm with ECGA.

A. Discretization Algorithms

Discretization algorithms partition the whole search region
into a number of bins. For a χ-array discrete EDA, each bin
is denoted by a unique integer from 0 to χ. Discrete EDAs
then use these integers to build probabilistic models and then
generate the next-generation populations inside each bin.

a) Fixed-Height Histogram: The basic rule behind FHH
is that more bins should be formed on the region where
selected chromosomes are denser. FHH makes each of its
bin contain the same number of selected chromosomes. The
term height in the algorithm’s name refers to the number of
selected chromosomes in each bin. For a population of N
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selected chromosomes, the H-bin FHH divides the region into
H bins, and each bin contains N

H selected chromosomes. If
we represent the positions of these N selected chromosomes
as xi for i = 1, 2, ..., n, and xi < xi+1 for i = 1, 2, ..., n− 1,
then, the bin region of FHH can be represented as [Li, Li+1)
for i = 0, 1, ...,H − 1, where

Li =


lower bound if i = 0
upper bound if i = H
xj+xj+1

2 , j = iN
H otherwise.

The flexibility of FHH’s bin width makes FHH have un-
bounded resolution on seemly promising regions with high
densities of selected chromosomes, while FWH only has
bounded resolution due to its fixed bin width. FWH reaches its
bounded resolution when generating all of its next generation
population inside the most promising bin. FHH is also empir-
ically shown to outperform FWH in [6]. FWH is not further
investigated in this paper.

b) Split-on-Demand: SoD, like FHH, uses the densities
of selected chromosomes as information to divide the region,
but with two additional parameters, split rate γ and decrease
rate ε. The values of γ and ε are restricted between 0 and 1.
SoD iteratively, randomly splits the region that contains more
selected chromosomes than γ × N , where N is the number
of selected chromosomes. SoD also decreases the value of γ
by a factor ε every generation i.e. γ ← γ × ε per generation.
The reason for a higher value of γ at the early stage is that
it makes SoD implement a more roughly global search at the
beginning. The lower value of γ at late stage makes SoD to
have a more fine model to for local search. The two additional
parameters of SoD, γ and ε, are acclaimed to help SoD avoid
being trapped at local optima [7].

B. ECGA

ECGA [10] is a discrete EDA based on the idea that
good probability distribution model can be viewed as learning
linkage between genes. ECGA then uses marginal product
models (MPM) to describe the probability distribution. The
MPM with the minimal description length is considered to
be the most accurate, which is used to generate a population
of the next generation. The description lengths of the MPMs
includes two parts. The first part is called model complexity,
as Equation 1, which quantifies complexity of the model.
The second part is called compressed population complexity,
as Equation 2, which quantifies accuracy of the model. By
summing these two parts, ECGA can find an MPM, which
satisfies both simplicity and accuracy. ECGA uses greedy
heuristic search to find MPM due to computational complexity.

MODELCOMPLEXITY =
∑

bb∈BB

(
2|bb|−1

)
log2 n (1)

DATACOMPLEXITY = −n
∑
x

p(x) log2 p(x) (2)

C. Discretization Algorithms Integrated with Discrete EDAs

Discretization algorithms, as FHH and SoD, use different
strategies to split each continuous region into a number of
bins. Each bin is assigned a different integer from 0 to χ
for a χ-array discrete EDA. Then, selected chromosomes are
encoded into vectors according to their genes’ positions, i.e.
every gene of the selected chromosomes is assigned the integer
of the bin containing the gene. Discrete EDAs then build joint
probabilistic models over these vectors, and use the models
to generate the next generation population in the form of
vectors. These code-vectors are later transformed back into
the continuous domain by uniformly sampling the bin region
each integral code represents. Details about discretization
algorithms can be refered to [8], [12].

III. EXPLORATION TEST FUNCTION AND MODEL
BUILDING DISCRETIZATION ALGORITHMS

In this section, we make two speculations about the limita-
tions of FHH and SoD according to their bin-splitting strate-
gies. A sine-waved exploration test function is consequently
made to verify these two speculations. We build two kinds of
models to make FHH and SoD overcome these limitations. The
first model utilizes expected value of selected chromosomes,
while the second one utilizes differential expected value of
selected chromosomes between each generation. By combin-
ing the two models with FHH and SoD, four new model-
building discretization algorithms are generated. The newly
generated algorithms, ev-FHH, ev-SoD, dev-FHH and dev-
SoD outperform the original FHH and SoD on the sine-waved
exploration test function.

A. Speculations of FHH and SoD

In FHH and SoD, the only information used to split the
explored region is the densities of selected chromosomes. FHH
and SoD do not utilize the fitness values of selected chromo-
somes, let alone other information of selected chromosomes.
Therefore, the chromosome with the highest tness is treated
the same as the one with the lowest tness after selection. This
makes our first speculation that the discretization algorithms
recognize no differences between optima of different height
but same width, thus, limit their chances to find global
optimum. The definition of width of a optimum is in the next
subsection.

Next, we speculate that if selected chromosomes around
the global optimum does not surpass certain threshold, it is
harder for FHH or SoD to find global optimum in latter
generations, even though these selected chromosomes have
much higher fitness than others. The speculation inferred
from the characteristic that FHH and SoD tempt to converge
their bins only to the regions with high densities of selected
chromosomes. It is understandable that it is hard for an
algorithm to find the global optimum, if there are not any
selected chromosomes exist around it, but it is inefficient if
the algorithm reduces its resolution on the promising region
even there exists some selected chromosomes with relatively
high fitness to other selected chromosomes.
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Fig. 1. A triangular exploration test function (AH and BH) and a sine-waved
exploration problem (solid green line). The triangular function is composed
of two straight lines, AH and BH . Global optimum is fixed at the right
boundary, while a local optimum is fixed at the left boundary. In this figure,
the ratio of the whole region to the width of global optimum is 10 and the
ratio of the peak value of global optimum to the peak value of local optimum
is 1.1. We times the triangular function with sin(10× 2π + π

2
) to form the

sine-waved exploration test function. The dotted line is y = 2.5.

Take an H-bin FHH with N selected chromosomes as an
example. If the number of selected chromosomes around the
global optimum is less than H

N , FHH does not take the region
of these selected chromosomes as one single bin, instead, FHH
combines the region with some other regions together to obtain
exactly H

N selected chromosomes in a bin. If the additionally
included selected chromosomes are far away from the primary
chromosomes, the assigned bin is wide. The resolution around
global optimum decreases, thus, making it harder for FHH
to have enough selected chromosomes around global optima
in the next generation. This situation happens no matter how
high the fitnesses of selected chromosomes around the global
optimum are.

B. Exploration Test Function

According to our speculations above, the triangular
exploration test problem and the sine-waved exploration
test problem are proposed for verification. Several points in
Figure 1 are defined as follows.

A:(0,1) The local optimum of both test problems.
B:(1,1.1) The global optimum of both test problems.
C:(0,0.25)
D:(0.675,0.25) The intersection of the dotted line and

the dashed line with negative slope.
E:(0.925,0.25) The intersection of the dotted line and the

dashed line with positive slope.
F:(1,0.25)
G:(0,0)
H:(0.9,0)
I:(1,0)

First we need to define the width of an optimum,
so that we can define two parameters of the exploration test
functions. The width of an optimum should be highly related

to the distribution of selected chromosomes. The reason is
that a discretization algorithm can only observe an optimum
through selected chromosomes. For a discretization algorithm
with chromosomes uniformly distributed, and the selection
pressure as s, we infer that only the first 1

s regions with the
highest fitnesses have chances to be observed. The definition
of width of an optimum is given as below.

Definition 1: The width of an optimum is the projection of
its surrounding region which has its fitness the first 1

s height,
on certain axis. s is the selection pressure of the discretization
algorithm.

In the case of the triangular exploration problem in Figure 1,
assuming the lowest fitness of the selected chromosomes is the
value of the dotted line in Figure 1, the width of the global
optimum is EF , the projection of BE on x-axis. The width of
the local optimum is CD, the projection of AD on the x-axis.

In our speculation, FHH and SoD tend to reduce their
resolution on the global optimum when facing a problem with
its global optimum of little width while the global optimum
is far away from other local optima. The newly set bin
which contains the global optimum is wide, as discussed in
subsection 3.1. The triangular exploration test problem and the
sine-waved exploration test problem are designed accordingly,
as in Figure 1, so we can test the two speculations of FHH and
SoD. Two parameters are made to vary the attributes of the
problems. The first parameter is the ratio of width (RoW).
The second parameter is the ratio of peak value (RoPV).
Definitions of RoW and RoPV are given below.

Definition 2: The ratio of width (RoW) of the exploration
test problems is the ratio of the width of the whole region to
the width of the global optimum.

Definition 3: The ratio of peak value (RoPV) of the explo-
ration test problems is the ratio of the peak value of the global
optimum to the peak value of the local optimum.

In case of the triangular exploration problem, RoW is
AB

AB+CD
. The exploration test function is chosen to be triangu-

lar, because RoW is independent of the selection pressure of
the discretization algorithm in a triangular function. We obtain
this result from AB

AB+CD
= FG

EG
.

To make the exploration problem closer to a real problem,
we times the triangular exploration problem with a sine wave,
sin(10 × 2π + π

2 ), to build the sine-waved exploration test
problem. The sine-waved exploration test problem is used
throughout this paper, as the solid sine-waved line in Figure 1.
The RoPV of the sine-waved exploration test problem is the
same as the triangular version, but the RoW has changed. The
regions to be counted on RoW are highlighted by the red
dashed line in Figure 1. Here, we approximate the RoW of the
sine-waved exploration test problem the same as the triangular
version, FG

EG
.

By varying RoW and RoPV, we can change the difficulties
of the exploration test function: the larger the RoW, the more
difficult for FHH and SoD to identify the global optimum.
The larger the RoPV should make it easier for a search
algorithm to identify the global optimum. According to our
first speculations, FHH and SoD do not improve any of their
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performances despite RoPV increases extremely high. FHH
and SoD also degrade their performance badly when RoW
increases, according to our second speculation.

In this paper, RoW of the exploration test function is ranged
from 10 to 10000 while RoPV is ranged from 1.1 to 100 to
observe the attribution of the discretization algorithms on the
exploration problem. Each test was independently run 1000
times with population 100 and upper bound generation 1000.
The bin number is 10 for FHH, while the split rate γ is 0.5,
and the decrease rate ε is 0.999 for SoD. The values of γ
and ε are one of the pairs of parameters used in the SoD
paper [7] which have its average bin number around 10 under
the experimental condition, so the results of FHH and SoD can
also be compared. We use truncational selection with selection
pressure 2 in the experiments.
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Fig. 2. Performances comparisons of FHH and ev-FHH on the sine-waved
exploration test function with different RoW and RoPV. The diamonds
represent the results of FHH, while the circles represent the results of ev-
FHH. The solid lines represent the results on the exploration test function
with RoPV = 1.1. The dashed lines are on the function with RoPV = 10 and
the dotted line with RoPV = 100. According to the figures, FHH can not
improve any of its performances when RoPV increases from 1.1 to 100. On
the other hand, ev-FHH improves both its average generation and success rate
as RoPV increases. Besides, ev-FHH outperforms FHH on the exploration test
functions throughout the tested region of different parameters.

The experimental results are shown on Figures 2 and 3.
Figure 2(a) shows the average generations taken by FHH
or ev-FHH to find the global optimum. Figure 2(b) shows
the success rates for FHH and ev-FHH to find the global
optimum. Figure 3(a) illustrates the average number of func-
tion evaluations (NFEs) taken by SoD or ev-SoD to find the
global optimum, Figure 3(b) shows the success rates for SoD
and ev-SoD to find the global optimum. According to the
results, FHH can not identify any differences between the
exploration test functions with RoPV equals 1.1 or 100. SoD
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Fig. 3. Performances comparisons of SoD and ev-SoD on the sine-waved
exploration test function with different RoW and RoPV. The diamonds
represent the results from SoD, while circles represent the results from ev-
SoD. Other settings are the same as Figure 2. According to the figures, SoD’s
average NFE decreases as RoPV increases, while SoD can not improve any
of its success rate as RoPV increases. Ev-SoD improves both its average NFE
and success rate and outperforms SoD on the exploration test functions with
all tested parameters.

consumes fewer average NFE when dealing with higher RoPV
but can not improve any of its success rates. These results
are consistent with our first speculation that the exploration
ability of FHH and SoD are limited when facing certain types
of problems as the exploration test problem. Discussion about
the second speculation is hold until ev-FHH and ev-SoD are
introduced, and their results on the exploration test function
can be compared with the results of FHH and SoD.

C. Model Building Discretization Algorithms Using expected
value Model

The model building discretization algorithms (MBDAs) use
models instead of merely the densities of selected chro-
mosomes as the criteria, to separate the region into bins.
In MBDAs, the built model is estimates the potential of
each region for containing the global optimum. The expected
value of selected chromosomes is considered a representative
measurement. The expected-value model for discretization
algorithms is introduced. The expected-value model calculates
the average fitness values of selected chromosomes inside each
bin, subtracting the value with the overall-least fitness value of
selected chromosomes to eliminate the offset provided by the
problems. The model then takes these expected-values as the
estimated potential for finding global optima inside each bin,
forming the expected value model, exp(x), as the blue solid
histogram in Figure 4(b). The expected-value model then can
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be used to split the region into bins by different bin-splitting
strategies. If we combine the expected-value model with the
FHH bin splitting strategy, we obtain ev-FHH; on the other
hand, if we combine the model with the SoD bin splitting
strategy, we obtain ev-SoD. The only difference between ev-
FHH and FHH is that ev-FHH uses the integral value of
expected value model,

∫
exp(x), instead of the number of

selected chromosomes, to separate the region into bins. First,
ev-FHH calculates the value of

∫ ub
lb
exp(x), where lb and ub

are the lower and upper bounds of the explored region. Then,
ev-FHH divides the search region into bins that the values of∫
exp(x) are the same inside each bin, in the case of Figure 4,

the red solid bins equally divide the area under the blue solid
histogram. As for ev-SoD,

∫
exp(x) is also used to substitute

for the role of number of selected chromosomes in SoD. Ev-
SoD iteratively splits the region into two bins until each bin
satisfies the condition

∫ R
exp(x) < γ ×

∫ ub
lb
exp(x), where

R denotes the range of the bin. The value of γ decreases by
the factor ε per generation. The pseudo-code for ev-FHH and
ev-SoD is given in Algorithms 1 and 2, respectively.
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Fig. 4. Using the expected value as a model to proximate the exploration test
problem. The population size is 50, and 25 chromosomes (red circless) are
selected, while others (green diamonds) are discarded. The pink erected solid
lines in the Figure 4(a) represents the model used by FHH and SoD. The blue
solid histogram at Figure 4(b) represents the expected value model used by
ev-FHH and ev-SoD. The red solid bins are the 10 bins set up to generate
the next generation population. According to Algorithm 1, the integral value
of the expected value model should be the same inside each next-generation
bin, which means the area under the blue solid histogram should be the same
in each red solid bin.

FHH and SoD can also be regarded as special cases in
MBDA. The model used by FHH and SoD uses the delta
functions to represent every selected chromosome, as the pink
erected solid lines in Figure 4(a). The heuristic behind implies
that the regions with higher densities of selected chromosomes

Algorithm 1: Pseudo code for ev-FHH
Input:
Bini ← a set of bins to divide the searched region
H ← number of bins
Ri ← range of Bini i = 1...H
Output:
Ri #Bini’s range used for next generation

Fleast ← lowest fitness value of all selected
chromosomes
F̄i ← averaged fitness of selected chromosomes inside Ri
Mi ← F̄i − Fleast
M(x)← {if x inside Ri, return Mi}
Avg ←

∫ ub
lb

M(x)dx

H

Decide the range of Ri so that
∫ Ri M(x) = Avg for

each Ri
return Ri

Algorithm 2: Pseudo code for ev-SoD
Input:
γ ← decrease rate
Ri ← range of the i th bin
Output:
Ri #the i th bin range used for next generation

Fleast ← smallest fitness value of all selected
chromosomes
F̄i ← averaged fitness values of selected chromosomes
inside Ri
Mi ← F̄i − Fleast
M(x)← {if x inside Ri, return Mi}
Mtotal ←

∫ ub
lb
M(x)dx

k ← 0
R0 ← the whole region.
Iteratively do

for i = 0 to k
If
∫ Ri M(x) > γ ×Mtotal

Split Ri into Ri, Rk+1, k ← k + 1

Until
∫ Ri M(x) < γ ×Mtotal for all i

return Ri

have greater potential to contain the global optimum. FHH and
SoD use the same model to estimate the potential of the search
region while using different strategies to split the area. In other
words, FHH and SoD utilize the same model but use different
ways to create the next-generation population.

D. Performances of MBDA on The Sine-waved Exploration
Test Problem

The experimental results of ev-FHH and ev-SoD on the
exploration test problem are shown in Figures 2 and 3. Ev-
FHH and ev-SoD improve both their average problem-solving
generation and success rate when RoPV increases. Both ev-
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FHH and ev-SoD outperform their original versions under
different values of RoW. In Figure 2, for the exploration test
problem with RoPV = 100 and RoW = 1000, ev-FHH has
100% success rate while the success rate of FHH is less than
10%. According to these results, the expected value model
does help the discretization algorithms be more adaptive to
test problems like exploration test problems.

Now we evaluate the validity of the second speculation
mentioned at the beginning of subsection 3.1, by comparing
the results of FHH and ev-FHH; SoD and ev-SoD on the explo-
ration test problem. The second speculation states that because
FHH and SoD use the density of selected chromosomes as the
criterion to split bins, they tend to neglect the narrow optimum,
even though the fitness value of the selected chromosomes
inside the optimum are extremely high. The newly invented
algorithms, ev-FHH and ev-SoD use the expected value of
the selected chromosomes instead of the densities of selected
chromosomes. For ev-FHH and ev-SoD, there is no difference
whether a region has one or a hundred selected chromosomes
if they all have the same fitness value. By removing the reason
that cause FHH and SoD converge their bins to a wider local
optimum, ev-FHH and ev-SoD should have higher chance to
find a global optimum of little width. Figures 2 and 3 show that
both ev-FHH and ev-SoD increase their success rate on finding
a global optimum of less width, comparing to their original
versions. This is consistent with our second speculation. The
discretization algorithms increase their chance on solving a
problem with a global optimum of little width by removing
the density-inclination factor.

To improve the performance of discretization algorithms
on sine-waved exploration problem further, we introduce
another model called differential expected value model. The
’differential’ here implies the difference of expected value
between generations. The idea of adding the differential
part makes discretization algorithms more adaptive to the
problems. The heuristic behind is using the ’differential
value’ to detect if the area inside a bin has already been fully
explored. If the area has been fully explored, its obtained
expected values in successive generations should be close;
otherwise, the obtained expected values may variate radically.
By using differential-expected value as a model, we created
dev-FHH and dev-SoD. Pseudo codes for dev-FHH and
dev-SoD are identical to that for ev-FHH and ev-SoD except
the following modification should be added. Following pieces
of code should be inserted after the declaration of Mi:

E ←M t
i

M t
i ← E + (E −M t−1

i )

and before the return of Ri:

E(x)←
{
Ei if x inside Ri
0 otherwise.

M t
i ←

∫ Ri E(x)
Length(Ri)

,

where t denotes the generation number, and Mi = M t
i

in Algorithms 1 and 2.
The experimental results of dev-FHH and dev-SoD are

shown in Figures 5 and 6. In Figure 6, dev-SoD maintains its
success rate over 20% for all tested PV values even when RoW
reaches 10000. The differential expected value model seems
to help the discretization algorithms find narrow global opti-
mum with higher probability. discretization algorithms using
differential expected value model are observed to outperform
the version using expected value model on the sine-waved
exploration problem, especially in the case of SoD. Dev-SoD
outperforms ev-SoD more obviously than dev-FHH to ev-FHH
on the problem.
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Fig. 5. Performances comparisons of ev-FHH and dev-FHH on the exploration
test functions with different rate of width and rate of PV. The diamonds
represent the results of ev-FHH. The circles represent the results of dev-
FHH, while other settings are the same in Figure 2. According to the figures,
dev-FHH barely improves its performance comparing with ev-FHH on the
exploration test function.

IV. PERFORMANCE WITH ECGA ON 25 BENCHMARK
PROBLEMS

Four newly created discretization algorithms, ev-FHH, dev-
FHH, ev-SoD and dev-SoD, are integrated with ECGA to be
tested on the 25 benchmark problems [11]. We also integrated
other discretization algorithms, FHH and SoD, with ECGA
and compared all their results in this section.

A. Integrating ECGA with MBDA

Before integrating the new discretization algorithms with
ECGA, there is one difficulty need to be resolved. Different
from FHH and SoD, whose bin splitting strategies are based on
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Fig. 6. Performances comparisons of ev-SoD and dev-SoD on the exploration
test function with different rate of width and rate of PV. The diamonds
represent the results of ev-SoD. The circles represent the results of dev-SoD,
while other settings are the same in Figure 2. Comparing to ev-SoD, dev-
SoD improves its performances, especially the success rate, on exploration
test functions with rate of width greater than 1000.

the number of chromosomes, other model building discretiza-
tion algorithms may not guarantee that every newly generated
bin region contains at least one selected chromosome. If there
are no selected chromosomes in a newly generated bin, the
code of this bin is assigned zero probabilities by ECGA, and
no code-vectors containing this code is generated by ECGA
afterward. This empty-bin-code is ignored in the probability
model built by ECGA, and there are no newly generated
chromosomes located inside this bin in the next generation.
To avoid this issue, we uniformly add virtual chromosomes to
the model built by ECGA. The sum of virtual chromosomes
should be small, which is 10% of population size in this paper.

Integration of model building discretization algorithms with
ECGA can be enumerated as below.

1) Randomly initialize a population with N chromosomes.
The discretization algorithm uniformly split the searched
region into H bins per dimension.

2) Select the population using a selection strategy, such as
tournament selection.

3) Build the model according to the selected chromosomes
inside each bin. Generate new bins according to the bin-
splitting strategy the discretization algorithm uses.

4) Check each selected chromosome for which bin region
it locates inside, and assigned the code of the bin to its
correspondent gene. Each chromosome is turned into an

M-dimensional code-vector. M is the dimension of the
given problem.

5) Use ECGA to model the code-vectors with greedy search
of minimum description length of MPM model. The
MPM model found with the smallest value of the sum
of Equations 1 and 2 are used.

6) Add virtual chromosomes uniformly to the MPM model
built by ECGA. The sum of virtual chromosomes is 10%
of the population size. Use the MPM model to generate
the next population in forms of M-dimensional vectors.

7) Turn each M-dimensional vector back into continuous
domain by uniformly sampling a gene inside the bin
region which each of its code stands for. If stop criteria
isn’t met, return to step 2.

B. Performances on 25 Benchmark Problems

Parameters used in the experiments of the discretization al-
gorithms integrated with ECGA follow the SoD paper [7], with
population size 250, crossover probability 0.975, chromosome
length 10 and tournament size 8. We have two different upper
bounds numbers of evaluation functions (NFE), 30000 and
100000, so we can observe the performances of discretization
algorithms both in short and long term. The bin numbers of
FHH, ev-FHH and dev-FHH are 18 or 25 for NFE=30000, and
bin number is set as 25 for NFE=100000. For SoD, ev-SoD
and dev-SoD, values of the split rate, γ, and a decrease rate, ε,
are listed in Table I. Using two different values of parameters
of γ and ε for SoD also follow the SoD paper [7]. For ev-SoD
and dev-SoD, the values of γ are the same with SoD, while
the values of ε are tuned to make the average bin number of
ev-SoD and dev-SoD close to SoD.

Algorithm NFE=30000 NFE=30000 NFE=100000
γ ε Havg γ ε Havg γ ε Havg

SoD 0.7 0.99 18.00 0.45 0.988 25.93 0.5 0.998 25.79
ev-SoD 0.7 0.98 17.68 0.45 0.981 25.22 0.5 0.994 25.61
dev-SoD 0.7 0.979 18.08 0.45 0.98 25.84 0.5 0.9935 25.64

TABLE I
PARAMETER SETTINGS FOR VALUE OF γ , ε AND ITS CONSEQUAL AVERAGE

BIN NUMBER (Havg ) PER GENERATION UNDER 250 RUNS FOR THE 25
BENCHMARK PROBLEMS [11].

The performances comparisons between FHH, ev-FHH,
dev-FHH/SoD, ev-SoD and dev-SoD integrated with ECGA on
25 benchmark problems [11] are listed in Tables II and III,
under 250 independent runs. We use t-test to determine the
winner algorithm under different match. The numbers inside
the first column denote the problem’s serial number detailed
in [11]. If the former discretization algorithm outperforms the
latter with 95% t-test confidence, the values are marked italic,
while the latter outperforms the former, the values are marked
bold. The last row of the tables sum up the total number of
problems one algorithm win over the other. 4/20 in the first
column of the last row means that FHH win over ev-FHH
on 4 problems while ev-FHH win over FHH on 20 problems
out of 25. Results show that the newly built model building
discretization algorithms, ev-FHH, dev-FHH, ev-SoD and dev-
SoD outperform the original ones on most of the benchmark
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NFE=30000 Bin=18 NFE=30000 Bin=25 NFE=100000 Bin=25
FHH

vs ev-
FHH

FHH
vs
dev-
FHH

ev-
FHH
vs
dev-
FHH

FHH
vs ev-
FHH

FHH
vs
dev-
FHH

ev-
FHH
vs
dev-
FHH

FHH
vs ev-
FHH

FHH
vs
dev-
FHH

ev-
FHH
vs
dev-
FHH

1 12.17 12.17 0.00 10.88 10.88 0.00 11.09 11.09 0.00
2 23.04 23.47 11.88 21.96 22.13 7.43 26.55 26.55 10.88
3 13.56 14.02 1.42 12.36 12.63 0.79 14.23 14.38 1.19
4 21.07 21.30 9.69 18.46 18.54 3.87 20.02 20.02 7.52
5 16.70 16.83 2.61 17.40 17.52 1.00 15.75 15.75 2.03
6 5.37 5.93 3.44 5.92 6.24 2.84 7.73 7.47 -1.26
7 11.54 11.54 0.00 11.29 11.29 0.00 0.00 0.00 0.00
8 -7.20 -6.55 0.68 -4.34 -4.48 -0.14 -5.46 -4.42 1.08
9 -46.94 -25.19 10.21 -16.24 8.48 17.29 -2.35 10.06 3.25

10 6.62 6.91 0.12 2.56 3.02 0.37 1.06 3.62 2.43
11 28.41 30.49 1.97 23.07 25.52 1.71 23.99 24.53 0.54
12 6.40 8.29 2.26 8.93 8.73 -0.43 5.64 6.60 0.55
13 -48.69 -40.22 7.14 -25.93 -13.94 9.71 -23.34 -11.64 11.49
14 8.17 8.17 -0.07 9.54 6.59 -3.10 12.51 13.39 1.00
15 -3.84 -2.24 1.56 -2.35 -0.84 1.48 0.20 1.04 0.84
16 7.58 8.36 0.80 7.55 7.16 -0.60 5.55 6.06 0.57
17 13.21 17.27 3.98 15.60 17.13 1.51 12.62 13.85 1.24
18 7.21 8.02 1.07 6.62 7.23 0.42 4.25 5.81 1.48
19 7.70 8.77 1.46 8.60 7.16 -1.32 8.07 8.51 0.38
20 6.45 9.03 2.88 7.76 7.55 0.36 7.52 6.82 -0.37
21 5.63 7.34 1.52 2.63 4.66 2.09 3.70 4.53 0.71
22 5.82 6.13 0.37 6.49 6.41 0.11 6.36 6.26 -0.01
23 5.54 7.33 1.88 3.96 5.95 2.05 5.15 4.40 -0.96
24 -0.93 -0.73 0.22 0.33 -0.40 -0.06 1.05 0.22 -0.82
25 16.90 20.27 3.25 20.08 22.59 2.38 22.62 20.19 -0.85

Sum
4/20 4/20 0/12 4/20 2/21 1/9 3/18 2/20 0/6

TABLE II
FHH, EV-FHH AND DEV-FHH PERFORMANCES COMPARISON.

problems, about 20 out of 25. Dev-FHH also outperforms ev-
FHH on some benchmark functions. But the performances
difference between dev-SoD and ev-SoD on the 25 benchmark
functions [11] are barely discernible. This is different from
the results we observed on the exploration test function in
previous section. The difference is attributed to the different
characteristics between the exploration test function and the
25 benchmark functions [11].

V. CONCLUSION

This paper proposed the use of model building on exist-
ing discretization algorithms. The built models extract more
information from the population and try to estimate more
properly the potential of the unexplored region of the problem.
We have introduced two models to realize the concept of
model building, the expected value model and the differential
expected value model. The models were combined with the
original bin splitting strategies in FHH and SoD, forming
the new discretization algorithms, ev-FHH, dev-FHH, ev-SoD
and dev-SoD. Our discretization algorithms outperform the
original versions on the invented exploration test function and
the 25 benchmark functions [11]. From our experiments, we
believe that exploration is crucial for real-valued optimization
problems and that exploration should be properly integrated
into discretization algorithms to yield better performance when
combining with discrete EDAs.
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