
A Novel Artificial Bee Colony Algorithm with 
Integration of Extremal Optimization for 

Numerical Optimization Problems 
 

Min-Rong Chen1,2  
1School of Computer Science 

South China Normal University 
Guangzhou, China 

2 College of Information Engineering 
Shenzhen University 

Shenzhen, China 
Email: optmrchen@gmail.com 

 
 
 

Wei Zeng 
College of Information Engineering 

Shenzhen University 
Shenzhen, China 

Guo-Qiang Zeng 
Department of Electrical and Electronic Engineering, 

 Wenzhou University, 
Wenzhou, China 

 

Xia Li 
College of Information Engineering 

Shenzhen University 
Shenzhen, China 

Jian-Ping Luo 
College of Information Engineering 

Shenzhen University 
Shenzhen, China  

 
 

Abstract—Artificial Bee Colony (ABC) algorithm is an 
optimization algorithm based on a particular intelligent 
behaviour of honeybee swarms. The standard ABC is weak at the 
local-search capability and precision. Extremal Optimization 
(EO) is a general-purpose heuristic method which has strong 
local-search capability and has been successfully applied to a 
wide variety of hard optimization problems. In order to 
strengthen the local-search capability of ABC, this work proposes 
a novel hybrid optimization method, called ABC-EO algorithm, 
through introducing EO to ABC. The simulation results show 
that the performance of the proposed method is as good as or 
superior to those of the state-of-the-art algorithms in complex 
numerical optimization problems.  

Keywords—Artificial Bee Colony; Extremal Optimization; 
numerical optimization problems 

I.  INTRODUCTION  
Artificial Bee Colony (ABC) algorithm is a novel swarm 

intelligent algorithm inspired by the foraging behaviors of 
honeybee. It was first introduced by Karaboga in 2005 [1]. 
After that, ABC was applied to solving the binding numerical 
optimization problems by Karaboga and Basturk[2], and 
satisfactory results were achieved. Since the ABC algorithm 
has many advantages, such as simple in concept, easy to 
implement, and fewer control parameters, it has attracted the 
attention of many researchers and been used in solving many 
real-world optimization problems [3-7].   

In 1999, a general-purpose local-search optimization 
approach, so-called Extremal Optimization (EO), was 
proposed by Boettcher and Percus [8,9]. EO is an optimization 
heuristic inspired by the Bak-Sneppen model [10], and thus 
EO is based on the fundamentals of statistical physics and 
Self-Organized Criticality (SOC) [11]. The evolution in this 
method is driven by a process in which the weakest species in 
the population, together with its nearest neighbors, is always 
forced to mutate. EO successively eliminates those worst 
components in the sub-optimal solutions and has been 
successfully applied to many continuous and discrete 
optimization problems [12-17]. 

However, the standard ABC algorithm also has its 
limitations, such as premature convergence, slow convergence 
speed at the later stage of evolution and low convergence 
accuracy. In order to overcome the limitations of ABC, 
inspired by the hybrid PSOEO algorithm proposed by Chen et 
al.[18], an idea of combining ABC with EO is addressed in 
this paper. In this work, we develop a hybrid optimization 
method, called ABC-EO algorithm, which makes full use of 
the global-search ability of ABC and the local-search ability of 
EO. The performance of the proposed approach was testified 
on six unimodal/multimodal benchmark functions and 
furthermore the ABC-EO algorithm was compared with other 
five state-of-the-art optimization algorithms, i.e., standard 
ABC, PSOEO[18], standard Particle Swarm Optimization 
(PSO), Population-based EO (PEO) [15] and standard Genetic 
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Algorithm (GA). The experimental results indicate that the 
proposed approach may be a good alternative for complex 
numerical optimization problems.  

This paper is organized as follows. In Section II, ABC and 
EO algorithms are briefly introduced. In Section III, we 
propose the hybrid ABC-EO method and describe it in detail. 
In Section IV, the proposed approach is used to solve six 
unconstrained benchmark functions from the usual literature. 
Finally, the simulation results obtained are presented and 
discussed in Section V. 

II. ARTIFICIAL BEE COLONY AND EXTREMAL 
OPTIMIZATION 

A. Artificial Bee Colony(ABC) 
ABC algorithm is a recently proposed optimization 

algorithm that simulates the foraging behavior of a bee colony. 
In the ABC algorithm, the search space corresponds to a food 
source that the artificial bees can exploit. The position of a 
food source represents a possible solution to the optimization 
problem. The nectar amount of a food source represents the 
fitness of the associated solution. There are three kinds of bees 
in a bee colony: employed bees, onlooker bees and scout bees. 
Half of the colony comprises employed bees and the other half 
includes the onlooker bees. 

Artificial colony search activities can be summarized as 
follows [20]: Initially, the ABC generates a randomly 
distributed initial population of SN/2 solutions (i.e., food 
source positions), where SN denotes the size of population. 
Each solution iX (i=1,2,…,SN/2) is a D-dimensional vector. 
Here, D is the number of optimization parameters. After 
initialization, the population of solutions is subject to repeated 
cycles of the search processes of the employed bees, the 
onlooker bees and the scout bees. Employed bees exploit the 
specific food sources they have explored before and give the 
quality information about the food sources to the onlooker 
bees waiting outside the hive. Onlooker bees receive 
information about the food sources and choose a food source 
to exploit depending on the quality information. The more 
nectar the food source contains, the larger probability the 
onlooker bees choose it. In the ABC algorithm, one of the 
employed bees is selected and classified as the scout bee. The 
classification is controlled by a control parameter called 
“limit”. If a solution representing a food source is not 
improved by a predetermined number of trials, then that food 
source is abandoned by its employed bee and the employed 
bee associated with that food source becomes a scout. Here we 
use “trial” to record the non-improvement number of the 
solution iX , used for the abandonment. Finally, scout bees 
search the whole environment randomly. 

Note that each food source is exploited by only one 
employed bee. That is, the number of the employed bees or the 
onlooker bees is equal to the number of food sources. 

The pseudo-code of the standard ABC algorithm is 
described in Fig.1.[21]. 

 

1. Initialize the food source positions; 
2. Evaluate the nectar amount (i.e., fitness) of each   

food source; 
3. cycle=1 
4. repeat (if the termination conditions are not met) 
5. Employed Bees Phase 
6. Calculate probabilities for onlooker bees; 
7. Onlooker Bees Phase 
8. Scout Bees Phase 
9. Memorize the best solution found so far; 
10. cycle=cycle+1 
11. until cycle=Maximum Cycle Number 

Fig.1. Pseudo-code of ABC algorithm 
 
In order to produce a candidate food position '

iX  from the 
old one iX  in memory, the ABC uses the following expression 
[21]: 

'
, , , , ,( )i j i j i j i j k jX X X Xϕ= + −                (1) 

where { }1, 2, ..., / 2k SN∈ and {1,2,..., }j D∈  are randomly 
chosen indexes; k has to be different from i; D is the number 
of variables(problem dimension); ijϕ is a random number 
between [-1,1]. 

The pseudo-code of Employed Bees Phase of ABC 
algorithm is shown as Fig.2.[21]. 

 
1. for i=1 to SN/2 do 
2. for j=1 to D do          
3. Produce a new food source '

iX  for the employed bee of the 
food source iX  using (1); 

4. End for  
5. Evaluate the fitness of '

iX ; 
6. Apply the selection process between '

iX and iX based on 
greedy selection; 

7.  If the solution '
iX does not improve , let 

trial=trial+1,otherwise trial=0 
8.  End for 

Fig.2. Pseudo-code of Employed Bees Phase 
 

An artificial onlooker bee chooses a food source 
depending on the probability value (denoted as P), which is 
associated with that food source. P is calculated by the 
following expression [22]: 

                
/2

1

P i
SN

n
n

fit

fit
=

=
∑

                                              (2) 

where ifit  is the fitness value of the solution iX  which is 
proportional to the nectar amount of the food source in the 
position iX , and SN/2 is the number of food sources which is 
equal to the number of employed bees or onlooker bees. 

The pseudo-code of Onlooker Bees Phase of ABC 
algorithm is shown as Fig.3.[21]. 
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1.  t=0,i=1 
2.  repeat (if the termination conditions are not met) 
3.  if random<P then (Note that P is calculated by (2)) 
4.   t=t+1 
5.   for j=1 to D do 
6.   Produce a new food source '

iX  for the onlooker bee of 
the food source iX  by using (1); 

7.   End for 
8.   Apply the selection process between '

iX and iX  based on 
greedy selection; 

9.   If the solution iX does not improve, let 
trial=trial+1,otherwise trial=0 

10. End if 
11. i=i+1; 
12. i=i mod(SN/2+1); 
13.  until t= SN/2. 

 Fig.3. Pseudo-code of Onlooker Bees Phase 
 

The positions of the new food sources found by the scout 
bees will be produced by the following expression [22]: 

,

'
min, max, min,(0,1)( )i j j j jX X rand X X= + −            (3) 

where i is the index of the employed bees whose “trial” value 
reaches the “limit” value first,  1, 2,...,j D= , m inX  and 

m axX  are the lower bound and the upper bound of each 
solution respectively, and rand(0,1) is a random number 
between [0,1]. 

The pseudo-code of Scout Bees Phase of ABC algorithm is 
worked as Fig.4.[21]. 

 
1.  If max(trial)>limit then 
2.  Replace iX  with a new randomly produced solution 

'
iX by (3); 

3.  End if 
Fig.4. Pseudo-code of Scout Bees Phase 

 
The fitness of ABC algorithm is proportional to the nectar 

amount of that food source. The fitness is determined by (4) 
and (5)[21]: 

1/ (1 )i ifitness f= +     if 0if ≥                         (4) 

1 ( )i ifitness abs f= +    if 0if <                        (5) 
where if  is the cost value of the solution iX  and abs(fi) is the 
absolute value of fi. 

B.  Extremal Optimization(EO) 
Extremal Optimization (EO) is inspired by recent progress 

in understanding far-from-equilibrium phenomena in terms of 
self-organized criticality, a concept introduced to describe 
emergent complexity in physical systems. EO successively 
updates extremely undesirable variables of a single sub-
optimal solution, assigning them new random values. 
Moreover, any change in the fitness value of a variable 

engenders a change in the fitness values of its neighboring 
variable. Large fluctuations emerge dynamically, efficiently 
exploring many local optima [23]. Thus, EO has strong local-
search ability. 

Note that in the EO algorithm, each variable in the current 
solution X is considered “species”. In this study, we adopt the 
term “component” to represent “species” which is usually used 
in biology. For example, if 1 2 3( , , )X x x x= , 
then 1x , 2x and 3x are called “components” of X. From the EO 
algorithm, it can be seen that unlike genetic algorithms which 
work with a population of candidate solutions, EO evolves a 
single sub-optimal solution X and makes local modification to 
the worst component of X. A fitness value iλ is required for 
each component ix in the problem. In each iteration, 
components are ranked according to the value of their fitness. 
This differs from holistic approaches such as evolutionary 
algorithms that assign equal-fitness to all components of a 
solution based on their collective evaluation against an 
objective function. The pseudo-code of EO algorithm for a 
minimization problem is shown in Fig. 5 [18]. 

 

Fig.5. Pseudo-code of EO procedure 
 

III. THE PROPOSED APPROACH 
Note that ABC has great global-search ability, while EO 

has strong local-search capability. In this work, we propose a 
novel hybrid ABC–EO algorithm which combines the merits 
of ABC and EO. This hybrid approach makes full use of the 
exploration ability of ABC and the exploitation ability of EO. 
When the global optimum found by ABC algorithm is 
unchanged for several iterations, which indicates that ABC has 
got trapped into local optima, we will use EO to help ABC to 
escape form local optima. Consequently, through introducing 
EO to ABC, the proposed approach may overcome the 
limitations of ABC and have capability of escaping from local 
optima. However, if EO is introduced to ABC each iteration, 
the computational cost will increase sharply. And at the same 
time, the fast convergence ability of ABC may be weakened. 

1. Randomly generate a solution 1 2( , ,..., )DX x x x=  . Set 
optimal solution Xbest=X and the minimum cost 
function C(Xbest)=C(X). 

2.  For the current solution X, 
(a) evaluate the fitness iλ  for each component xi , 

{1, 2, , }i D∈ , 
(b) rank all the fitness and find the component  xj with 

the lowest fitness, i.e., j iλ λ≤  for all i, 
(c) choose one solution X’ in the neighborhood of X, 

such that the j-th component must change its state, 
(d) accept X=X’ unconditionally, 
(e) if  C(X)< C(Xbest) then set Xbest=X and  

C(Xbest)=C(X). 
3. Repeat Step 2 as long as desired. 
4. Return Xbest and C(Xbest). 
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In order to perfectly integrate ABC with EO, EO is introduced 
to ABC when the global optimal solution (i.e., Xbest) is 
unchanged continuously for INV-iterations. Therefore, the  

 hybrid ABC–EO approach is able to keep fast 
convergence in most of the time under the help of ABC, and 
capable of escaping from a local optimum with the aid of EO. 
The value of parameter INV is predefined by the user 
according to the complexity of problems. 

A.  Hybrid ABC-EO algorithm 
To improve the efficiency and accuracy of the standard 

ABC, in this study, we present two improved versions of ABC-
EO. One is the combination of standard ABC and EO, and the 
other is the combination of IABC[24] and EO, in which its 
search way of employed bees is changed as follows[24]: 

 '
, , , , ,( )i j best j i j best j k jX X X Xϕ= + −         (6) 

We called them ABC-EO and IABCEO, respectively. The 
pseudo-code of ABC-EO and IABC-EO for a minimization 
problem with D dimensions is described in Fig.6. 

Fig.6. Pseudo-code of ABC-EO and IABC-EO algorithm 

   In the main procedure of ABC-EO algorithm, the fitness 
of each individual is evaluated by (4) and (5). However, in the 
EO procedure, in order to find out the worst component, each 
component of a solution should be assigned a fitness value. 
We define the fitness of each component of a solution for an 
unconstrained minimization problem as follows. For the i-th 
position of food sources, the fitness ,i kλ of the k-th component 

is defined as the mutation cost, i.e. '
,( ) ( )i k bestOBJ X OBJ X− , 

where '
,i kX  is the new position of the i-th position obtained by 

performing mutation only on the k-th component and leaving 
all other components fixed, '

,( )i kOBJ X  is the objective value 

of '
,i kX , and OBJ(Xbest) is the objective value of the best 

position in the bee colony found so far. The EO procedure is 
described in Fig.7. 

B. Mutation operator 
Since there is merely mutation operator in EO, the mutation 

plays a key role in EO search. In this work, we adopt the 
hybrid Gaussian-Cauchy mutation (G-C mutation for short) 

[18], which combines the coarse search and grained search 
perfectly. 

1. For each position ,1 ,2 ,( , ,..., )i i i i DX X X X=  of the 
food source, 1, , / 2i SN=  

a)  Perform mutation on each component of iX  one by 
one, while keeping other components fixed. Then 
D new positions '

, ( 1,..., )i kX k D=  can be obtained; 

b)  Evaluate the fitness '
,( ) ( )ik i k bestOBJ X OBJ Xλ = −  

of each component , , {1,2,..., }i kX k D∈ ; 
c)  Compare all the components according to their 

fitness values and find out the worst adapted 
component ,i wX , and then '

,i wX is the new position 
corresponding to , , {1,2,..., }i wX w D∈ ; 

d)  If '
,( ) (X )i w iOBJ X OBJ< , then set '

,i i wX X=  

and '
,( ) ( )i i wOBJ X OBJ X= , and  update Xbest  

using iX ; Otherwise iX  keeps unchanged; 
 

 Fig.7. Pseudo-code of EO procedure 

C.  Differences from EABC 
 Note that Azadehgan et al. [19] have proposed a hybrid 

algorithm called EABC, which also combines ABC with EO. 
In the EABC algorithm, EO was used to determine how to 
choose the neighbor of employed bees or onlooker bees, i.e. Xk 
in (2). While in our proposed algorithm, EO is introduced to 
update the positions of food sources when the global optimal 
position is unchanged for several iterations. The EABC in the 
literature [19] was applied to solving three numerical 
optimization problems. However, they did not explain the 
mechanism of the proposed algorithm in detail and the 
experimental results were poor [19]. Readers may refer to the 
literature [19] for more detail. Thus, in this paper, our 
proposed algorithms are not compared with EABC. 

IV. EXPERIMENTS AND RESULTS 
In order to demonstrate the performance of the proposed 

hybrid ABC-EO, we use six well-known benchmark functions 
shown in Table I. All the functions are to be minimized. The 
experimental results of the proposed approach are compared 
with five state-of-the-art algorithms, i.e., standard ABC, 
PSOEO, standard PSO, PEO and GA. For these functions, 
there are many local optima and/or saddles in their solution 
spaces. The amount of local optima and saddles increases with 
increasing complexity of the functions, i.e. with increasing 
dimension. 

Note that all the algorithms were run on the same 
hardware and software platform. Each algorithm was run 
independently for 50 trials. INV in our proposed algorithms is 
set to 100 for each test function. Table II shows the settings of 
problem dimension, maximum generation, population size and 
initialization range of each algorithm. 

1. Initialize the food source positions and set iteration=0. 
2. Evaluate the nectar amount (i.e. fitness) of food sources, 

and the search way of employed bees is changed 
according to (1) (for ABC-EO algorithm) or (6) (for 
IABC-EO algorithm). 

3. If the global optimal solution Xbest is unchanged for INV 
iterations, then the EO procedure is introduced to 
change the positions of food sources. Otherwise, 
continue the next step. 

4. If the terminal condition is satisfied, go to the next step; 
otherwise, set iteration=iteration+1, and go to Step 2. 

5. Output the optimal solution and the optimal objective 
function value. 
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After 50 trials of running each algorithm for each test 
function, the simulation results were obtained and shown in 
Table III-Table VIII. Denote F as the result found by the 
algorithms and F* as the optimum value of the functions (F1*= 
-9.66, F2*= -12569.5, F3*=F4*=F5*=F6*=0). The simulation is 
considered successful, or in other words, the near-optimal 
solution is found, if F satisfies that|(F*-F)/F*|<1E-3(for the 
case F* ≠  0) or |F*-F|<1E-3(for the case F*=0). In these 
tables, “Success” represents the successful rate, and “Runtime” 
is the average runtime of fifty runs when the near-optimal 
solution is found or otherwise when the maximum generation 
is reached. The Worst, Mean, Best and Standard deviation of 
solutions found by all the algorithms are also listed in these 
tables. 

The Michalewicz function is a highly multimodal test 
function. As can be seen from Table III, IABCEO, ABCEO, 
ABC and PSOEO could find the global optimum with 100% 
successful rate, GA could find the global optimum with 56% 
successful rate, but PSO and PEO algorithm could not find the 
global optimum. It can be observed that ABCEO has the 
fastest convergence speed, and IABCEO converged to the 
global optimum almost as quickly as ABC, and faster than 
PSOEO, PSO, PEO and GA. IABCEO also had a good 
performance in terms of stability.  

With regard to the Schwefel function, its surface is 
composed of a great number of peaks and valleys. The 
function has a second best minimum far from the global 
minimum where many search algorithms are trapped. Also it 
is very hard to solve for many state-of-the-art optimization 
algorithms. From Table IV, it is clear that IABCEO was the 
winner which was capable of converging to the global 
optimum with the 100% successful rate, the fastest 
convergence speed and the lowest standard deviation. ABCEO 
and ABC were better than PSOEO, PSO, PEO and GA in 
terms of successful rate, the convergence speed and solution 
accuracy. It is interesting to notice that IABCEO and ABCEO 
converged to the global optimum more than 100 times faster 
than PSOEO and PEO. 

Table V and Table VII show the simulation results of each 
algorithm on functions Griewank and Ackley, respectively. 
Both of the two functions are highly multimodal. As can be 
seen from Table V, all algorithms could find the optimal 
solution with 100% successful rate, except for GA. But 
IABCEO, ABCEO and ABC were a little worse than PSOEO 
and PSO with respect to solution accuracy. From Table VII, 
we can see that IABCEO and ABCEO could find the optimum 
with 100% successful rate in a short time. At the same time, 
Table VII indicates that the proposed algorithms were not 
better than PSO and PSOEO, but better than PEO and GA 
with respect to convergence speed and solution accuracy.  

From Table VI which shows the simulation results of each 
algorithm on the function Rastrigin, we can see that PSO and 
PSOEO were the best performers in all aspects, and IABCEO 
and ABCEO could find the optimal solution in a short time 

with higher successful rate and solution accuracy, almost as 
good as ABC.  

The last test function Rosenbrock is a unimodal function, 
the global optimal point of the function is located in a long, 
narrow flat valley. Search to the canyon is very easy, but for 
most optimization algorithms, it is very difficult to converge 
to the global optimal point. As can be seen from Table VIII, 
IABCEO was capable of finding the optimal solution quickly 
with 96% successful rate. Moreover, IABCEO converged to 
the global optimum more than 60 times faster than PSOEO, 
although PSOEO could find the optimum with 100% 
successful rate. IABCEO significantly outperformed other 
algorithms, except for PSOEO, in terms of solution quality, 
convergence speed and successful rate.  

From the simulation results, it can be concluded that the 
proposed approaches possess good or superior performance in 
solution accuracy, convergence speed and successful rate, as 
compared to standard ABC, PSOEO, standard PSO, PEO and 
standard GA. As a result, our approaches can be considered as 
perfectly good performers in optimization of those complex 
high-dimensional functions. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have developed a novel hybrid 

optimization method, called ABC-EO algorithm, through 
introducing EO to ABC. The hybrid approach combines the 
exploration ability of ABC with the exploitation ability of EO, 
and thus has strong capability of preventing premature 
convergence. Compared with standard ABC, PSOEO, 
standard PSO, PEO and standard GA on six well-known 
benchmark functions, the proposed algorithms have been 
testified to have good or superior performance in terms of 
solution accuracy, convergence speed and successful rate. The 
simulation results demonstrate that ABC-EO is well suited to 
those complex unimodal/multimodal functions with high 
dimension. As a result, ABC-EO may be a promising tool to 
deal with complex numerical optimization problems. It is 
desirable to further apply ABC-EO to handling those 
combinatorial optimization problems, such as production 
scheduling, vehicle routing and graph coloring.  
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TABLE I TEST FUNCTIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE II PARAMETER SETTINGS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

TABLE III COMPARISON RESULTS FOR MICHALEWICZ FUNCTION F1 (F1*=-9.66) 
Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation 

IABCEO 0.27 100 -9.66 -9.66 -9.66 8.12E-5 

ABCEO 0.258 100 -9.66 -9.66 -9.66 8.75E-5 

ABC 0.272 100 -9.66 -9.66 -9.66 8.75E-5 

PSOEO 0.563 100 -9.66 -9.66 -9.66 9.02E-5 

PSO 0.71 0 -9.65 -9.34 -8.44 0.28 

PEO 8.131 0 -9.61 -9.55 -9.49 0.029 

GA 0.567 56 -9.66 -9.63 -9.46 0.037 

 

 

 

 

 

Function Function expression Search space Global minimum 

Michalewicz 
( ) 2

2
1 1

1
( x ) s i n ( x ) s i n , m 1 0n im

ii

i x
f

π=

⎧ ⎫+⎪ ⎪= − =⎨ ⎬
⎪ ⎪⎩ ⎭

∑
  

(0,π ) -9.66 

Schwefel ( )( )2 1
( x ) s i nn

i ii
f x x

=
= − ∑  

(-500,500) -12569.5 

Griewank 2
3 1 1

1( x ) c o s 1
4 0 0 0

nn i
ii i

xf x
i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏ (-600,600) 0 

Rastrigin ( ) ( )2
4 1

1 0 c o s 2 1 0n
i ii

f x x xπ
=
⎡ ⎤= − +⎣ ⎦∑   

(-5.12,5.12) 0 

Ackley ( ) ( )
2

1 1

10 . 2 c o s 2

5 2 0 2 0
n n

ii ii

i x xn nf x e e e
π= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑= + − −   (-32.768,32.768) 0 

Rosenbrock ( ) ( )21 22
6 11

( x ) 1 0 0 1n
i i ii

f x x x−
+=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑   
(-30,30) 0 

Function Dimension Maximum generation Population size Initialization range 

Michalewicz 10 20000 10 (0,π ) 

Schwefel 30 20000 30 (-500,500) 

Griewank 30 20000 30 (-600,600) 

Rastrigin 30 20000 10 (-5.12,5.12) 

Ackley 30 10000 30 (-32.768,32.768) 

Rosenbrock 30 100000 30 (-30,30) 
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TABLE IV COMPARISON RESULTS FOR SCHWEFEL FUNCTION F2 （F2*=-12569.5） 

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation 

IABCEO 0.084 100 -12569.5 -12569.5 -12569.4 0.03 

ABCEO 0.172 100 -12569.5 -12569.4 -12569.4 0.04 

ABC 0.163 100 -12569.5 -12569.4 -12569.4 0.03 

PSOEO 28.38 78 -12569.5 -12543.4 -12451 49.55 

PSO 1.508 0 -11532.1 -9382.2 -7599.5 933.74 

PEO 45.193 2 -12561.7 -12254.3 -12095.7 115.84 

GA 1.685 0 -9845.2 -8690.9 -7693.5 489.03 

 
 

TABLE V COMPARISON RESULTS FOR GRIEWANK FUNCTION F3（F3*=0） 

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation 

IABCEO 0.029 100 1.95E-6 7.82E-6 9.96E-6 1.98E-6 

ABCEO 0.045 100 1.22E-6 7.67E-6 1.00E-5 2.35E-6 

ABC 0.043 100 1.91E-6 7.63E-6 9.96E-6 2.07E-6 

PSOEO 0.018 100 0 0 0 0 

PSO 0.013 100 0 0 0 0 

PEO 3.288 100 8.30E-4 9.44E-4 9.99E-4 4.76E-5 

GA 2.189 0 0.0055 0.061 0.1949 0.036 

 

TABLE VI COMPARISON RESULTS FOR RASTRIGIN FUNCTION F4（F4*=0） 

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation 

IABCEO 0.314 100 2.94E-7 5.62E-6 9.98E-6 3.02E-6 

ABCEO 0.163 98 3.90E-8 1.96E-3 0.098 0.014 

ABC 0.179 100 1.62E-7 7.27E-6 1.27E-4 1.77E-5 

PSOEO 0.018 100 0 0 0 0 

PSO 0.011 100 0 0 0 0 

PEO 16.04 0 1.544 2.242 2.727 0.273 

GA 0.596 8 8.33E-4 0.02 0.533 0.075 

 

TABLE VII COMPARISON RESULTS FOR ACKLEY FUNCTION F5（F5*=0） 

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation 

IABCEO 0.083 100 2.80E-7 7.63E-6 9.94E-6 2.22E-6 

ABCEO 0.091 100 1.27E-6 8.24E-6 9.98E-6 1.71E-6 

ABC 0.092 100 3.29E-6 7.79E-6 9.97E-6 1.95E-6 

PSOEO 0.016 100 -8.88E-16 -8.88E-16 -8.88E-16 9.96E-32 

PSO 0.015 100 -8.88E-16 -8.88E-16 -8.88E-16 9.96E-32 

PEO 24.312 0 0.089 0.108 0.122 0.008 

GA 0.969 0 0.022 0.052 0.117 0.019 
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TABLE VIII COMPARISON RESULTS FOR ROSENBROCK FUNCTION F6（F6*=0） 

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation 

IABCEO 3.88 96 2.09E-6 7.43E-4 0.026 3.79E-3 

ABCEO 7.75 2 8.03E-4 0.012 0.045 0.011 

ABC 7.64 4 6.41E-4 0.014 0.057 0.013 

PSOEO 247.7 100 9.31E-6 8.17E-5 2.73E-4 5.93E-5 

PSO 8.46 2 2.25E-4 24.89 27.39 4.79 

PEO 253.9 0 5.425 7.497 8.761 0.788 

GA 10.214 0 20.970 29.542 51.995 6.385 
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