
A Novel Artificial Bee Colony Algorithm with
Integration of Extremal Optimization for

Numerical Optimization Problems

Min-Rong Chen1,2
1School of Computer Science

South China Normal University
Guangzhou, China

2 College of Information Engineering
Shenzhen University

Shenzhen, China
Email: optmrchen@gmail.com

Wei Zeng
College of Information Engineering

Shenzhen University
Shenzhen, China

Guo-Qiang Zeng
Department of Electrical and Electronic Engineering,

 Wenzhou University,
Wenzhou, China

Xia Li
College of Information Engineering

Shenzhen University
Shenzhen, China

Jian-Ping Luo
College of Information Engineering

Shenzhen University
Shenzhen, China

Abstract—Artificial Bee Colony (ABC) algorithm is an
optimization algorithm based on a particular intelligent
behaviour of honeybee swarms. The standard ABC is weak at the
local-search capability and precision. Extremal Optimization
(EO) is a general-purpose heuristic method which has strong
local-search capability and has been successfully applied to a
wide variety of hard optimization problems. In order to
strengthen the local-search capability of ABC, this work proposes
a novel hybrid optimization method, called ABC-EO algorithm,
through introducing EO to ABC. The simulation results show
that the performance of the proposed method is as good as or
superior to those of the state-of-the-art algorithms in complex
numerical optimization problems.

Keywords—Artificial Bee Colony; Extremal Optimization;
numerical optimization problems

I. INTRODUCTION
Artificial Bee Colony (ABC) algorithm is a novel swarm

intelligent algorithm inspired by the foraging behaviors of
honeybee. It was first introduced by Karaboga in 2005 [1].
After that, ABC was applied to solving the binding numerical
optimization problems by Karaboga and Basturk[2], and
satisfactory results were achieved. Since the ABC algorithm
has many advantages, such as simple in concept, easy to
implement, and fewer control parameters, it has attracted the
attention of many researchers and been used in solving many
real-world optimization problems [3-7].

In 1999, a general-purpose local-search optimization
approach, so-called Extremal Optimization (EO), was
proposed by Boettcher and Percus [8,9]. EO is an optimization
heuristic inspired by the Bak-Sneppen model [10], and thus
EO is based on the fundamentals of statistical physics and
Self-Organized Criticality (SOC) [11]. The evolution in this
method is driven by a process in which the weakest species in
the population, together with its nearest neighbors, is always
forced to mutate. EO successively eliminates those worst
components in the sub-optimal solutions and has been
successfully applied to many continuous and discrete
optimization problems [12-17].

However, the standard ABC algorithm also has its
limitations, such as premature convergence, slow convergence
speed at the later stage of evolution and low convergence
accuracy. In order to overcome the limitations of ABC,
inspired by the hybrid PSOEO algorithm proposed by Chen et
al.[18], an idea of combining ABC with EO is addressed in
this paper. In this work, we develop a hybrid optimization
method, called ABC-EO algorithm, which makes full use of
the global-search ability of ABC and the local-search ability of
EO. The performance of the proposed approach was testified
on six unimodal/multimodal benchmark functions and
furthermore the ABC-EO algorithm was compared with other
five state-of-the-art optimization algorithms, i.e., standard
ABC, PSOEO[18], standard Particle Swarm Optimization
(PSO), Population-based EO (PEO) [15] and standard Genetic

This work was supported by National Natural Science Foundation of
 China No. 61005049, 61373158, 51207112, 61171124, 61301298.

242

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Algorithm (GA). The experimental results indicate that the
proposed approach may be a good alternative for complex
numerical optimization problems.

This paper is organized as follows. In Section II, ABC and
EO algorithms are briefly introduced. In Section III, we
propose the hybrid ABC-EO method and describe it in detail.
In Section IV, the proposed approach is used to solve six
unconstrained benchmark functions from the usual literature.
Finally, the simulation results obtained are presented and
discussed in Section V.

II. ARTIFICIAL BEE COLONY AND EXTREMAL
OPTIMIZATION

A. Artificial Bee Colony(ABC)
ABC algorithm is a recently proposed optimization

algorithm that simulates the foraging behavior of a bee colony.
In the ABC algorithm, the search space corresponds to a food
source that the artificial bees can exploit. The position of a
food source represents a possible solution to the optimization
problem. The nectar amount of a food source represents the
fitness of the associated solution. There are three kinds of bees
in a bee colony: employed bees, onlooker bees and scout bees.
Half of the colony comprises employed bees and the other half
includes the onlooker bees.

Artificial colony search activities can be summarized as
follows [20]: Initially, the ABC generates a randomly
distributed initial population of SN/2 solutions (i.e., food
source positions), where SN denotes the size of population.
Each solution iX (i=1,2,…,SN/2) is a D-dimensional vector.
Here, D is the number of optimization parameters. After
initialization, the population of solutions is subject to repeated
cycles of the search processes of the employed bees, the
onlooker bees and the scout bees. Employed bees exploit the
specific food sources they have explored before and give the
quality information about the food sources to the onlooker
bees waiting outside the hive. Onlooker bees receive
information about the food sources and choose a food source
to exploit depending on the quality information. The more
nectar the food source contains, the larger probability the
onlooker bees choose it. In the ABC algorithm, one of the
employed bees is selected and classified as the scout bee. The
classification is controlled by a control parameter called
“limit”. If a solution representing a food source is not
improved by a predetermined number of trials, then that food
source is abandoned by its employed bee and the employed
bee associated with that food source becomes a scout. Here we
use “trial” to record the non-improvement number of the
solution iX , used for the abandonment. Finally, scout bees
search the whole environment randomly.

Note that each food source is exploited by only one
employed bee. That is, the number of the employed bees or the
onlooker bees is equal to the number of food sources.

The pseudo-code of the standard ABC algorithm is
described in Fig.1.[21].

1. Initialize the food source positions;
2. Evaluate the nectar amount (i.e., fitness) of each

food source;
3. cycle=1
4. repeat (if the termination conditions are not met)
5. Employed Bees Phase
6. Calculate probabilities for onlooker bees;
7. Onlooker Bees Phase
8. Scout Bees Phase
9. Memorize the best solution found so far;
10. cycle=cycle+1
11. until cycle=Maximum Cycle Number

Fig.1. Pseudo-code of ABC algorithm

In order to produce a candidate food position '

iX from the
old one iX in memory, the ABC uses the following expression
[21]:

'
, , , , ,()i j i j i j i j k jX X X Xϕ= + − (1)

where { }1, 2, ..., / 2k SN∈ and {1,2,..., }j D∈ are randomly
chosen indexes; k has to be different from i; D is the number
of variables(problem dimension); ijϕ is a random number
between [-1,1].

The pseudo-code of Employed Bees Phase of ABC
algorithm is shown as Fig.2.[21].

1. for i=1 to SN/2 do
2. for j=1 to D do
3. Produce a new food source '

iX for the employed bee of the
food source iX using (1);

4. End for
5. Evaluate the fitness of '

iX ;
6. Apply the selection process between '

iX and iX based on
greedy selection;

7. If the solution '
iX does not improve , let

trial=trial+1,otherwise trial=0
8. End for

Fig.2. Pseudo-code of Employed Bees Phase

An artificial onlooker bee chooses a food source
depending on the probability value (denoted as P), which is
associated with that food source. P is calculated by the
following expression [22]:

/2

1

P i
SN

n
n

fit

fit
=

=
∑

 (2)

where ifit is the fitness value of the solution iX which is
proportional to the nectar amount of the food source in the
position iX , and SN/2 is the number of food sources which is
equal to the number of employed bees or onlooker bees.

The pseudo-code of Onlooker Bees Phase of ABC
algorithm is shown as Fig.3.[21].

243

1. t=0,i=1
2. repeat (if the termination conditions are not met)
3. if random<P then (Note that P is calculated by (2))
4. t=t+1
5. for j=1 to D do
6. Produce a new food source '

iX for the onlooker bee of
the food source iX by using (1);

7. End for
8. Apply the selection process between '

iX and iX based on
greedy selection;

9. If the solution iX does not improve, let
trial=trial+1,otherwise trial=0

10. End if
11. i=i+1;
12. i=i mod(SN/2+1);
13. until t= SN/2.

 Fig.3. Pseudo-code of Onlooker Bees Phase

The positions of the new food sources found by the scout
bees will be produced by the following expression [22]:

,

'
min, max, min,(0,1)()i j j j jX X rand X X= + − (3)

where i is the index of the employed bees whose “trial” value
reaches the “limit” value first, 1, 2,...,j D= , m inX and

m axX are the lower bound and the upper bound of each
solution respectively, and rand(0,1) is a random number
between [0,1].

The pseudo-code of Scout Bees Phase of ABC algorithm is
worked as Fig.4.[21].

1. If max(trial)>limit then
2. Replace iX with a new randomly produced solution

'
iX by (3);

3. End if
Fig.4. Pseudo-code of Scout Bees Phase

The fitness of ABC algorithm is proportional to the nectar

amount of that food source. The fitness is determined by (4)
and (5)[21]:

1/ (1)i ifitness f= + if 0if ≥ (4)

1 ()i ifitness abs f= + if 0if < (5)
where if is the cost value of the solution iX and abs(fi) is the
absolute value of fi.

B. Extremal Optimization(EO)
Extremal Optimization (EO) is inspired by recent progress

in understanding far-from-equilibrium phenomena in terms of
self-organized criticality, a concept introduced to describe
emergent complexity in physical systems. EO successively
updates extremely undesirable variables of a single sub-
optimal solution, assigning them new random values.
Moreover, any change in the fitness value of a variable

engenders a change in the fitness values of its neighboring
variable. Large fluctuations emerge dynamically, efficiently
exploring many local optima [23]. Thus, EO has strong local-
search ability.

Note that in the EO algorithm, each variable in the current
solution X is considered “species”. In this study, we adopt the
term “component” to represent “species” which is usually used
in biology. For example, if 1 2 3(, ,)X x x x= ,
then 1x , 2x and 3x are called “components” of X. From the EO
algorithm, it can be seen that unlike genetic algorithms which
work with a population of candidate solutions, EO evolves a
single sub-optimal solution X and makes local modification to
the worst component of X. A fitness value iλ is required for
each component ix in the problem. In each iteration,
components are ranked according to the value of their fitness.
This differs from holistic approaches such as evolutionary
algorithms that assign equal-fitness to all components of a
solution based on their collective evaluation against an
objective function. The pseudo-code of EO algorithm for a
minimization problem is shown in Fig. 5 [18].

Fig.5. Pseudo-code of EO procedure

III. THE PROPOSED APPROACH
Note that ABC has great global-search ability, while EO

has strong local-search capability. In this work, we propose a
novel hybrid ABC–EO algorithm which combines the merits
of ABC and EO. This hybrid approach makes full use of the
exploration ability of ABC and the exploitation ability of EO.
When the global optimum found by ABC algorithm is
unchanged for several iterations, which indicates that ABC has
got trapped into local optima, we will use EO to help ABC to
escape form local optima. Consequently, through introducing
EO to ABC, the proposed approach may overcome the
limitations of ABC and have capability of escaping from local
optima. However, if EO is introduced to ABC each iteration,
the computational cost will increase sharply. And at the same
time, the fast convergence ability of ABC may be weakened.

1. Randomly generate a solution 1 2(, ,...,)DX x x x= . Set
optimal solution Xbest=X and the minimum cost
function C(Xbest)=C(X).

2. For the current solution X,
(a) evaluate the fitness iλ for each component xi ,

{1, 2, , }i D∈ ,
(b) rank all the fitness and find the component xj with

the lowest fitness, i.e., j iλ λ≤ for all i,
(c) choose one solution X’ in the neighborhood of X,

such that the j-th component must change its state,
(d) accept X=X’ unconditionally,
(e) if C(X)< C(Xbest) then set Xbest=X and

C(Xbest)=C(X).
3. Repeat Step 2 as long as desired.
4. Return Xbest and C(Xbest).

244

In order to perfectly integrate ABC with EO, EO is introduced
to ABC when the global optimal solution (i.e., Xbest) is
unchanged continuously for INV-iterations. Therefore, the

 hybrid ABC–EO approach is able to keep fast
convergence in most of the time under the help of ABC, and
capable of escaping from a local optimum with the aid of EO.
The value of parameter INV is predefined by the user
according to the complexity of problems.

A. Hybrid ABC-EO algorithm
To improve the efficiency and accuracy of the standard

ABC, in this study, we present two improved versions of ABC-
EO. One is the combination of standard ABC and EO, and the
other is the combination of IABC[24] and EO, in which its
search way of employed bees is changed as follows[24]:

 '
, , , , ,()i j best j i j best j k jX X X Xϕ= + − (6)

We called them ABC-EO and IABCEO, respectively. The
pseudo-code of ABC-EO and IABC-EO for a minimization
problem with D dimensions is described in Fig.6.

Fig.6. Pseudo-code of ABC-EO and IABC-EO algorithm

 In the main procedure of ABC-EO algorithm, the fitness
of each individual is evaluated by (4) and (5). However, in the
EO procedure, in order to find out the worst component, each
component of a solution should be assigned a fitness value.
We define the fitness of each component of a solution for an
unconstrained minimization problem as follows. For the i-th
position of food sources, the fitness ,i kλ of the k-th component

is defined as the mutation cost, i.e. '
,() ()i k bestOBJ X OBJ X− ,

where '
,i kX is the new position of the i-th position obtained by

performing mutation only on the k-th component and leaving
all other components fixed, '

,()i kOBJ X is the objective value

of '
,i kX , and OBJ(Xbest) is the objective value of the best

position in the bee colony found so far. The EO procedure is
described in Fig.7.

B. Mutation operator
Since there is merely mutation operator in EO, the mutation

plays a key role in EO search. In this work, we adopt the
hybrid Gaussian-Cauchy mutation (G-C mutation for short)

[18], which combines the coarse search and grained search
perfectly.

1. For each position ,1 ,2 ,(, ,...,)i i i i DX X X X= of the
food source, 1, , / 2i SN=

a) Perform mutation on each component of iX one by
one, while keeping other components fixed. Then
D new positions '

, (1,...,)i kX k D= can be obtained;

b) Evaluate the fitness '
,() ()ik i k bestOBJ X OBJ Xλ = −

of each component , , {1,2,..., }i kX k D∈ ;
c) Compare all the components according to their

fitness values and find out the worst adapted
component ,i wX , and then '

,i wX is the new position
corresponding to , , {1,2,..., }i wX w D∈ ;

d) If '
,() (X)i w iOBJ X OBJ< , then set '

,i i wX X=

and '
,() ()i i wOBJ X OBJ X= , and update Xbest

using iX ; Otherwise iX keeps unchanged;

 Fig.7. Pseudo-code of EO procedure

C. Differences from EABC
 Note that Azadehgan et al. [19] have proposed a hybrid

algorithm called EABC, which also combines ABC with EO.
In the EABC algorithm, EO was used to determine how to
choose the neighbor of employed bees or onlooker bees, i.e. Xk
in (2). While in our proposed algorithm, EO is introduced to
update the positions of food sources when the global optimal
position is unchanged for several iterations. The EABC in the
literature [19] was applied to solving three numerical
optimization problems. However, they did not explain the
mechanism of the proposed algorithm in detail and the
experimental results were poor [19]. Readers may refer to the
literature [19] for more detail. Thus, in this paper, our
proposed algorithms are not compared with EABC.

IV. EXPERIMENTS AND RESULTS
In order to demonstrate the performance of the proposed

hybrid ABC-EO, we use six well-known benchmark functions
shown in Table I. All the functions are to be minimized. The
experimental results of the proposed approach are compared
with five state-of-the-art algorithms, i.e., standard ABC,
PSOEO, standard PSO, PEO and GA. For these functions,
there are many local optima and/or saddles in their solution
spaces. The amount of local optima and saddles increases with
increasing complexity of the functions, i.e. with increasing
dimension.

Note that all the algorithms were run on the same
hardware and software platform. Each algorithm was run
independently for 50 trials. INV in our proposed algorithms is
set to 100 for each test function. Table II shows the settings of
problem dimension, maximum generation, population size and
initialization range of each algorithm.

1. Initialize the food source positions and set iteration=0.
2. Evaluate the nectar amount (i.e. fitness) of food sources,

and the search way of employed bees is changed
according to (1) (for ABC-EO algorithm) or (6) (for
IABC-EO algorithm).

3. If the global optimal solution Xbest is unchanged for INV
iterations, then the EO procedure is introduced to
change the positions of food sources. Otherwise,
continue the next step.

4. If the terminal condition is satisfied, go to the next step;
otherwise, set iteration=iteration+1, and go to Step 2.

5. Output the optimal solution and the optimal objective
function value.

245

After 50 trials of running each algorithm for each test
function, the simulation results were obtained and shown in
Table III-Table VIII. Denote F as the result found by the
algorithms and F* as the optimum value of the functions (F1*=
-9.66, F2*= -12569.5, F3*=F4*=F5*=F6*=0). The simulation is
considered successful, or in other words, the near-optimal
solution is found, if F satisfies that|(F*-F)/F*|<1E-3(for the
case F* ≠ 0) or |F*-F|<1E-3(for the case F*=0). In these
tables, “Success” represents the successful rate, and “Runtime”
is the average runtime of fifty runs when the near-optimal
solution is found or otherwise when the maximum generation
is reached. The Worst, Mean, Best and Standard deviation of
solutions found by all the algorithms are also listed in these
tables.

The Michalewicz function is a highly multimodal test
function. As can be seen from Table III, IABCEO, ABCEO,
ABC and PSOEO could find the global optimum with 100%
successful rate, GA could find the global optimum with 56%
successful rate, but PSO and PEO algorithm could not find the
global optimum. It can be observed that ABCEO has the
fastest convergence speed, and IABCEO converged to the
global optimum almost as quickly as ABC, and faster than
PSOEO, PSO, PEO and GA. IABCEO also had a good
performance in terms of stability.

With regard to the Schwefel function, its surface is
composed of a great number of peaks and valleys. The
function has a second best minimum far from the global
minimum where many search algorithms are trapped. Also it
is very hard to solve for many state-of-the-art optimization
algorithms. From Table IV, it is clear that IABCEO was the
winner which was capable of converging to the global
optimum with the 100% successful rate, the fastest
convergence speed and the lowest standard deviation. ABCEO
and ABC were better than PSOEO, PSO, PEO and GA in
terms of successful rate, the convergence speed and solution
accuracy. It is interesting to notice that IABCEO and ABCEO
converged to the global optimum more than 100 times faster
than PSOEO and PEO.

Table V and Table VII show the simulation results of each
algorithm on functions Griewank and Ackley, respectively.
Both of the two functions are highly multimodal. As can be
seen from Table V, all algorithms could find the optimal
solution with 100% successful rate, except for GA. But
IABCEO, ABCEO and ABC were a little worse than PSOEO
and PSO with respect to solution accuracy. From Table VII,
we can see that IABCEO and ABCEO could find the optimum
with 100% successful rate in a short time. At the same time,
Table VII indicates that the proposed algorithms were not
better than PSO and PSOEO, but better than PEO and GA
with respect to convergence speed and solution accuracy.

From Table VI which shows the simulation results of each
algorithm on the function Rastrigin, we can see that PSO and
PSOEO were the best performers in all aspects, and IABCEO
and ABCEO could find the optimal solution in a short time

with higher successful rate and solution accuracy, almost as
good as ABC.

The last test function Rosenbrock is a unimodal function,
the global optimal point of the function is located in a long,
narrow flat valley. Search to the canyon is very easy, but for
most optimization algorithms, it is very difficult to converge
to the global optimal point. As can be seen from Table VIII,
IABCEO was capable of finding the optimal solution quickly
with 96% successful rate. Moreover, IABCEO converged to
the global optimum more than 60 times faster than PSOEO,
although PSOEO could find the optimum with 100%
successful rate. IABCEO significantly outperformed other
algorithms, except for PSOEO, in terms of solution quality,
convergence speed and successful rate.

From the simulation results, it can be concluded that the
proposed approaches possess good or superior performance in
solution accuracy, convergence speed and successful rate, as
compared to standard ABC, PSOEO, standard PSO, PEO and
standard GA. As a result, our approaches can be considered as
perfectly good performers in optimization of those complex
high-dimensional functions.

V. CONCLUSION AND FUTURE WORK
In this paper, we have developed a novel hybrid

optimization method, called ABC-EO algorithm, through
introducing EO to ABC. The hybrid approach combines the
exploration ability of ABC with the exploitation ability of EO,
and thus has strong capability of preventing premature
convergence. Compared with standard ABC, PSOEO,
standard PSO, PEO and standard GA on six well-known
benchmark functions, the proposed algorithms have been
testified to have good or superior performance in terms of
solution accuracy, convergence speed and successful rate. The
simulation results demonstrate that ABC-EO is well suited to
those complex unimodal/multimodal functions with high
dimension. As a result, ABC-EO may be a promising tool to
deal with complex numerical optimization problems. It is
desirable to further apply ABC-EO to handling those
combinatorial optimization problems, such as production
scheduling, vehicle routing and graph coloring.

246

TABLE I TEST FUNCTIONS

TABLE II PARAMETER SETTINGS

TABLE III COMPARISON RESULTS FOR MICHALEWICZ FUNCTION F1 (F1*=-9.66)
Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation

IABCEO 0.27 100 -9.66 -9.66 -9.66 8.12E-5

ABCEO 0.258 100 -9.66 -9.66 -9.66 8.75E-5

ABC 0.272 100 -9.66 -9.66 -9.66 8.75E-5

PSOEO 0.563 100 -9.66 -9.66 -9.66 9.02E-5

PSO 0.71 0 -9.65 -9.34 -8.44 0.28

PEO 8.131 0 -9.61 -9.55 -9.49 0.029

GA 0.567 56 -9.66 -9.63 -9.46 0.037

Function Function expression Search space Global minimum

Michalewicz
() 2

2
1 1

1
(x) s i n (x) s i n , m 1 0n im

ii

i x
f

π=

⎧ ⎫+⎪ ⎪= − =⎨ ⎬
⎪ ⎪⎩ ⎭

∑

(0,π) -9.66

Schwefel ()()2 1
(x) s i nn

i ii
f x x

=
= − ∑

(-500,500) -12569.5

Griewank 2
3 1 1

1(x) c o s 1
4 0 0 0

nn i
ii i

xf x
i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏ (-600,600) 0

Rastrigin () ()2
4 1

1 0 c o s 2 1 0n
i ii

f x x xπ
=
⎡ ⎤= − +⎣ ⎦∑

(-5.12,5.12) 0

Ackley () ()
2

1 1

10 . 2 c o s 2

5 2 0 2 0
n n

ii ii

i x xn nf x e e e
π= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑= + − − (-32.768,32.768) 0

Rosenbrock () ()21 22
6 11

(x) 1 0 0 1n
i i ii

f x x x−
+=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑
(-30,30) 0

Function Dimension Maximum generation Population size Initialization range

Michalewicz 10 20000 10 (0,π)

Schwefel 30 20000 30 (-500,500)

Griewank 30 20000 30 (-600,600)

Rastrigin 30 20000 10 (-5.12,5.12)

Ackley 30 10000 30 (-32.768,32.768)

Rosenbrock 30 100000 30 (-30,30)

247

TABLE IV COMPARISON RESULTS FOR SCHWEFEL FUNCTION F2 （F2*=-12569.5）

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation

IABCEO 0.084 100 -12569.5 -12569.5 -12569.4 0.03

ABCEO 0.172 100 -12569.5 -12569.4 -12569.4 0.04

ABC 0.163 100 -12569.5 -12569.4 -12569.4 0.03

PSOEO 28.38 78 -12569.5 -12543.4 -12451 49.55

PSO 1.508 0 -11532.1 -9382.2 -7599.5 933.74

PEO 45.193 2 -12561.7 -12254.3 -12095.7 115.84

GA 1.685 0 -9845.2 -8690.9 -7693.5 489.03

TABLE V COMPARISON RESULTS FOR GRIEWANK FUNCTION F3（F3*=0）

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation

IABCEO 0.029 100 1.95E-6 7.82E-6 9.96E-6 1.98E-6

ABCEO 0.045 100 1.22E-6 7.67E-6 1.00E-5 2.35E-6

ABC 0.043 100 1.91E-6 7.63E-6 9.96E-6 2.07E-6

PSOEO 0.018 100 0 0 0 0

PSO 0.013 100 0 0 0 0

PEO 3.288 100 8.30E-4 9.44E-4 9.99E-4 4.76E-5

GA 2.189 0 0.0055 0.061 0.1949 0.036

TABLE VI COMPARISON RESULTS FOR RASTRIGIN FUNCTION F4（F4*=0）

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation

IABCEO 0.314 100 2.94E-7 5.62E-6 9.98E-6 3.02E-6

ABCEO 0.163 98 3.90E-8 1.96E-3 0.098 0.014

ABC 0.179 100 1.62E-7 7.27E-6 1.27E-4 1.77E-5

PSOEO 0.018 100 0 0 0 0

PSO 0.011 100 0 0 0 0

PEO 16.04 0 1.544 2.242 2.727 0.273

GA 0.596 8 8.33E-4 0.02 0.533 0.075

TABLE VII COMPARISON RESULTS FOR ACKLEY FUNCTION F5（F5*=0）

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation

IABCEO 0.083 100 2.80E-7 7.63E-6 9.94E-6 2.22E-6

ABCEO 0.091 100 1.27E-6 8.24E-6 9.98E-6 1.71E-6

ABC 0.092 100 3.29E-6 7.79E-6 9.97E-6 1.95E-6

PSOEO 0.016 100 -8.88E-16 -8.88E-16 -8.88E-16 9.96E-32

PSO 0.015 100 -8.88E-16 -8.88E-16 -8.88E-16 9.96E-32

PEO 24.312 0 0.089 0.108 0.122 0.008

GA 0.969 0 0.022 0.052 0.117 0.019

248

TABLE VIII COMPARISON RESULTS FOR ROSENBROCK FUNCTION F6（F6*=0）

Algorithm Runtime(s) Success(%) Best Mean Worst Standard deviation

IABCEO 3.88 96 2.09E-6 7.43E-4 0.026 3.79E-3

ABCEO 7.75 2 8.03E-4 0.012 0.045 0.011

ABC 7.64 4 6.41E-4 0.014 0.057 0.013

PSOEO 247.7 100 9.31E-6 8.17E-5 2.73E-4 5.93E-5

PSO 8.46 2 2.25E-4 24.89 27.39 4.79

PEO 253.9 0 5.425 7.497 8.761 0.788

GA 10.214 0 20.970 29.542 51.995 6.385

REFERENCES
[1] D.Karaboga, “An Idea Based On Honey Bee Swarm for Numerical

Optimization,” Turkey: Erciyes University, 2005.
[2] B.Basturk and D. Karaboga, “Artificial Bee Colony (ABC) Optimization

Algorithm for Solving Constrained Optimization Problems,”
Foundations of Fuzzy Logic and Soft Computing, vol. 4529, pp.789-798,
2007.

[3] X.H.Yan, Y.L.Zhu, and W.P.Zou, “A Hybrid Artificial Bee Colony
Algorithm for Numerical Function Optimization,” 2011 11th
International Conference on Hybrid Intelligent Systems, pp. 127-132.

[4] L. P.Rangel, “Putative role of an ABC transporter in Fonsecaea
pedrosoi multidrug resistance,” International Journal of Antimicrobial
Agents, vol. 40, pp.409-415, 2012.

[5] H. Potschka, “Targeting regulation of ABC efflux transporters in brain
diseases: A novel therapeutic approach,” Pharmacology&Therapeutics,
vol. 125, pp.118-127, 2010.

[6] D.Yan, S. Z.Ahmad, and D. Yang, “Matthew effect, ABC analysis and
project management of scale-free information systems,” The Journal of
Systems and Software, vol. 86, pp.247-254, 2013.

[7] J.X. Chen, “Peer-estimation for multiple criteria ABC inventory
classification,” Computer &Operations Research, vol.38, pp.1784-1791,
2011.

[8] S.Boettcher and A.G.Percus, “Extremal optimization: methods derived
from co-evolution,” in:Proceedings of the Genetic and Evolutionary
Computation Conference, pp.825-832, 1999.

[9] S.Boettcher and A.G.Percus, “Nature’s way of optimizing,” Artificial
Intelligence, vol.119, pp. 275-286,2000.

[10] P.Bak and K.Sneppen, “Punctuated equilibrium and criticality in a
simple model of evolution,” Physical Review Letters, vol. 71, pp.4083-
4086, 1993.

[11] P.Bak, C.Tang, and K.Wiesenfeld, “Self-organized criticality,” Physical
Review Letters, vol. 59, vol.381-384, 1987.

[12] M.R.Chen, Y.Z.Lu, and G.K.Yang, “Multiobjective extremal
optimization with applications to engineering design,” Journal of
Zhejiang University: SCIENCE A, vol. 8, pp.1905-1911,2007.

[13] M.R.Chen, Y.Z.Lu, and G.Yang, “Multiobjective optimization using
population-based extremal optimization,” Journal of Neural Computing
and Applications, vol. 7, pp. 101-109, 2008.

[14] M.R.Chen and Y.Z.Lu, “A novel elitist multiobjective optimization

algorithm: multiobjective extremal optimisation,” European Journal of
Operational Research, vol. 188, pp. 637-651, 2008.

[15] M.R.Chen, Y.Z.Lu, and G. Yang, “Population-based extremal
optimization with adaptive Lévy mutation for constrained optimization,”
in: Proceedings of 2006 International Conference on Computational
Intelligence and Security (CIS’06), pp. 258-261, 2006.

[16] Y.Z.Lu, M.R.Chen, and Y.W.Chen, “Studies on extremal optimization
and its applications in solving real world optimization problems,” in:
Proceedings of the 2007 IEEE Symposium on Foundations of
Computational Intelligence (FOCI 2007), Hawaii, USA ,pp. 162-
168,2007.

[17] X.Li, J.P.Luo, M.R.Chen, and N.Wang, “An improved shuffled frog-
leaping algorithm with extremal optimisation for continuous
optimization,” Information Sciences, vol. 192, pp. 143-151,2012.

[18] M.R.Chen, X.Li, X.Zhang, and Y.Z. Lu, “A novel particle swarm
optimizer hybridized with extremal optimization,” Applied Soft
Computing, vol. 10, pp. 367-373, 2010.

[19] V.Azadehgan, N.Jafarian, and F.Jafarieh, “A Novel Hybrid Artificial
Bee Colony with Extremal Optimization,” in: Proceedings of 4th
International Conference on Computer and Electrical Engineering
(ICCEE 2011), pp. 45-49, 2011.

[20] D.Karaboga and B.Basturk, “On the performance of artificial bee colony
(ABC) algorithm,” Applied Soft Computing, vol. 8, pp.687-697, 2008.

[21] D.Karaboga and B.Akay, “A modified Artificial Bee Colony (ABC)
algorithm for constrained optimization,” Applied Soft Computing, vol.
11, pp.3021-3031, 2011.

[22] D.Karaboga and B.Akay, “A comparative study of Artificial Bee Colony
algorithm,” Applied Mathematics and Computation, vol. 214, pp.108-
132, 2009.

[23] S.Boettcher and A.G.Percus, “Optimization with extremal dynamics,”
Physical Review Letters, vol. 86, pp.5211-5214, 2001.

[24] W.F.Gao, S.Y.Liu, and L.L.Huang, “Inspired Artificial Bee Colony
Algorithm for Global Optimization Problems,” ACTA ELECTRONICA
SINICA, vol.12, pp.2396-240, 2012.

249

