
 

  
Abstract—In order to improve the performance of PSO, this 

paper presents an Autonomous Learning Adaptation method for 
Particle Swarm Optimization (ALA-PSO) to automatically tune 
the control parameters of each particle. Although PSO is an ideal 
optimizer, one of its drawbacks focuses on its performance 
dependency on its parameters, which differ from one problem to 
another. In ALA-PSO, each particle is viewed as an intelligent 
agent and aims at improving itself performance, and can 
autonomously learn how to tune its parameters from its own 
experiment of successes and failures. For each particle, it means 
successful movement if the value of objective function in current 
position is improved than previous position, otherwise means 
failure. In case of successful movement, the parameters that are 
positive correlation with the direction of forward movement 
should be increased otherwise should be decreased. Meanwhile, 
in case of unsuccessful movement, inverse operation should be 
performed. The proposed parameter adaptive method is 
compared with several existing adaptive strategies, and the 
results show that ALA-PSO is not only effective, but also robust 
in different categories benchmarks. 

I. INTRODUCTION 
opulation-based optimization technique has become 
popular since 1990s, and Particle Swam Optimization (PSO) 

plays an important role in the family of Nature-inspired 
Computing (NC) [Kennedy and Eberhart, 1995]. Inspired by 
biological methods in birds flocking and fish schooling, the 
particles in PSO and its variants use a simple kinematic 
equation to collaboratively complete the optimization task. 
Each particle learns not just from personal experience, but also 
from each other, especially the leader. For most NC, at least 
two operators (or factors) should be considered to balance 
contradiction between exploration and exploitation, PSO is not 
an exception. It employs three key parameters, inertial weight, 
cognitive learning factor and social learning factor, to integrate 
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the local search with global search together. 
Although PSO and its variants have been successfully 

applied to complex optimization problems, such as, continue 
functions optimization, combinatorial optimization, 
multi-objective optimization, and dynamic optimization, there 
are still rooms for improvement [Banks et al., 2007]. The 
improved methods can be divided into five categories: 1) 
Adaptive methods to tune PSO parameters; 2) Different 
population topology to maintain PSO diversity; 3) 
Multi-population or swarms to cooperatively capture multiple 
optima; 4) Mixture PSO with other search methods to speed up 
PSO convergence; and 5) New designed kinematic equation to 
balance the contradiction between exploitation and exploration 
[Hu et al., 2012; Kang et al, 2013; Liang et al., 2006; 
Reyes-Sierra and Coello, 2006]. 

In this paper, we aim to address issue of adaptive tuning for 
PSO parameters from a viewpoint of autonomous learning 
during the course of search process. We regard each particle as 
an agent and give them more thoughts, let them can think and 
make decision based on their performance metric. As discussed 
above, a new Autonomous Learning Adaptation method for 
Particle Swarm Optimization (ALA-PSO) is proposed. In 
ALA-PSO, each particle aims at improve itself performance, 
and can autonomously learn how to tune its parameters from its 
own experiment of successes and failures. For each particle, it 
means success movement if the value of objective function in 
current position is improved than previous position, otherwise 
means failure. In case of successful movement, the parameters 
that are positive correlation with the direction of forward 
movement should be increased otherwise should be decreased. 
Meanwhile, in case of unsuccessful movement, inverse 
operation should be performed. 

The paper is organized as follows. Section II reviews some 
advance on the PSO parameter adaptation. Section III presents 
the details of the proposed ALA-PSO, including the tune rules 
for each particle. Section IV gives and analyzes experimental 
results. Section V gives the conclusion and future directions. 

II. REVIEW OF THE PARAMETER ADAPTATION FOR PSO 
There are two approaches to study how to choose the PSO 

parameters: 1) some guidelines are obtained from theories on 
stability and convergence [Ozcan and Mohan, 1999; Clerc and 
Kennedy, 2002; Kadirkamanathan et al., 2006; Jiang et al., 
2007; Martinez and Gonzalo, 2008; Zhang et al., 2009]; and 2) 
some practical strategies for PSO parameters adaptation are 
drawn from deep experiment analysis [Jiao et al., 2008; 
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Chatterjee and Siarry, 2006; Shi and Eberhart, 2001; 
Ratnaweera et al., 2004; Zhan et al., 2009; Juang et al., 2011; 
Yamaguchi and Yasuda, 2006]. Because PSO and its variants 
are very abundant since dozen years, so we focus on the PSO 
with inertial weight, and in which there are three parameters 
need to set, which are inertial weight ω, cognitive learning 
factor c1 and social learning factor c2. 

A. Theoretical Guidelines for Parameter Setting 
In theory, the three PSO parameters take different roles in 

search process. ω is used to balance the global and local search 
ability, and it is similar to the temperature parameter in the 
simulated annealing [Eberhart and Shi, 1998]. A large ω 
facilitates a global search while a small one facilitates a local 
search. c1 often has the role to increase diversity, while c2 
speeds up convergence of PSO. Meanwhile, c1 collaborates 
with c2 to constitute attractor of each particle. In the following, 
we focus on some theoretical results on the PSO with inertial 
weight, and its update rules with inertial weight for particle i at 
iteration k+1 is 
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where i stands for the ith paricle, and k stands for the kth 
iteration; k

iv is the movement velocity; ω stands for inertial 
weight; c1 is the cognitive learning factor; r1 and r2 are random 
numbers whose distribution is uniform over [0, 1]; k

il  is the ith 

particle’s best position found so far; k
ix  is the position of the 

ith particle at the kth iteration; c2 is the social learning factor; 
and kg is the best position found so far by the entire population. 

There are two categories have been proposed to study the 
issue of PSO parameter selection: 1) deterministic models, and 
2) stochastic models. The former can be found in [Ozcan and 
Mohan, 1999; Bergh, 2002; Clerc and Kennedy, 2002; and 
Yasuda et al., 2006]. The latter can be found in [Jiang et al., 
2007; Martginez and Gonzalo, 2008]]. All those theoretical 
results provide insights into how particle swarm system works, 
and how select proper parameters for different optimization 
scenarios. Although the two models deal with PSO from 
different views, the similar theoretical results can be found. 

The movement trajectories analysis by [Clerc and Kennedy, 
1999], and show that when proper parameters are given, all the 
particles in swarm eventually approach their corresponding 
stationary points as 

 1 2

1 2
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where s
ix  is the stationary points of the ith particle; s

il  is the ith 
particle best position found so far when PSO is trapped into 
stagnation; and sg  is the best position found so far when PSO 
stagnates. 

From the view of deterministic dynamics, a sufficient 
stability condition on the parameter selection is established by 

[Kadirkamanathan et al, 2006]] 
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where ( )1 2
2

c cφ += . 

The other typical theoretical results are obtained by [Bergh, 
2002] and [Jiang et al., 2007] as follows: 

 ( ){ }, : 0 1, 1ω φ ω ω φ≤ < > −  (4) 

 ( ){ }, : 0 1, 0 / 2 1ω φ ω φ ω≤ < < < +  (5) 

Those theoretical results only give instructive range or 
dependency relationship of parameter setting, as for concrete 
values of those parameters for different optimization problem, 
they are helpless. 

B. Strategies for Adaptive PSO Parameter Selection 
Because of the drawback existing in theoretical analysis 

mentioned above, other researchers try to propose some 
practical strategies for PSO parameter selection and adaptive 
tuning during the optimization process. The existing methods 
for adaptive tuning parameters can be classified into two 
categories: 1) entire-based parameter adaptation which means 
all the particles in swam adopt the same parameters, and 2) 
individual-based parameter adaptation which means each 
particle in swarm has its own parameters need to adaptive 
tuning. 

At the earliest some researches emphasize on the adaptation 
of only one PSO parameter, i.e., ω. The adaptation strategy 
based on linear function is proposed by [Shi and Eberhart, 
2001], in which only the ω is set to linearly decrease with the 
iteration count: 

 max min
max

( )( ) ii
I

ω ωω ω ⋅ −= −  (6) 

where ω(i) is the inertia weight at the ith iteration; ωmax is the 
maximum inertial weight, and usually set to 0.9; ωmin is the 
minimum inertial weight, and usually set to 0.4; and I is the 
maximum iteration count. 

In order to improve the performance of adaptive method 
based on linear function, some nonlinear versions are proposed 
by [Jiao et al., 2008; Chatterjee and Siarry, 2006]] as follows: 

 0( ) ii uω ω −=  (7) 

where ω0=0.9, and u∈[1.001, 1.005]. 

 max min
max

( ) ( )( )
n

n

I ii
I
ω ωω ω − ⋅ −= +  (8) 

where n is the nonlinear parameters ranging from 0.1 to 2.  
The method based on fuzzy rules to adjust ω  is proposed by 

[Shi and Eberhart, 2001]. All fuzzy rules are designed to tune 
on the basis of performance of the best particle. 

In the individual-based parameter adaptation strategy, each 
particle has its own ω, c1 and c2, and tunes them independently. 
One typical strategy is proposed by [Yamaguchi and Yasuda, 
2006] as follows: 
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where 1,
k

ic  is the cognitive learning factor of the ith particle at 

the kth generation; k
iα  is selected from 0 or 2/I depending on 

whether the best particle improve or not; 1,
k

bestc  is the cognitive 

learning factor of the best particle at the kth generation; 2,
k

ic  is 

the social learning factor of the ith particle at the kth generation; 
and 2,

k
bestc  is the social learning factor of the best particle at the 

kth generation. 
Another typical version belong to individual-based 

parameter adaptation strategy is proposed by [Hu et al., 2013]. 
In this method, depending on the relative position between each 
particle and the global best particle, the strategy to tune ω, c1 
and c2 of each particle as follows: 
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where k
iω  is the inertia weight of the ith particle at the kth 

generation; k
iσ is called step size, also known as Polyak’s step 

size; 1,
k
ir  and 2,

k
ir  are random numbers whose distribution are 

uniform over [0, 1]. 

III. AUTONOMOUS LEARNING ADAPTATION FOR PSO 
To address issue of PSO parameter adaptive tuning, this 

work proposes autonomous learning adaptation (ALA) 
strategies to enhance PSO performance by giving autonomous 
thinking ability for each particle to select its proper parameters. 
The term of “autonomous” means each particle can act on one's 
own, and make decide for itself, and it is different from 
“automatically”. In the following, we firstly introduce our 
method of autonomous learning adaptation, and then, the 
procedure of ALA-PSO will be depicted. 

A. Autonomous Learning Adaptation 
To reduce the sensitivity of PSO to its parameter settings, 

many strategies are proposed to adaptively tune them. But none 
of them are based on individual-level autonomous decision. In 
this paper, except parameter adaptation for each particle, we do 
not change the basic kinematic equation of PSO. 

The main ideas are depicted in Fig. 1. Each particle can be 
viewed as an intelligent agent, who is an autonomous entity 
which can observe through sensors to receive the global best 
position from environments and acts upon an environment 
using actuators (i.e. it can update the global best position if its 
optimization value of current position is better than the one of 
global best position) and directs its activity towards achieving 
goals (i.e. it is rational to update its local best position and 

parameters). Particle as an intelligent agent may also learn or 
use knowledge to achieve their goals. It uses its rules to update 
its parameters, as well as its local best position found so far. 

 

 

 
A system is autonomous to the extent that its behavior is 

determined by its own experience and decision rules, and each 
particle should do whatever action (i.e., move its position) is 
expected to improve its performance measure (i.e., 
optimization value), on the basis of the evidence provided by 
the percept sequence (i.e., the global best position) and 
whatever built-in knowledge (i.e., its current parameters, 
position, and so on) the particle has. In order to achieve its 
target, we define the rules as 

Rule 1 (kinematic equation for each particle):  
if Not Stop, then 
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where c1,i and c2, i are cognitive learning factor and social 
learning factor of ith particle. This rule is the movement 
equation, and it is carried out if the stop criterion does not meet. 

Rule 2 (parameter update methods if new position leads to 
performance improved): 

if 1( )k
if +x is better than ( )k

if x , then 
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where 

minω  and maxω are the minimum and maximum value of 
inertial weight; 

0σ  is a coefficient for inertial weight; 

1,minc  and 1,maxc  the minimum and maximum value of 

cognitive learning factor; 

1σ  is a coefficient for cognitive learning factor; 

Fig. 1. Each particle is viewed as an intelligent agent, and it is 
composed of the following parts: Sensors, Effectors, Rules set, 
Knowledge base, and Thinking & Action. 
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2,minc and 2,maxc  the minimum and maximum value of 

global learning factor; and 

2σ  is a coefficient for global learning factor. 
H is a projection operator on R and defined as follows: 
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The rationale behind rule 2 is demonstrated in Fig. 2. In case 
the particle performance improves, ω will increase if the angle 

between velocity and its previous one is litter than 2
π , 

otherwise, decrease. The same actions should be performed in 
the other coefficients, i.e., cognitive and global learning factor. 

Rule 3 (parameter update methods if new position leads to 
performance degenerated): 

if 1( )k
if +x is worse than ( )k

if x , then 
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The rationale behind rule 3 is similar with rule 2, that is, if 
particle performance degenerates, the parameter should 
decrease if its direction of the corresponding vector is same 
with the ongoing direction, otherwise, increase. 

1k
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k
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(a)                                             (b) 

 

 
Based on rules 2 and 3, each particle adaptively tunes its 

parameters according to its search ability. Experiments have 
shown the effectiveness of the proposed method. 

B. Procedure of ALA-PSO 
As discussed above, each particle in swarm is regarded as 

intelligent agent. The implement modes can be divided into two 
categories: synchronous and synchronous methods. Because 
we focus on our parameter adaptive strategies, so we only study 
the synchronous mode, i.e., in each horizon (iteration), all 
particles will update their states, and then, the next horizon 
begins. Thus, we can organize the procedure of ALA-PSO as 

Algorithm 1. 
 
Algorithm 1: Autonomous Learning Adaptation method for 

Particle Swarm Optimization (ALA-PSO) 
 
Step 1) (Setting the algorithm parameters) set the number of 

particles, and their parameters ranges. 
Step 2) (Initialization) randomly generated the swarm, and 

restrict their parameters in allowable ranges. And then, 
update the global best position and local best positions; 

Step 3) (Movement) For all particles, update their positions 
according rule 1, and update their parameters according 
rule 2 or 3, at the same time update global best position 
and local best positions; 

Step 4) (Stop Condition) if the stop condition is not met, go to 
step 3), otherwise, output the final results. 

 
 

An algorithm should be stopped whenever it starts to waste 
CPU-time. Hence, the following termination criteria are used, 
which are mostly related to numerical stability.  

 C1): the total function evaluation count reaches a given 
number, or  

 C2): the optimization value of global best position meets 
given precision requirement, or. 

 C3): in successive d generations, the global best position 
does not change any more, where d is a given positive 
integer. 

IV. EXPERIMENTS AND RESULT ANALYSIS  
The supervised learning and control is the core of 

APSO-SLC. Because PSO is a stochastic algorithm, it has very 
large contingence only running one generation. When 
measuring PSO performance, we should let PSO run enough 
iteration to show its search ability. If d is the dimension of the 
search space, we run PSO for d times. 

A. Experiment Configuration 
In order to study the performance of ALA-PSO, we choose 

four function from 31 test functions from [Tang et al. 2008] as 
the benchmark functions. The four functions are as follows: 

F1: ( )2

1 1 1
( ) D i

ji j
f z

= =
=∑ ∑z ; 

F2: ( )1 2 2 2
2 11
( ) 100( ) ( 1)D

i i ii
f z z z−

+=
= − + −∑z  

F3: ( )2
3 1
( ) 10cos(2 ) 10D

i ii
f z zπ

=
= − +∑z  

F4: 2
4 1 1
( ) / 4000 cos( / ) 1DD

i ii i
f z z i

= =
= − +∑ ∏z  

We adopt the shifted and rotated version of the four 
benchmarks as [Tang et al. 2008; Su et al. 2013]. 

The performance metrics to measure the solution quality and 
convergence speed is chosen as Function Value (FV), Expected 
Function Value (EFV), Expected Success Rate (ESR), Running 
Time (RT), and Expected Running Time (ERT). FV is the 
objective value when the algorithm stops in one run. EFV is the 
average objective value of all runs. ESR is the average of the 

Fig. 2.  (a) In case velocity and its previous one is litter than 
2

π , 

(b) In case velocity and its previous one is large than 
2

π  
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percentage of all runs in which the global optima are located 
within a given target accuracy. RT is the number of function 
evaluations executed in one run, if the best function value has 
not reached the global optima within a given target accuracy, 
we set it to Maximum of Function Evaluation (MFE). ERT is 
computed over all relevant trials as the number of function 
evaluations executed during each trial while the best function 
value has not reached the global optima within a given target 
accuracy, summed over all trials divided by the number of trials 
that have actually reached the global optima within a given 
target accuracy. 

In order to compare the performance of different algorithms, 
two categories of experiments are conducted. The first one is to 
compare different adaptive strategies with our proposed 
method, and the second one is to compare the performance of 
different PSO algorithms for global optimization. 

B. Validity Test on Parameter Adaptation Strategies 
There are four kinds of adaptive strategies: 1) linear control 

in (6); 2) nonlinear control (8); 3) individual-level adaptive 
strategy shown in (10);  and 4) the ALA. We denote the first 
three methods as AS1-AS3. Two statistic test methods to test 
the validity of our proposed algorithm are employed: one side 
t-test and Wilcoxon rank sum test. If the return result of a test 
function is 1, we should accept the alternative hypothesis, and 
otherwise we should exchange the compared sequence to 
perform the second test. If both results are zeros, we conclude 
that their means are equal. The numerical values 1, 0 and -1 
represent that the first algorithm is statistically inferior, equal 
and superior to the second one. The stop criteria are set as:1) 
The accuracy ε=10-5, and 2) MFE=3×105. Each algorithm runs 
30 times on each function. In Tables I and II only the number of 
pair-wise comparison results is recorded. 

Tables I and II list the results of t-test and Wilcoxon test on 
FV and RT for four functions. For all the statistic tests, we set 
the level of significance is 0.05. In both tables, the symbols s 
“+,” “=” and “-” indicate that ALA-PSO performs significantly 
better than, almost the same as, and significantly worse than the 
compared method, respectively. From Table I, by t-test, we can 
conclude that the parameter adaptation strategy of ALA-PSO is 
better than the other four adaptation strategies denoted by 
AS1-AS3. In total four functions according to t-test, by the 
performance matrix FV, the number of times that ALA-PSO is 
better than AS1, AS2 and AS3 is 4, 10, 3 and 3, respectively; 
meanwhile, for only 1 times, it is worse than AS3. By the 
performance matrix RT, the number of times that ALA-PSO is 
better than AS1, AS2 and AS3 is same as the one by FV.The 
similar statistical conclusion can be obtained from Wilcoxon 
tests shown in Table II. From these results, we conclude that 
ALA-PSO significantly outperforms the other four parameter 
adaptation methods both in terms of solution quality (FV) and 
function evaluations executed (RT) via both t-test and 
Wilcoxon test. 

C. Comparison with other PSO-w on 30-D functions 
The second experiment is to compare ALA-PSO with 

PSO-w on functions with 30 dimensions. Both algorithms run 

30 independent in all test functions, the population size is set to 
30, MFE is set to 300000 and ε=10-5. The results are shown on 
four rotated functions in Table III. In all experiments, if there 
are no successful runs among 30 runs (SR = 0), we set ERT to 
be blank implying that ERT=MFE.  

From Table VIII, we can see that for all the four functions 
ALA-PSO outperforms PSO-w in terms of solution quality 
(EFV) and convergence rate (ERT). But both algorithms has 
lower success rate in three out of four functions. For F1, the 
proposed algorithm has 63.3%, while PSO-w only 23.3%. 

As a conclusion, the adaptive strategy of ALA-PSO is 
effective and makes it insensitive to the initial parameter 
settings. 

V. CONCLUSION AND FUTURE WORK 
Aiming to solve existing problems in a standard PSO, a new 

strategy based on Autonomous Learning Adaptation for PSO, 
called ALA-PSO, is proposed. The main ideas behind it are: 
firstly, it regards each particle as a intelligent agent, who has its 
own control parameters and knowledge base; secondly, each 
particle aim at improve itself performance, and can 
autonomously learn how to tune its parameters from its own 
experiment of successes and failures. Two kinds of experiments 
are conducted to test its properties: (1) the effectiveness of the 
strategies to adapt parameters; and (2) the ability to find the 
global optima. The results show that the performance of 
ALA-PSO has improved compared with the contrast algorithms, 
and the adaptive strategy is effective. 

Future research will pursue the following directions: 
(1) We views swam as a collection of intelligent agents in 

this paper, but we do not test the synchronous mode of agent. 
Thus, further study should focus on the synchronous 
implementation of our method. 

(2) Another future work should introduce different types of 
particles by giving them different rules to cooperate to 
searching in the domain.  
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TABLE III  

OPTIMIZATION RESULTS FOR FUNCTIONS WITH 30-D 
Algorithms EFV ERT ESR(%) EFV ERT ESR(%) 

 F1 F2 
PSO-w 2.99E-02  0 8.13E+02  0 
ALA-PSO 1.36E-04  0 2.86E+01  0 
   F3 F4 
PSO-w 3.24E+01  0 1.65E-02 1165460 23.3 
ALA-PSO 2.79E+01  0 0.00E+00 292830 63.3 

 
 

TABLE II 
ONE SIDEWILCOXON TEST COMPARISION BETWEEN ALA-PSO AND OTHER PARAMETERS ADAPTIVE STATEGIES 

 
SPO-PSO v.s. FV RT 

+(Better) =(Same) -(Worse) +(Better) =(Same) -(Worse) 
AS1 4 0 0 4 0 0 
AS2 2 2 0 3 1 0 
AS3 2 1 1 2 1 1 

TABLE I 
ONE SIDE T-TEST COMPARISION BETWEEN ALA-PSO AND OTHER PARAMETERS ADAPTIVE STATEGIES 

 
SPO-PSO v.s. FV RT 

 +(Better) =(Same) -(Worse) +(Better) =(Same) -(Worse) 
AS1 4 0 0 4 0 0 
AS2 3 1 0 3 1 0 
AS3 3 0 1 3 1 0 
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