
Multi-Objective Flexible Job-Shop Scheduling Problem with
DIPSO: More Diversity, Greater Efficiency

Luiz Carlos Felix Carvalho Márcia Aparecida Fernandes

Abstract— The Flexible Job Shop Problem is one of the
most important NP-hard combinatorial optimization problems.
Evolutionary computation has been widely used in research
concerning this problem due to its ability for dealing with
large search spaces and the possibility to optimize multiple
objectives. Particle Swarm Optimization has shown good re-
sults, but algorithms based on this technique have premature
convergence, therefore some proposals have introduced genetic
operators or other local search methods in order to avoid the
local minima. Therefore, this paper presents a hybrid and
multi-objective algorithm, Particle Swarm Optimization with
Diversity (DIPSO), based on Particle Swarm Optimization along
with genetic operators and Fast Non-dominated Sorting. Thus,
to maintain a high degree of diversity in order to guide the
search for a better solution while ensuring convergence, a new
crossover operator has been introduced. The efficiency of this
operator was tested in relation to the proposed objectives by
using typical examples from literature. The results were com-
pared to other studies that have shown good results by means
Evolutionary Computation technique, for instance MOEA-GLS,
MOGA, PSO + SA and PSO + TS.

I. INTRODUCTION

J JOB-SHOP SCHEDULING (JSP) has motivated the in-
terest of a significant number of researchers in different

areas over the years since it has appeared and have gained
prominence through diverse and important real world ap-
plications, for example, manufacturing systems, production
planning, computer design and communication [1].

Since JSP is one of the hardest combinatorial problems and
considered an important NP-Complete problem [2], many
different approaches based on methods such as branch and
bound, dynamic programming, integer programming, genetic
algorithms and hybrid techniques have been proposed to
approximate successful solutions to these problems.

The Flexible Job-Shop Scheduling Problem (FJSP) is
an extension of JSP since it allows each operation to be
processed on more than one machine. This introduces two
additional difficulties to the classical JSP: the assignment
of each operation to the appropriate machine and the deter-
mination of the operation sequencing (start times) on each
machine [3]. Consequently, the FJSP is more powerful than
JSP for approximating solutions to real world applications,
where it is easy to observe features such as more than one
available resource for performing one task. The FJSP is
denominated partial, P-FJSP, if operations can be processed
by subsets of a machine set, otherwise, it is total, T-FJSP,
which means all operations can be processed by all machines.

Luiz Carlos Felix Carvalho and Márcia Aparecida Fernandes belong to the
Graduate Program in Computer Science, Federal University of Uberlândia,
Minas Gerais, Brazil (email: luizlcfc@gmail.com, marcia@ufu.br).

This article is organized as follows. Section 2 describes
problem formulation. In section 3 studies related to the use of
Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA) in order to propose solutions for the FJSP are presented.
Section 4 presents general GA and PSO algorithms. Section
5 details a hybrid and multi-objective algorithm based on
GA, PSO and Fast Non-dominated Sorting procedure (FNS)
which was developed in this study. Section 6 presents,
discusses and compares the results and section 7 presents
the conclusion along with further works.

II. FJSP - FLEXIBLE JOB SHOP PROBLEM

The problem consists of n jobs and m machines, where
each job is made up by order and not preemptive operations
(in this article, only T-FJSP is considered). The goal is the
assignment of the job operations to machines according to
some performance criteria. Then, in this work, FJSP takes
into account the precedence constraints and multi-objective
performance. The main variables are given by j: job index,
where 1 ≤ j ≤ n, k: machine index, where 1 ≤ k ≤ m and
i: job operation index, nj : is the number of job operations
j, and N =

∑n
j=1 nj : is the number of operations.

The problem formulation is given by the minimization of
three objectives. The first is the makespan (M), given by
Equation 1, total workloads of machines (TW) given by
Equation 2, the maximum workloads of machines (W), given
by Equation 3, where tk is final execution time of machine
k and Wk is the workload of machine k. It is assumed that
all machines are available in time zero, each machine can
perform a maximum of one operation at a time and the fixed
order of operations of jobs cannot be changed (precedence
constraint).

M = max1≤k≤mtk (1)

TW =
∑

1≤k≤m

Wk (2)

W = max1≤k≤mWk (3)

A solution to this problem is a job execution sequence
through the observation of one or multiple optimization
objectives. In order to cope with the multi-objective aspect, a
weight can be established for each objective and the weighted
sum of their values is taken as the fitness, as shown in Zhang
et al. [4]. However, the individual consideration of each
objective is more effective to deal with the multi-objective
and can be done by means of the Fast Non-dominated Sorting
[5], a procedure that finds the Pareto-optimal front for the
classification of diverse candidate solutions.

282

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

III. RELATED STUDIES

Evolutionary computation techniques have contributed
with research concerning optimization problems. Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA)
are two important examples of this technique, which are
widely used in proposals for resolving FJSP. Zhang et al.
[4], Jia et al. [6], Ling-li et al. [7] and Xiao-hong et al. [8]
have used PSO and Wang et al. [10], Gen et al. [11] and
Binh et al. [12] have used GA. Zhang et al. [4], Wang et al.
[10] and Binh et al. [12] presented proposals that contribute
to the multi-objective aspect of this problem.

It has been observed that PSO algorithms can lead to
local minima due to their fast convergence. In [4] and [8],
genetic operators such as crossover and mutation avoid local
minima in the PSO algorithm. In addition, Zhang et al.
[4] have proposed the use of Tabu search, a local search
that has shown good results when dealing with scheduling
problems and multiple objectives, where fitness is given by
the weighted sum of these parameters. In [8], only makespan
was considered.

Ling et al. [7] presented a mathematical model using
HPSO (Hybrid Particle Swarm Optimization), which is com-
posed of PSO and GA for makespan minimization. How-
ever, the individual generation and the crossover need an
additional process of individual correction, since spurious
individuals may have been created, especially in relation to
job operation order. This implies in increasing the algorithm
runtime. Ling et al. [7] demonstrated that hybrid algorithms
are more efficient than using only one of them through the
comparisons between HPSO and a simple PSO.

Binh et al. [12] developed an algorithm based on evo-
lutionary algorithms and local search for resolving multi-
objective FJSP. The main aspect of this proposal is the
composition of an evolutionary algorithm cycle and a local
search cycle, taking into account Pareto-optimal rank. At the
end of each iteration, an elite population is saved.

Based on the above examples, it was observed that the
composition of techniques has presented better results for
FJSP. Thus, this article presents a proposal for resolving
the multi-objective FJSP based on PSO algorithm, genetic
operators and Pareto-optimal through the use of the Fast Non-
dominated Sorting algorithm. The proposal is composed of
a PSO algorithm where crossover and mutation operators
replace velocity and position equations according to pro-
posal in the original version of PSO. The fitness considers
makespan, the total workloads and the maximum workloads
of machines.

IV. THEORETICAL BACKGROUND

As shown through research, the evolutionary computa-
tional techniques have allowed for the exploration of com-
plexity surrounding problems such as FJSP. This section
describes the main features of multi-objective GA and PSO
algorithms used in the proposed hybrid algorithm.

A. Genetic Algorithms

Among the techniques within evolutionary computation,
Genetic Algorithms are the most widely used. In general, GA
evolves a randomly generated initial population of individu-
als, through the use of genetic operators such as, crossover,
selection and mutation. The process ends when a certain
number of iterations is executed.

The original proposal of GA consisted of the optimization
of a single objective and the individuals were represented
by bit strings. However, the successful application of these
algorithms to different problems has expanded the research
towards the treatment of problems with more complex rep-
resentations and multiple objectives. FJSP is an example of
a problem in which these advances allow obtaining signif-
icant results. A multi-objective GA was developed by [5]
and denominated Non-dominated Sorting Genetic Algorithm
(NSGA), where the Pareto-optimal is determined according
to Definitions (1), (2) and (3).

Definition 1 (Relation of Dominance): Let S be a solu-
tion set, x and y two solutions of S. x dominates y, if and
only if, Mx ≤ My , Wx ≤ Wy , and TWx ≤ TWy , since x
is different of y.

Definition 2 (Non-dominated Sets): Ordered Subsets
from S set, which contain solutions that are not dominated
by other solutions. Therefore, Front 1 (F1) is the set of
every solution that are not dominated by any solution of S.
Front 2 (F2) contains the solutions that are not dominated
by any solution SF1 (S − F1), and so forth.

Definition 3 (Pareto-optimal Set): Subset of S, which
contains solutions that are not dominated by any other. In
other words Front 1.

B. PSO - Particle Swarm Optimization

Particle Swarm Optimization (PSO)[13] raises from arti-
ficial life and swarming theories; in addition, it is related
to evolutionary algorithms, such as genetic algorithms and
evolutionary programming. Particle swarm algorithms are
defined by a particle (individual) population, where each
particle has position and velocity. The evolutionary algorithm
is determined by updates in these two parameters. In each
evolution step the new positions and velocities of the particles
are calculated taking into account the global and local
best positions. Global best position (gbest) is related to all
particles in the population and local best (pbest) is related to
the particle itself. These two parameters are very important
for the convergence algorithm. If global is greater than local,
there is diversity, otherwise premature convergence.

A general PSO formulation can be seen in Martı́nez et al.
[14], where b particles in the initial population have random
positions (xa0) and velocities (va), for a = 1, . . . , b. In each
step c+1 the new positions and velocities are calculated by
(4).

va
c+1 = ωva

c + φ1(gbest − xac) + φ2(pbest − xac)
xa

c+1 = xa
c + va

c+1 (4)

283

where φ1 = r1 ∗ ag , φ2 = r2 ∗ al, ω ∈ < means
the inertia, ag and al ∈ < are, respectively, global and
local acceleration constants, r1 and r2 are random numbers
uniformly distributed in (0, 1). φ1 and φ2 are random global
and local accelerations. The position and velocity of each
particle is updated taking into account the objective function.

The inertia, ω, plays a key role in the process of providing
balance between exploration and exploitation processes. This
parameter determines the contribution rate of a particle’s
previous velocity to its velocity at the current time step [15].

Moreover, Bansal et al. [15] have described fifteen differ-
ent formula to calculate particle inertia during PSO iterations,
but in this work the linear weight decreasing inertia was used,
which has a small error. There are several other functions that
can adjust this parameter, as can be seen in Bansal et al. [15],
Nickabadi et al. [16] and Qin et al. [17].

V. DIPSO ALGORITHM

This work proposes a hybrid algorithm to solve multi-
objective FJSP, whose foundations are PSO and GA algo-
rithms. Since the multi-objective aspect was also considered,
the Fast Non-dominated Sorting (FNS) algorithm is used to
determine the fronts and Pareto-optimal rank, in order to
optimize (minimize) three objectives. As the main features
of each paradigm have already been considered, this proposal
intends to obtain a fast convergence and avoid local minima.
This aspect can be justified through the fact that related
studies have shown that PSO-based algorithms have fast
convergence. This should be taken into consideration mainly
when dealing with complex problems such as FJSP, as the
probability of reaching local minima is high. Thus, genetic
operators such as crossover and mutation allow diversity to
be maintained increased, and therefore to obtain convergence
for best solutions [8].

A. Particle Representation

In Cheng et al. [1], individual representations for schedul-
ing problems using GA are presented and discussed. For
example, there are representations that are based on oper-
ation, others based on jobs, among others. In Gen et al.
[11] there can be seen a representation of the first type.
Due to the possibility of immediate recovery of scheduling
and simplicity of calculating fitness, [7], [8] and [10] have
also used this representation. In addition, this representation
allows maintaining the viability of individuals obtained after
crossover or mutation processes.

Then, in this study, it was decided to use the representation
described in [11], where an individual (or particle) is iden-
tified by two vectors of size N , Xop and Xmach. The first
one contains each operation of each job in accordance with
the operation’s execution sequence. The second one contains
the machine in which each operation is executed. In Xop,
each job is identified by an integer j, for j = 1, . . . , n,
and each job operation is represented by the integer j that
corresponds to the job. Thus, the nj operations of the jth job
are represented by nj positions in Xop with value j. The first
j in Xop indicates the first operation, and the last j indicates

the last operation of job j. Each position of the Xmach vector
contains a value k, 1 ≤ k ≤ m, which indicates the machine
in which the operation of position corresponding to Xop is
executed.

Xop: 1 3 1 4 2 2 4 3
Xmach: 3 1 3 1 2 4 2 5

Fig. 1. Particle Representation

Figure 1 shows an example of this representation for a
problem with n = 4 and m = 5, where each job contains
two operations. It was observed that the operations of job
j = 1 are represented in the first and third positions of Xop

both are executed on machine three, as can be seen in Xmach.

B. Genetic Operators

As previously discussed about the fast convergence of
PSO, some proposals had introduced genetic operators in
order to avoid local minima. On the other hand, crossover
operators are also able to accelerate the convergence. In
this context, this work proposes the use of two crossover
operators, one of them being responsible for the convergence
while the other is responsible for population diversification.
The first crossover operator is applied to Xop and Xmach in
an analogue way, maintaining the resulting particles in the
same machine association as in parent particles. In addition,
the second operator is applied differently to each vector and
is able to produce a greater diversity since there are more
changes in relation to machine associations. This feature
introduced in this work aims to maintain diversity, as the
use of PSO is able to accelerate convergence.

In Figure 2 an example of the first crossover is shown.
Consider two particles P1 and P2 with n = 4 jobs and the
respective operation and machine vectors. This operator ran-
domly selects n

2 jobs, given by J1 = {2, 4}, the operations of
these selected jobs will be positioned into one of the resulting
particles, C1, in the same positions in which they appear
in P1; also the machines associated with these operations
will be placed in the same positions. All remaining positions
from C1 are occupied by the non-selected job operations in
accordance with P2 order.

The same procedure is carried out for obtaining the
resulting C2 particle, the difference is that the non-selected
jobs, J2 = {1, 3}, are considered. Then, the operations
belonging to J2 are positioned in C2, in the same positions
in which they appear in P2 and the remaining positions are
occupied by operations of J1 in same order they appear in
P1. This operation is defined by [10] and is denominated
improved precedence operation crossover (IPOX). Therefore,
the machines associated with operations transferred to Xop

vector of C2 are also transferred to Xmach vector of C2.
The second crossover operator is also applied to both

vectors; however this occurs in two stages that are different
in each vector. The first stage occurs in operation vectors,
i.e. Xop. Let P1 and P2 be two particles and a randomly
selected interval between the first and last positions of P1

284

J1 = {2, 4}, J2 = {1, 3}

P1: Xop: 1 3 1 4 2 2 4 3
Xmach: 3 1 3 1 2 4 2 5

P2: Xop: 3 4 2 4 3 2 1 1
Xmach: 5 5 1 1 4 3 1 2

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
C1: Xop: 3 3 1 4 2 2 4 1

Xmach: 5 4 1 1 2 4 2 2
C2: Xop: 3 4 2 2 3 4 1 1

Xmach: 5 1 2 4 4 2 1 2
Fig. 2. Crossover operator: IPOX

or P2. The resulting particle, C1, receives all the values that
belong to the interval in the same positions of P1 and those
that do not belong to the interval are filled with the remaining
operations, according to the order they appear in P2. The
second resulting particle, C2, is generated analogously: it
receives all the values that do not belong to the interval in
the same positions of P1 and those that belong to the interval
are filled with the remaining operations, according to the
order they appear in P2. In relation to vector Xmach, the
second stage, it randomly selects a position and exchanges
the machines from these positions between particles. This
can be seen as a single point crossover.

The two-stage procedure allows the second crossover to
generate new particles by changing the machine that will
execute the operation, and consequently implies alterations
at the start and end times of operation’s execution. This fact
increases the population diversity and in turn this operator is
denominated Diversity Crossover (DX).

Figure 3 shows an example of the DX first-stage with
n = 4 jobs, where each one contains two operations. Suppose
[0, 3] is the selected interval, the positions that belong to
this interval are copied from P1 to C1. In this case, one
operation of each job was added to C1 in the following
order 1, 3, 2 and 4. The second operation of each job is
included in C1 in the order they appear in P2. Similarly, the
C2 particle is obtained. The [4, 7] interval is copied from P1

to C2 and the remaining positions (from C2) are completed
with the remaining operations in accordance with the order
they appear in P2. Figure 4 shows an example of the DX
second-stage, where position 4 was selected and intervals of
P1 and P2 formed between the selected position and the last
position will be exchanged between particles.

The mutation operator randomly selects two positions pos1
and pos2 of vector Xop and makes Xop[pos1] = Xop[pos2]
and for every position pos, so that pos1 < pos ≤ pos2,
makes Xop[pos] = Xop[pos − 1]. The mutation changes
the values of two random positions of vector Xmach for
randomly generated values, where the new values should be
different from previous ones and lower than or equal to m.
Figure 5 shows an example of this operator.

As shown above, all operators used, especially those
applied to Xop, preserve the number and the order of job
operations. Therefore, no check or correction of invalid
solutions is carried out. This avoids increasing the execution
time of the proposed algorithm.

C. Pseudo code

DIPSO

var
gBestSet: Set;
pBest: Individual;

begin
Randomly start population
Calculate objectives fitness
Execute FNS algorithm, obtaining
Front 1

Determine the gbestSet and pbest
while goal is not reached
For each particle of the population
Select_best(P1, P2, P3)
Mutation according to probability
Calculate objectives fitness
Execute FNS algorithm, obtaining
Front 1

Update gbestSet and pbest

In the proposed hybrid algorithm the initial population
is randomly generated and the fitness of each objective is
calculated according to Equations 1, 2 and 3, for every
particle. Then, the FNS algorithm is executed in order to
determine Front 1 (F1), the best local (pbest) and the best
global set (gbest). One observes that at the beginning, the
particle has only one position, therefore in this case the
pbest for each particle is the particle itself. In the loop, the
same previous steps are executed in addition to the mutation
operator before updating the particle’s position.

In general, gbest is a particle, but in multi-objective al-
gorithms it is usual for more than one non-dominated best
position to occur. Then the DIPSO algorithm saves these
positions in the gbest set during iterations. The current gbest
is determined by the FNS algorithm taking into account the
new particle and previous gbest set. This way, all the non-
dominated solutions can influence the new particle position
and thus increase diversity.

According to Equation 4, a PSO algorithm updates the par-
ticle position by means of pbest and gbest particles, which is
one of the most important PSO features. However, Niu et al.
[18] have replaced this equation by crossover and mutation
operators. Thus, the new particle position is the best particle
selected among three other particles, which are the resulting
crossing over between the current particle and pbest or gbest,
and the mutation of the current particle. In the DIPSO al-
gorithm, this is the procedure Selectbest(P1, P2, P3), which

285

P1: Xop: 1 3 2 4 2 1 4 3 C1: Xop: 1 3 2 4 3 4 2 1
→

P2: Xop: 3 4 2 4 3 2 1 1 C2: Xop: 3 4 2 1 2 1 4 3

Fig. 3. Crossover operator: DX - First Stage

P1: Xmach: 3 3 2 2 1 4 1 1 C1: Xmach: 3 3 2 2 1 1 2 4
→

P2: Xmach: 4 3 3 1 1 1 2 4 C2: Xmach: 4 3 3 1 1 4 1 1

Fig. 4. Crossover operator: DX - Second Stage

{1, 3} {0, 4}

Xop: 1 3 1 4 2 2 4 3 Xmach: 3 1 3 1 2 4 2 5
�
���� ? ?

Xop: 1 4 3 1 2 2 4 3 Xmach: 2 1 3 1 1 4 2 5

Fig. 5. Mutation

selects, by means of the FNS algorithm, the best parti-
cle among P1 = crossover(Pk, selectOne(gbest)), P2 =
crossover(Pk, pbest) and P3 = mutation(Pk), where Pk is
the current particle (position) and selectOne is a function
that randomly selects an element from gbest set. If the FNS
algorithm determines that among P1, P2 and P3, the set of
non-dominated particles is formed by more than one element,
the Selectbest procedure will randomly select one of this set.

In fact, the new Pk position is a particle, but if one
considers that each particle in the search space is a position in
the space, the selectbest(P1, P2, P3) procedure can be seen as
an equation that updates the position even if the particle itself
is changed. In these terms, the velocity can be considered the
proximity of the current particle in relation to pbest or gbest
.

As two crossover operators are proposed in DIPSO, the
Selectbest() procedure randomly choose one of them ac-
cording to pcc, the probability of choosing the convergence
crossover (Figure 2) and pdx, the probability of choosing the
diversity crossover (Figure 3), where pcc + pdx = 100%. It
has been observed that the greater the pdx, the greater the
population diversity and the greater the pcc, the faster the
convergence. At each DIPSO iteration, both crossovers are
used, guaranteeing that part of the population evolves and
part diversifies.

VI. RESULTS

FJSP instances have been obtained from Kacem et al.
[19], which are represented by n ×m and widely used by
most studies, as seen in [4], [9], [10] and [12]. The DIPSO
algorithm was coded in Java language and run on an Intel
Core I7 (2.0 GHz) processor with 8 GB of RAM memory.
Four of these instances, 4 × 5, 8 × 8, 10 × 7 and 10 × 10,
were tested through the four experiments. In all experiments,
the algorithm executions considered the objectives defined

in Section II, makespan (M), total workloads of machines
(TW) and the maximum workloads of machines (W).

The DIPSO algorithm can cope with some features, espe-
cially those related to the use of two crossover operators and
the gbest set, an experiment planning was elaborated. Then,
comparisons among results with and without these features
are performed. Each experiment was executed thirty times
and the results presented are the F1 elements for which the
algorithm converged. In each experiment, the characteristics
of the algorithm evolution such as diversity and convergence
are analyzed. The convergence rates shown in experiments
consider the sum of the number of repeated elements in
the final result. In every execution the population size =
1000, mutation rate= 23%, maximum number of iterations
= 1400, pcc = 80% and pdx = 20%. These values values
were empirically determined according to the most complex
problem (10 × 10). Multiple runs of the algorithm varying
the parameter values were performed to check their behavior.
Thus, based on the results obtained, the values of parameters
were determined.

A. First Experiment

In order to test the two DIPSO features, this experiment
did not considered any of these features. The algorithm
executions have taken into account one of the crossover
operators at each time and gbest was only a particle. Thus,
only one particle is maintained as gbest rather than F1. To
determine the particle, the selectOne method is used to
choose one F1 element. Table I presents the results using
only the IPOX crossover (Figure 2).

The results in Table I are similar to those presented by [4],
[9], [10] and [12]. As each experiment was executed thirty
times, convergence rate could be observed. In this case, in
95% of executions the algorithm reached the convergence in
only one solution and the convergence rate of the executions
was around 30% and 40%.

286

TABLE I
RESULTS: FIRST EXPERIMENT

4× 5 8× 8 10× 7 10× 10
M 11 12 13 16 15 12 11 8 8
TW 32 32 33 73 75 60 61 41 42
W 10 8 7 13 12 12 11 7 6

In tests of the 8×8 and 10×10 problems, the DX crossover
(Figure 3 and 4) was applied. It was observed that the number
of different particles was 50% greater than when the IPOX
crossover was executed. During the execution of the 4 × 5
problem, results similar to IPOX were obtained.

B. Second Experiment

The tests for the first experiment carried out only one of
the crossovers at a time. Then, in the second experiment,
both were tested together according to pcc = 80 (IPOX
probability) and pdx = 20 (DX probability). The gbest
remains with only one particle. Table II presents the results
related to this experiment. In this experiment, the solutions
were also similar to those shown in previous works. Through
the solution number for the 10 × 10 problem, it could be
inferred that the diversity rate increased.

TABLE II
RESULTS: SECOND EXPERIMENT

4× 5 8× 8 10× 7 10× 10
M 11 12 13 16 15 12 11 8 8 7
TW 32 32 33 73 75 60 61 41 42 42
W 10 8 7 13 12 12 11 7 5 6

The introduction of the diversity crossover (DX) increased
the number of different particles at an average rate of 21%,
when compared to the first experiment using only IPOX.
Due to this increase in the diversity rate, the ability to
avoid local minima also increased. In 70% of executions, the
algorithm reached convergence during the first 250 iterations.
In relation to the 4× 5 problem, 80% of executions reached
convergence in the 25th iteration.

C. Third Experiment

In this case, the executions have considered only the IPOX
crossover and gbest is a set. The results of this experiment are
described in Table III, where similarities to other experiments
can be observed. However, when compared to the second
experiment, three new solutions were identified. The main
observation is the convergence to more than one solution. In
particular, the executions of the 4 × 5 problem showed that
80% of the population were solutions.

D. Fourth Experiment: DIPSO

In previous experiments, each DIPSO feature was tested
separately. Now, the fourth experiment put together both
features and gbest is a set, which demonstrated that these
features introduced more diversity in the population evolu-
tion. A greater number of optima solutions was presented, as

seen in Table IV. The number of different particle generated
during the algorithm evolution is similar to that of the second
experiment.

In 78% of executions, the DIPSO convergence occurred
before the 250th iteration and for all results the algorithm
converged for more than one optimum solution. In particular,
every execution of the 4×5 problem produced a convergence
for every solution presented in Table IV. In addition, every
execution of this problem converged in at least three solutions
of the final result, at 25th iteration. In relation to the 8 × 8
and 10× 10 problems, 68% of executions converged before
the 250th iteration.

Comparisons among DIPSO and other works MOGA [10],
MOEA-GLS [12], PSO + SA [9], PSO + TS [4], an Hybrid
Tabu Search algorithm (HTS) [20] and a Multi-objective
Evolutionary Algorithm (MOEA) [21] showed similar re-
sults, as observed in Tables V, VI, VII and VIII. When only
PSO-based algorithms are considered, one observes that the
number of solutions presented by DIPSO is the highest and
there was convergence for more than one result in the same
execution.

VII. CONCLUSION AND FURTHER WORKS

The DIPSO algorithm for solving multi-objective FJSP
using PSO, genetic operators and the FNS procedure was
described. Also, a new crossover operator, DX, was de-
veloped in order to cope with diversity while maintaining
convergence. In addition to the DX operator, DIPSO used
the IPOX and the proposal efficiency was demonstrated, since
some results were improved and the best results were also
reached.

The composition of PSO and genetic operators avoided lo-
cal minima, as previously shown in similar studies. However,
operators not only ensure convergence, but also introduce
diversity. This was demonstrated by DIPSO through the
simultaneous use of IPOX and DX. It was also proved that a
set of best solution contributes to diversity and convergence
rates.

Further studies should compare NSGA II and DIPSO in
order to evaluate the diversity and evolution of the population
along with the results of each algorithm.

REFERENCES

[1] Cheng, R., Gen, M. and Tsujimura, Y., A Tutorial Survey of Job-Shop
Scheduling Problems using Genetic Algorithms - I. Representation,
Computers & Industrial Engineering, 30 (4) (1996) 983–997.

[2] Lenstra, J.K. and Rinnooy, K.A.H.G., Computational Complexity of
Discrete Optimization Problems, Annals of Discrete Mathematics, 4
(1979) 121–140.

[3] Ho, N.B. and Tay, J.C., Genace: An Efficient Cultural Algorithm for
Solving the Flexible Job-Shop Problem, Proceedings ofIEEE (2004)
1759–1766.

[4] Zhang, G., Shao, X., Li, P. and Gao, L. An Effective Hybrid Particle
Swarm Optimization Algorithm for Multi-objective Flexible Job-shop
Scheduling Problem, Computers & Industrial Engineering, 56, 1309–
1318 (2009)

[5] Deb, K. Pratap, A., Agrawal, S. and Meyarivan, T., A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on
Evolutionary Computation, V. 6, N. 2, pp. 182–197.

287

TABLE III
RESULTS: THIRD EXPERIMENT

4× 5 8× 8 10× 7 10× 10
M 11 12 13 11 16 15 14 12 11 11 8 8 7
TW 32 32 33 34 73 75 77 60 61 62 41 42 42
W 10 8 7 9 13 12 12 12 11 10 7 5 6

TABLE IV
RESULTS FOR THE FOURTH EXPERIMENT: DIPSO

4× 5 8× 8 10× 7 10× 10
M 11 12 13 11 16 15 14 16 12 11 11 8 8 7 7
TW 32 32 33 34 73 75 77 77 60 61 62 41 42 42 43
W 10 8 7 9 13 12 12 11 12 11 10 7 5 6 5

TABLE V
RESULT COMPARISON - 4×5

DIPSO PSO + TS [4] MOGA [10]
M 11 11 13 12 11 11 11 12
TW 32 34 33 32 32 32 34 32
W 10 9 7 8 10 10 9 8

TABLE VI
RESULT COMPARISON - 8×8

DIPSO PSO + TS [4] PSO + SA [9] MOGA [10] MOEA-GLS [12]
M 16 15 14 16 14 15 16 15 15 15 16 16 15 14 16
TW 73 75 77 77 77 75 73 75 81 75 73 73 75 77 77
W 13 12 12 11 12 12 13 12 11 12 13 13 12 12 11

TABLE VII
RESULT COMPARISON - 10×7

DIPSO HTS [20] MOEA [21]
M 12 11 11 11 11 12 11 11
TW 60 61 62 61 62 60 61 62
W 12 11 10 11 10 12 11 10

TABLE VIII
RESULT COMPARISON - 10×10

DIPSO PSO + TS [4] PSO + SA [9] MOGA [10] MOEA-GLS [12]
M 8 8 7 7 7 7 8 8 7 7 8 8 7 7
TW 41 42 43 42 43 44 41 42 45 42 41 42 43 42
W 7 5 5 6 6 6 7 5 5 6 7 5 5 6

[6] Jia, Z., Chen, H. and Tang, J. A New Multi-objective Fully-Informed
Particle Swarm Algorithm for Flexible Job-Shop Scheduling Problems,
International Conference on Computational Intelligence and Security
Workshops, 191–194, 2007

[7] Ling-li, Z., Feng-Xing, Z. and Xiao-hong, X. Mathematical Model and
Hybrid Particle Swarm Optimization for Flexible Job-Shop Scheduling
Problem, Genetic and Evolutionary Computation Conference, 2009.

[8] Xiao-hong, X., Ling-li, Z. and Yue-wen, F., Hybrid Particle Swarm Op-
timization for Flexible Job-Shop Scheduling Problem and Its Implemen-
tation, IEEE International Conference on Information and Automation,
1155–1159, (2010).

[9] Xia, W. J. and Wu, Z. M. An effective hybrid optimization approach
for multiobjective flexible job-shop scheduling problems, Computers
and Industrial Engineering, 48(2), 409-425, 2005.

[10] Wang, X., Gao, L., Zhang, C. and Shao, X. A multi-objective genetic
algorithm based on immune and entropy principle for flexible job-shop
scheduling problem, The International Journal of Advanced Manufac-
turing Technology, V. 51, N. 5–8, 757–767, 2010.

[11] Gen, M., Tsujimura, Y. and Kubota, E. Solving job-shop Scheduling
Problems by Genetic Algorithm, International Conference on Systems,
Man, and Cybernetics, V. 2, 1577–1582, 1994.

[12] Binh Ho, N., and Cing Tay, J. Using Evolutionary Computation and

288

Local Search for Solving Multi-objective Flexible Job Shop Problems,
Genetic and Evolutionary Computation Conference, 2007.

[13] Kennedy, J. and Eberhart, R., Particle swarm optimization, Interna-
tional Conference on Neural Networks, pp. 1942–1948, 1995.

[14] Martı́nez, J. L. F. and Gonzalo, E. G., The PSO family: deduction,
stochastic analysis and comparison, Swarm Intelligence, V. 3, pp. 245–
273, 2009.

[15] Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S.S. and
Abraham, A., Inertia Weight Strategies in Particle Swarm Optimization,
Third World Congress on Nature and Biologically Inspired Computing
(NaBIC), pp.633–640, 2011.

[16] Nickabadi, A., Ebadzadeh, M. M. and Safabakhsh, R., A novel particle
swarm optimization algorithm with adaptive inertia weight, Applied Soft
Computing V. 11, N. 4, pp. 3658–3670, 2011.

[17] Qin, Z., Yu, F., Shi, Z. and Wang, Y., Adaptive Inertia Weight Particle
Swarm Optimization, Artificial Intelligence and Soft Computing, V.
4029, pp. 450–459, 2006.

[18] Niu, Q., Jiao, B. and Gu, X., Particle swarm optimization combined
with genetic operators for job shop scheduling problem with fuzzy
processing time. Applied Mathematics and Computation, V. 205 (1),
148–158, 2008.

[19] Kacem, I., Hammadi, S. and Borne, P., Pareto-optimality approach for
flexible job-shop scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic, Mathematics and Computers in Simulation,
60, 245–276, 2002.

[20] Li, J., Pan, Q. and Liang, Y. An Effective Hybrid Tabu Search
Algorithm for Multi-objective Flexible Job-shop Scheduling Problems,
Computers and Industrial Engineering, 59, 647–662, 2010.

[21] Chiang, T. and Lin, H. A simple and effective evolutionary algorithm
for multiobjective flexible job shop scheduling, International Journal
of Production Economics, 141, 87–98, 2013.

289

