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Abstract—Traffic signal timing optimization problem aims
at alleviating traffic congestion and shortening the average
traffic time. However, most existing research considered only
the information of one or few intersections at a time. Those
local optimization methods may experience a decrease in
performance when facing large-scale traffic networks. In this
paper, we propose a cellular automaton traffic simulation
system and conduct tests on two different optimization schemes.
We use Genetic Algorithm (GA) for global optimization and
Expectation Maximization (EM) as well as car flow for local
optimization. Empirical results show that the GA method
outperforms the EM method. Then, we use linear regression
to learn from the global optimal solution obtained by GA and
propose a new adjustment strategy that outperforms recent
optimization methods.

I. INTRODUCTION

Traffic congestion has been a crucial problem in modern
cities, especially during rush hours. It not only leads to the
increase in travel time people spent but also impacts our
environment and economy. According to a latest research
[9], the consumption of fuel, the waste of money and the
production of carbon dioxide due to traffic congestion in
urban areas are increasing every year.

A great number of methods have been proposed to
alleviate traffic congestion. Generally, these solutions can
be classified into three major categories:(1) revising the
traffic rules to constraint where people could drive, (2)
optimizing the existing infrastructure to get a better service,
and (3) adjusting traffic signal timing based on different
kinds of traffic information. Since the first two categories
are relatively law-oriented and time-consuming, this paper
focuses on solutions in the third category.

Traffic signal timing optimization is known to be an NP-
complete problem [13]. In [2], it has been demonstrated
that the traffic signal timing have a strong influence on
traffic flow [3]. In this paper, we aim at finding the optimal
traffic signal timing that leads to minimum average traffic
time for all the vehicles on the roads. In previous works,
adjustment based on the proportion of local car flow has been
done. However, we show that such local information based
adjustment strategy only leads to suboptimal solution on
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large traffic network. We use GA as our global optimization
method and show that it outperforms the local optimization
method. According to our experiment results, the solutions
obtained by GA reduce the average traffic time by 49% in
the case of 1000 vehicles.

However, retrieving detailed information, such as starting
point and destination point, from all vehicles is impractical
in reality. We, therefore, aim at learning from GA’s solution,
trying to find the features that are more significant. We use
a linear model to approach the global optimization method,
showing that this new, local-information based adjustment
strategy outperforms the local optimization methods in pre-
vious works.

The remainder of this paper is organized as follows.
Section II gives an overview of previous works. Section
III introduces how we model the problem in our simula-
tion system. Section IV compares the performance between
global optimization and local optimization. A new linear
traffic model learned from GA is presented in Section V.
Section VI concludes this paper.

II. RELATED WORK

Traffic engineering has long been studied. One of the
most commonly used frameworks is the Cellular-Automaton
(CA). In CA, urban cities are viewed as a composition
of regular grid of cells. Through discretizing the space of
the cities, we can simplify the behavior of the vehicles
and conduct realistic simulation. Several simulation software
packages used CA to simulate urban traffic networks, includ-
ing Simulation of Urban Mobility (SUMO) [7], RoadSim
[1] and etc. These simulators have been used to simulate
transportation in real cities and help people improve traffic
conditions. However, these simulators are too complicated
and specific in reaching our goal. To make the simulator
simpler, an urban city can be viewed as consisting of only
vertical roads, horizontal roads and buildings [16][6][12][5].
Previous work has demonstrated traffic simulation system
using such methods. The city model we used is similar to the
one proposed by Yasser Hassan [6]. We classified the cells
in the grid into three types: buildings, roads and intersection.

Nagel−Schreckenberg model is a classical model for
freeway traffic simulation. It defines rules for velocity con-
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trol so that crash between vehicles is avoided. To expand the
problem into two-dimension, previous works had proposed
several rules on the intersections [8]. The vehicles decide
its new direction according to its own destination and the
traffic signal when arriving at the intersection. Several works
using GA to optimize traffic signal timing were proposed
[14][13][15][4]. The results showed that GA does improve
traffic condition, especially on large scale traffic network.
We therefore use GA as our global optimization method.
As for local optimization methods, some works used only
local information, such as car flow, the length of waiting
queues, to adjust the local traffic signal timing [6]. To
minimize the average traffic time at an intersection, the
traffic signal timing of each direction should be proportional
to the respective car flow.

To this point, several methods for traffic signal timing
optimization has been proposed. However, the discrepancy
between the performances of the global optimization meth-
ods and local optimization methods had not yet been dis-
cussed. We aim at verifying that global optimization methods
outperform local optimization methods when traffic network
becomes larger. Besides, we find new adjustment strategy
that can make the result derived by the local optimization
method closer to the global optimization result.

III. PROBLEM MODELING

In this section, we present our CA based traffic simula-
tion model. We first define the basic structure of our model.
Then, we introduce the rules we employed to simulate all
kinds of traffic scenario. At last, we show how vehicles are
generated and how we measure their performance.

A. Cellular Automata Models

The CA Simulators are based on the CA Theory de-
veloped by John Von Neumann [10]. The theory assumes
vehicles in the traffic simulation model to be discrete entities.
The streets are sampled into a set of points and each point
can be occupied by only one vehicle at a time. The state
of a point is defined as whether a point is occupied by a
vehicle or not. For every time slot, all vehicles will move
simultaneously according to the traffic scenario and the state
of each point will be updated. Figure1 shows a simple
two-dimensional CA. It consists of regular grid of cells
and can be used to simulate a Manhattan-like metropolitan
traffic network. The cells in the grid can be classified into
three types: Type-B cell, Type-R cell and Type-I cell. The
definitions are shown as follow:

• Type-B cell represents part of a building, which vehicles
cannot run onto.
• Type-R cell represents part of a road. Each Type-R cell

has a specific direction, which vehicles on this cell can
only drive towards.
• Type-I cell represents part of an intersection. Vehicles

can change their direction only at here. Their decision
is based on their destination and the traffic signal
condition, which will be elaborated later.

In our experiment, we set the length of the blocks, Lb, to 10.
Roads are defined to be two-lane with opposite directions.

The length of the borders of the grid, Lg , is calculated by
Lb and the number of blocks, Nb, such that

Lg = (2 + Lb) ·Nb + 2

We also define the following parameters for each vehicle:

Fig. 1. The structure of simulation model. 10×10 square blocks in brown
color are Type-B cells, which represent the buildings. 2×2 square blocks
in gray color are Type-I cells, which represent the intersections. 2 × 10
rectangles are Type-R cells, which represent the roads. The purple dots
are the randomly generated cars running on the roads.

• Starting point, Ps ∈ [0, Lb]
2, and destination point,

Pd ∈ [0, Lb]
2, are generated from the Gaussian dis-

tribution with arbitrary means ms,md ∈ [0, Lb]
2, and

variations σs,σd. For each vehicle, we keep generating
a Ps ∼ N(ms, σs) and a Pd ∼ N(md, σd) until these
two points are in the range of [0, Lb]

2 and are on Type-
R cells.

• Current point, Pc ∈ [0, Lb]
2, is initially set to Ps. It

will keep changing until the vehicle reaches its Pd.
• Life time, tf , is the amount of time a vehicle has spent

on traveling. It will stop increasing once the vehicle
reaches its destination.

• Speed, v ∈ [0, 1], is the distance a vehicle can move in
one time slot.

• Acceleration, a ∈ {0.02, 0.05}, is the rate at which the
speed of the vehicle changes over each time slot.

Based on the definitions above, we create a simple two-
dimensional CA and generate a number of vehicles on it.
Through obeying the traffic rules introduced in the next
section, our model can simulate most of the traffic scenario
in modern city.

B. Traffic Scenario Simulating

To efficiently simulate realistic traffic scenario, we define
the following rules to simplify the behavior of all vehicles.
The rules we applied to all vehicles in our model are
presented as follow:

• If a vehicle is on a Type-R cell, the vehicle will keep
moving forward unless (1) it reaches its destination
point, or (2) the distance between the car in front of
it and itself is less than one cell.
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• If a vehicle is on a Type-I cell and the corresponding
traffic signal is red, the vehicle will turn right or stop
according to its destination point.
• If a vehicle is on a Type-I cell and the corresponding

traffic signal is green, the vehicle will go straight, turn
left, turn right or reverse according to its destination
position.

As for the rules defined for speed control are:

• All vehicles have maximum speed of 1. v ∈ [0, 1].
• A vehicle will keep accelerating if there is no vehicle in

front of it or the traffic signal is green. The acceleration
is 0.05 point per time slot.
• A vehicle can stop abruptly, that is, its speed can drop

to 0 in one time slot. This situation would happen when
a vehicle encounters a red traffic signal.
• When a vehicle starts to move from still, its acceleration

would be half of usual for four time slots. This penalty
is to compensate for the slow start in reality.

After initializing the grid, we generate a number of cars
on the grid. According to the traffic scenarios mentioned
above, vehicles can start to change its position and speed at
each time slot. If a vehicle reaches its destination point, that
is, ceil(Pc) = ceil(Pd), it will be eliminated from the grid
with its existing time tf being recorded. An average traffic
time can be derived after all the vehicles had reached their
destination points. We can use the average time as the score
(or the term “Fitness” in GA) of a specific combination of
traffic signal cycles.

IV. OPTIMIZATION METHODS

A. Global Optimization (GA)

GA is a well-known optimization method and is shown
to have significant improvement on alleviating traffic con-
gestion, especially on large traffic network [4]. In the global
optimization scheme, we used GA to optimize the traffic
signal timing of all intersections. In this section, we define
the chromosome and fitness used in the algorithm and
introduce the process in details.

1) Chromosome : We define our chromosome, ~Cr, to
be a vector which consists of the traffic information of all
intersections. N is defined as the number of horizontal roads
and vertical roads. For every i, j ∈ {1, 2, · · ·N}, there exists
an intersection I(i,j) at the crossroad of the ith horizontal
road and the jth vertical road. Figure 2 shows the structure
of a chromosome corresponding to the map used in our
simulation. Each intersection I contains a horizontal green
time, Gh, a vertical green time, Gv , a state, S, and a time
counter, C. For an intersection I(i,j), Gh(i,j) and Gv(i,j) ∈ Z
denote the green time of horizontal and vertical direction at
this intersection, respectively. S(i,j) ∈ {0, 1} implies current
available direction, with 0 denoting horizontal green, and 1
denoting vertical green. C(i,j) ∈ Z is a counter which counts
down time for changing the traffic signal state S(i,j). We
write ~Cr into:

~Cr(x) = {(G
(x)
v(i,j), G

(x)
h(i,j), S

(x)
(i,j), C

(x)
(i,j))|i, j ∈ {1, 2, · · ·N}}.

2) Fitness : The fitness is defined as the average traffic
time for all vehicles to arrive at their destination points.

Fig. 2. The structure of our chromosome and the traffic information of
every intersection I(i,j), for i, j ∈ {1, 2, · · ·N}.

3) Selection : We use the tournament selection without
replacement in this step. The number of chromosomes
in the mating pool is set to 100. We randomly select 2
chromosomes and put the one with the higher fitness to the
mating pool. After this selection process, we will have half
number of the total chromosomes, which is 50, in the new
chromosome pool. The selection process is done repeatedly
for twice so that there will be 100 chromosomes in the new
chromosome pool after the whole selection process.

4) Crossover : Two chromosomes, ~Crp1 , ~Crp2 , are
randomly drawn from the chromosome pool as parent chro-
mosomes. Two offspring chromosomes, ~Croff1

, ~Croff2
, are

derived from the crossover process. The crossover process
is based on the following equation:

~Croff1
= α · ~Crp1 + (1− α) · ~Crp2

~Croff2
= (1− α) · ~Crp1 + α · ~Crp2 .

α is randomly selected from the interval [-0.25,1.25], which
is a rule of thumbs. However, this is a simplified version of
the crossover process. Detailed operation is shown as follow.
Green time of horizontal direction Gh and vertical direction
Gv follow the original definition of vector operation. For i, j
∈ {1, 2, · · ·N}:

G
(off1)
h(i,j) = α ·G(p1)

h(i,j) + (1− α) ·G(p2)
h(i,j)

G
(off2)
h(i,j) = (1− α) ·G(p1)

h(i,j) + α ·G(p2)
h(i,j)

G
(off1)
v(i,j) = α ·G(p1)

v(i,j) + (1− α) ·G(p2)
v(i,j)

G
(off2)
v(i,j) = (1− α) ·G(p1)

v(i,j) + α ·G(p2)
v(i,j)

For the initial state S and counter C, the process of crossover
is defined as :

S
(off1)
(i,j) = ceil(α · S(p1)

(i,j)) + (1− α) · S(p2)
(i,j)) mod 2

S
(off2)
(i,j) = ceil((1− α) · S(p1)

(i,j)) + α · S(p2)
(i,j)) mod 2

C
(off1)
(i,j) = C

(off2)
(i,j) = C

(p2)
(i,j)
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5) Restricted tournament replacement [11]: After the
crossover process, each offspring chromosome competes
with the parent chromosome with the highest similarity.
The similarity of two chromosome ~Cr(1),~Cr(2) is defined
as follow:
similarity( ~Cr(1),~Cr(2)) =

N∑
i,j=1

(G
(1)

h(i,j)
−G(2)

h(i,j)
)2 + (G

(1)

v(i,j)
−G(2)

v(i,j)
)2 + λ · |C(1)

(i,j)
− C(2)

(i,j)
|,

where λ is a constant which is arbitrarily set to 10 in our
experiment.

6) Termination condition: The whole process terminates
when chromosomes stop evolving for consecutive 10 itera-
tions.

B. Local Optimization(EM)

In this scheme, we adjust the traffic signal timing with
the information from a single intersection. One of the most
commonly used information is the flow of cars. In [3], the
green time of vertical and horizontal direction should be
proportional to the car flow in the corresponding direction
in order to reach a minimum average waiting time. We use
expectation-maximization (EM) as our optimization method.
For a set of traffic signal timing, we obtain the local
information of car flow through the simulation. In order to
make our simulation more practical in reality, we set a low
limitation , LowLimit, and a up limitation, UpLimit, for
every green time. For i, j ∈ 1, 2, · · ·N ,

Gv(i,j), Gh(i,j) ∈ [LowLimit, UpLimit].

1) Decision of green time cycle summation T : For each
intersection I(i,j), we define the green time summation T :

T(i,j) = Gv(i,j) +Gh(i,j).

This total time T is determined by the car flow at each
intersection. In order to get the car flow information, we
randomly generate a combination of traffic signal timing at
each intersection and a number of vehicles at the beginning
of the test. Two counters, Fv and Fh, are set at each
intersection to record the vertical and horizontal car flow.
Whenever a vehicle passes through an intersection, we will
add a record to the counter in the corresponding direction.
After the simulation, we have T be proportional to the car
flow summation(Fv + Fh) , and scale them into the region
of [2 ∗ lowLimit, 2 ∗ UpLimit].

2) Finding the best answers : After deciding the fixed
T at each intersection, we simply adjust the traffic light
timing on each intersection by the car flow proportion. Since
updating traffic signal timing for too many times is not
practical in reality, this process is done iteratively for 5 times
and the one with the lowest fitness is chosen as the EM
method’s optimal solution.

C. Comparison between the two methods

For every simulation, we randomly generate a fixed
number of vehicles on the grid. Applying GA and EM on
the same set of the vehicles, we obtain FitnessGA and
FitnessEM , the average arriving time of all vehicles for

respective methods. We run the simulation for 1000 times
and compare the performance of GA to that of EM. The
comparison between the performance of these two methods
is based on Rw. Rw is defined as follows:

Rw =
1

1000

1000∑
i=1

(Fitness
(i)
EM − Fitness

(i)
GA)

Fitness
(i)
GA

.

The superscript (i) denotes the fitness of EM and GA

Fig. 3. The difference rate between GA and EM methods is more
significant as number of vehicles increases.

TABLE I. Rw TO DIFFERENT NUMBER OF VEHICLES

Car Num 50 100 300 500 800 1000
Rw 0.2779 0.4026 0.6661 0.7842 0.8355 0.9432

derived in the ith simulation. Figure 3 and TableI show
the comparison results under different conditions, that is,
under different amount of vehicles. The results imply two
significant conclusions. First, GA outperforms EM. Since
Rw is positive, the average arrival time for vehicles under
local optimization, FitnessEM , is always longer than the
average arrival time for vehicles under global optimization,
FitnessGA. Hence, to reduce the average arrival time, we
must make use of the information other than local car flow.
Second, the difference in performance between GA and EM
is more significant as the number of vehicles increases.
In practical case, applying GA solution on urban areas
with high vehicle density will have significant improvement.
However, in reality, it is hard to get the detailed information
of every starting and destination point for every vehicle.
In order to improve the performance of local optimization
method, we aim to find the key features and information
hidden in GA’s solution.

V. LEARNING FROM GA

According to our experiment results, the solution ob-
tained by GA has better performance than that derived
by local optimization method where recent setting rules of
traffic signal timing are based on. However, global informa-
tion, such as starting and destination points for every single
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vehicle, is hard to get in practice. Besides, time and memory
consumption in running evolutional methods are expensive.
In considering these drawbacks in solving practical problem
by GA, we apply learning algorithms to the solution obtained
by EM based on the solution derived by GA. In this way,
we get useful properties which are applied on the original
solution derived by EM so that the solution becomes more
similar to that of GA. In the following experiment, we
prove that the tuned solution of EM performs better than
the original solution of EM. In this section, we introduce
our method in tuning the sub-optimal solution derived from
EM to get a solution with higher performance and show our
experiment results.

A. improvement measure method

In our experiments, we conduct t-tests to quantize the
level of improvement. A t-test compares whether two groups
have different average values. To compare the performance
of the solutions derived by EM with the new solutions tuned
by learning algorithms, we run both methods on a randomly
generated set of vehicles with fixed starting and destination
points. The fitness of the solutions derived by both methods
are recorded as a pair of results. Each record shown in the
following experiment results is derived by calculating t-tests
value and transforming the value into p-value on totally 1000
pairs of results. P-value is defined as the probability that the
tuned EM method is worse than the original EM method. If
p-value < 5%, we say that the new method outperforms EM.
Besides, lower p-value shows that the difference between the
performances of the two methods is more significant.

B. feature selection

Learning algorithm with linear models are applied on
solution derived by EM based on GA’s solution. Here
we define the traffic information of an intersection as a
combination of the green and red signal timings at this
intersection, flow of car in and out of the four directions
and summation of traffic signal timings at this intersection.
Features for an intersection, I(i.j), are extracted from the
traffic information of this intersection and its neighborhood
intersection, I(i−1.j), I(i+1.j), I(i.j−1) and I(i.j+1). For an
intersection I(i.j), useful features are listed as follows:

• T(i,j)
• T(i−1,j), T(i+1,j), T(i,j−1), T(i,j+1)

• Fv(i,j), Fv(i,j)
• Fh(i−1,j), Fh(i+1,j), Fv(i,j−1), Fv(i,j+1)

• Gv(i,j), Gh(i,j)
• Gv(i−1,j), Gv(i+1,j), Gv(i,j−1), Gv(i,j+1)

• Gh(i−1,j), Gh(i+1,j), Gh(i,j−1), Gh(i,j+1)

• 1
N2

N∑
i,j=1

Gv(i,j),

with T(i,j) representing the summation of traffic signal
timings of intersection I(i.j) and Fv(i,j) representing the car
flow on the vertical direction. Our learning target, defined
as Y(i,j), is consisting of the vertical green time Gv(i,j)
and horizontal green time Gh(i,j). Ground truth value of
Y(i,j) is set to be the solution derived by GA at the
position of intersection I(i,j). Feature vector, X(i,j) ∈ Rd,
consists of features we extract from the traffic information

of intersection I(i,j) in EM’s solution. In this problem, we
solve the minimization problem:

minimize
w

√√√√ N∑
i,j=1

(Y(i,j) − 〈X(i,j), wT 〉)2,

where w ∈ Rd is the corresponding weight vector for
feature vector X(i,j). The level of importance of a feature is
defined as the absolute value of w∗i . Less important features
are eliminated in order to get a simpler model; important
features help us figure out the properties of GA solution.

Every feature is used in training our model in the
beginning of the feature selection procedure. Those features
with extremely small weight on the corresponding |wi ∗| are
eliminated. After selecting from the first-stage features, we
put the selected features once again into the minimization
problem and derive a new solution w∗ for the modification.
To examine the performance of this new solution, 1000
pairs of results are collected through the simulation for
the measuring the progress level, which is calculated with
t−tests method. Secondly, we arbitrarily remove some of the
features to see if the improvement level of the new solution
degrades or increases. If removing a feature leads to better
results in the level of improvement, we will eliminate this
feature from our training procedure.

According to our observation in the feature selection
process, the most important features extracted from EM’s
solution in deciding G∗v(i,j) are :

• Gv(i−1,j), Gv(i+1,j)

• Gv(i,j)
• 1

N2

N∑
i,j=1

Gv(i,j)

For G∗h(i,j), the important features are:

• Gh(i,j−1), Gh(i,j+1)

• Gh(i,j)
• 1

N2

N∑
i,j=1

Gh(i,j).

To examine the difference between the solutions derived
by GA and EM, we plot the derived Gv(i,j) and Gv(i,j) of
all intersection in a grayscale image. Figure 4 shows the
grayscale plot of the traffic signal timing derived by the
two methods. The pixels with whiter color in the images
represent the part with larger traffic signal timing. The first
two images are derived from the vertical and horizontal
green time of the solution from EM. In our experiment for
EM, traffic signal timing is proportional to car flow in the
EM method, which means that these whiter pixels represent
the region where rate of car flow is high. From these images,
we see that the center part of city has the highest rate of
car flow. However, according to Figure 4 (3) (4), the traffic
signal timing derived by GA has smaller variance comparing
to EM solution.

C. Result of different strategies

In local optimization method, the intersections with high
rate of car flow are assigned with a longer green time cycle;
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Fig. 4. The grayscale figure of the solution derived by EM and GA.
Number of vehicles = 500, map size = 10 × 10 intersections. From the
left to the right are: (1) EM horizontal green time solution (2) EM vertical
green time solution (3) GA horizontal green time solution (4) GA vertical
green time solution.

the intersections with smaller rate of car flow, usually on
the outskirt, are assigned with a shorter green time cycle
such that the changing between red and green light is more
rapidly. Because there are very few cars running on the
outskirt, the influence of outskirt traffic signal timing is less
importance than the traffic signal timing in the middle of the
city. Considering this, we apply the adjustment only on the
intersections that don’t have zero rate of car flow on both
direction in EM’s solution.

After feature selection and training procedure, the best
linear function we get is:

G∗v(i,j) = 108− 0.02 ·Gv(i,j) + 0.02 ·Gv(i,j−1)

G∗h(i,j) = 115− 0.1 ·Gh(i,j) − 0.01 ·Gh(i−1,j)
for intersection I(i,j) where

(Gv(i,j) 6= lowLimit) ∧ (Gh(i,j) 6= lowLimit) = True.

We call this method our Strategy 1. Because the starting
points of randomly generated vehicles are mostly closer to
the left-top of the map and the destination points are ag-
gregated at the right-bottom, it is reasonable to assume that
vertical green timing G∗v(i,j) will have strong relationship to
the top neighbor intersection’s vertical green time, Gv(i,j−1).
The linear model we derived also supports this assumption.
Car flow of the vertical direction is mainly from the top
neighbor intersection. On the other hand, Gh(i,j) will have
stronger relationship with the left neighborś horizontal green
time, Gh(i−1,j). To make this more general in some sense,
we make a revise version of our Strategy1:

G∗v(i,j) = 108− 0.1 ·Gv(i,j) − 0.1 ·Gv(i,j−1)

G∗h(i,j) = 115− 0.1 ·Gh(i,j) − 0.1 ·Gh(i−1,j)
We name this Strategy2. Strategy2 is more symmetric and
general in parameter selection. However, the constant term
is too specific, causing the model to overfit to our original
grid. For even more general and simplicity on the parameter,
we further create a smooth version of Strategy2:

G∗v(i,j) = 110− 0.1 ·Gv(i,j) − 0.1 ·Gv(i,j−1)

G∗h(i,j) = 110− 0.1 ·Gh(i,j) − 0.1 ·Gh(i−1,j)
The results of using the 3 strategies are shown in Table II

We find that Strategy3, the smoothing version of the
method, performs even better than the original one. We
further test on the results with different car number on
Strategy2 and Strategy3, see Table III and Figure 5. We can
see that in the case of using Strategy3, performance increases

TABLE II. P-VALUE ON THE COMPARISON OF EM TO NEW
STRATEGIES

Strategy S1 S2 S3
t-test -39.2453 -49.701 -67.9299

p-value(%) 0.8109 0.6404 0.4686

as the number of vehicles increases while Strategy2 has even
worse performance. Besides, Strategy3 always outperforms
Strategy2.

TABLE III. TTEST AND P-VALUE ON STRATEGY 2& STRATEGY3
WITH DIFFERENT NUMBER OF VEHICLES

car num 100 300 500 800 1000
Strategy 2 -43.2537 -49.701 -41.8823 -37.306 -36.3075

0.7358 0.6404 0.7599 0.8530 0.8765
Strategy 3 -51.9668 -67.9299 -56.9804 -61.1046 -62.9661

0.6125 0.4685 0.5586 0.5209 0.5055

Fig. 5. The p-value of new method comparing to EM.

Smaller p-value indicates that it is less possible for EM to
outperform the new methods. In other word, the lower the
p-value is, the better the performance of the new method
is. According to the result shown in Table II and III, we
can see that Strategy3, which is the smooth version of the
modification, performs even better than Strategy2, which
relies more on the specific parameter derived from EM to
GA training. To see how many percent of the shorten time
in average arriving time does the new method improve,
we calculate the average shortening percentage for the new
method versus EM. The result is shown in TableIV. The
improvement rate in both strategies have the highest value
when car number is set to 500. Although the improvement
rate is not an increasing function to the number of cars, the
time difference between the solution using these strategies
and the solution derived by GA is more significant.

TABLE IV. AVERAGE ARRIVING TIME SHORTENING
PERCENTAGE(%) FOR DIFFERENT NUMBER OF VEHICLES AND

STRATEGY

car num 100 300 500 800 1000
Strategy 2 4.9960 4.3140 5.4020 3.2680 3.1350
Strategy 3 5.7339 5.8440 7.5100 5.5020 5.5020
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D. Generate starting and destination points from multi-mean
Gaussian

To examine that our method is general enough in dif-
ferent cases, we further modify the generation of starting
and destination point, Ps, Pd, for the vehicles to multi-mean
Gaussian distribution. Previously, we choose an arbitrary
mean position, ms,md, for the starting and the destination
points for a vehicle with variations sigmas, sigmad. Here
we choose two mean positions for both Ps, Pd: {ms1 ,ms2}
and {md1 ,md2}, respectively. Such distribution of vehicles’
starting and destination points leads to a sparser and com-
plicated case of vehicle distribution comparing to previous
assumption.

Ps ∼ N(rand(ms1 ,ms2), σs)

Pd ∼ N(rand(md1 ,md2), σd)

Fig. 6. Plot on the left-hand side represents single mean Gaussian for gen-
erating starting and destination points. Right-hand side plot demonstrates
multi-mean Gaussian for generating starting and destination points.

We repeat the experiments mentioned in the previous
section. Results are shown in Table V and Figure 7.

TABLE V. T-TEST AND P-VALUE ON STRATEGY 2& STRATEGY3
WITH DIFFERENT NUMBER OF VEHICLES

car num 100 300 500 800 1000
Strategy 2 -16.3843 -37.736 -34.6233 -29.6656 -25.1008

1.9404 0.8433 0.9191 1.0726 1.2675
Strategy 3 -50.8786 -67.7865 -54.9803 -64.6808 -55.0282

0.6255 0.4695 0.5789 0.4921 0.5784

Fig. 7. The p-value of new method comparing to EM.

Clearly we can see that Strategy 3 outperforms Strategy
2. Besides, both methods are within the limitation of p-value
< 5%, which means that new methods is better than current
traffic signal timing method with high confidence.

TABLE VI. AVERAGE ARRIVING TIME SHORTENING
PERCENTAGE(%) FOR DIFFERENT NUMBER OF VEHICLES AND

STRATEGY

car num 100 300 500 800 1000
S Strategy 2 1.8310 3.1890 3.0590 2.7750 2.3970
Strategy 3 5.9200 5.9060 7.354 5.7090 5.4890

E. Practical Problem

In practical problem, to find the optimal traffic signal
timing in a big city, the whole map is separated into urban
and outskirt region. Due to the fact that the traffic signal
timing in the urban region has more significant influence
on the total traffic timing, only the traffic signal timing in
the urban part are adjusted. Firstly, we find the average
value of traffic signal timing as the constant term in our
method. Then we make small adjustment on the intersection
according to the car flow passing through it and its adjacent
intersection. For vertical and horizontal traffic signal, we
choose the direction from which the vehicles mainly come,
and then lower down the time by a proportion. Therefore, for
each intersection with vertical green time V and horizontal
green time H , we can do the modification as follows:

V ∗ = C − η1 · V − η2 · Vmax(up,down)

H∗ = C − η1 ·H − η2 ·Hmax(right,left)

C = average traffic signal timing in a region,

where V ∗ is the new vertical green time, H* is the new
horizontal green time. Vmax(up,down) is the original vertical
green time of the up or down neighbor intersection with
larger rate of car flow, and Hmax(right,lrft) is the original
horizontal green time of the right or left neighbor intersec-
tion with larger rate of car flow. According to our experiment
results, we find that improvement in reducing total traffic
time is more significant when the number of cars increases.
The adjustment strategy is perfect for alleviating traffic jam
in big cities during rush hours.

VI. CONCLUSIONS

In this paper, we first demonstrate that the solution
derived by GA with global information outperforms the
solution obtained by EM with local information. However,
it is impractical to retrieve such global information, like
vehicles starting positions and destinations, in reality. Be-
sides, building a simulator for a specific city is difficult and
time-consuming. Therefore, we try to fine tune the solution
obtained by EM method. We propose a linear learning model
to tune the solution derived by local optimization method
based on the solution obtained by GA. Significant features
in our learning model are the information of adjacent inter-
sections including vertical green time, horizontal green time
and car flow. Our method has shown to deliver a higher-
quality solution than the original EM.

To apply our method to the practical traffic signal timing
problem, we first obtain the average traffic signal timing
of all intersections. Then, for every intersection, the traffic
signal timing is adjusted according to the average traffic
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signal timing, the flow of cars passing through each inter-
section and the information of its adjacent intersections.

The adjustment strategy is as follows. First, in the region
where the value of the flow of cars are higher, more vehicles
will be affected by the red traffic light on an intersection.
Thus, traffic signal timing should be lowered to reduce
the waiting time at each intersection and therefore alleviate
congestion. Second, shortening traffic signal timing on the
outskirt is a way to alleviate traffic congestion in the urban
area, since it will increase the probability for vehicles to
pass through the outskirt rather than the center of the city.
We can take this as a way to encourage drivers taking the
advantages of the outskirt ways and avoid getting into the
crowded city center.
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