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Abstract—The paper presents a hybrid biogeography-based
optimization (BBO) and fireworks algorithm (FWA) for global
optimization. The key idea is to introduce the migration operator
of BBO to FWA, in order to enhance information sharing among
the population, and thus improve solution diversity and avoid
premature convergence. A migration probability is designed to
integrate the migration of BBO and the normal explosion opera-
tor of FWA, which can not only reduce the computational burden,
but also achieve a better balance between solution diversification
and intensification. The Gaussian explosion of the enhanced FWA
(EFWA) is reserved to keep the high exploration ability of the
algorithm. Experimental results on selected benchmark functions
show that the hybrid BBO FWA has a significantly performance
improvement in comparison with both BBO and EFWA.

I. INTRODUCTION

The complexity of real-world engineering optimization
problems gives rise to various kinds of metaheuristics that
use stochastic techniques to effectively explore the search
space for a global optimum. Many of their names, such as
genetic algorithms [1] and simulated annealing [2], attest to the
influence of natural or biological analogies, and ingeniously
harnessing such analogies often leads to very effective com-
puter algorithms [3].

Fireworks algorithm (FWA) [4], [5] is a relatively new
global optimization method inspired by the phenomenon of
fireworks explosion, where fireworks and sparks are analogues
to solutions to a given problem, and an explosion can be
viewed as a search in the solution space around the fire-
work. The main principle of the algorithm is that “good”
fireworks generate more sparks within smaller explosion areas
to facilitate exploitation (local search), while “bad” fireworks
generate fewer sparks within larger explosion areas to enhance
exploration (global search). Numerical experiments on a set
of benchmark functions show that, the FWA can converge
to a global optimum much faster than typical particle swarm
optimization (PSO) algorithms including [6] and [7]. FWA has
also been applied to and shown its efficiency on many practical
problems [8]–[11].

In the original FWA, the individuals solutions (fireworks
and sparks) do not directly share information among each
other. The enhanced FWA (EFWA) [5] modifies the mutation
operator such that a part of fireworks can generate sparks
towards the location of the best firework of the population
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(which is similar to learning from gbest in PSO). Even so, the
information sharing among the population is still very limited,
which often leads to low solution diversity and premature
convergence. Thus, there is much potential to improve the
performance of the population-based evolutionary algorithm by
enhancing the information exchange between the individuals.

Biogeography-based optimization (BBO) [12] is another
bio-inspired optimization method which has received much
attention in recent years. It is known as a metaheuristic
that makes the best use of information sharing among the
whole population based on the migration operator [13]. In
this paper, we propose a new hybrid FWA by integrating the
BBO’s migration operator to enhance the information sharing
among the fireworks and sparks. This strategy helps to improve
the FWA in two aspects: (1) Reducing the computational
burdens of normal explosions in FWA to a certain extent; (2)
Increasing the potential solution diversity of the population
and thus improving the exploration ability of FWA. Numerical
experiments show that the hybrid algorithm has significant
performance advantage over the FWA and BBO on benchmark
functions.

In the remainder of the paper, we first briefly introduce
FWA and BBO in Section II, and present our hybrid algorithm
in Section III. Section IV presents the experimental results, and
finally Section V concludes.

II. BACKGROUND

A. Fireworks Algorithm

Originally proposed by Tan and Zhu [4], FWA is a nature-
inspired optimization method simulating the explosion process
of fireworks. At beginning, the algorithm randomly selects
in the search space a certain number of locations, each for
exploding a firework to produce a set of sparks; High quality
individuals among the fireworks and sparks are probably cho-
sen as the new fireworks to be exploded in the next generation,
and the process continues until the termination criterion is met.

As mentioned, fireworks with better fitness have a smaller
explosion amplitude and a larger number of explosion sparks
than those with lower fitness, as illustrated in Fig. 1 [4].
Without loss of generality, assume the problem is to minimize
the objective function f , then the explosion amplitude Ai and
the number si of sparks for each firework Xi are respectively
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Firework Spark

(a) good firework (b) bad firework

Fig. 1. Illustration of fireworks explosion in FWA.

calculated as follows:

Ai = Â ⋅ f(Xi)− fmin + ϵ
∑n

j=1(f(Xj)− fmin) + ϵ
(1)

si = Me ⋅
fmax − f(Xi) + ϵ

∑n
j=1(f

max − f(Xj)) + ϵ
(2)

where Â and Me are two control parameters, n is the popu-
lation size, fmax and fmin are respectively the maximum and
minimum objective values among the n fireworks, and ϵ is a
small constant to avoid division by zero.

To avoid overwhelming effects of splendid fireworks, the
number of sparks is bounded as follows:

si =







smin if si < smin

smax else if si > smax

round(si) else
(3)

In EFWA [5], for each dimension k of the problem, the
explosion amplitude Ak is also bounded as follows to avoid
too small explosion amplitude:

Ak =

{

Amin
k if Ak < Amin

k
Ak else (4)

And it is suggested to use a nonlinear decreasing Amin
k in

the EFWA as follows:

Amin
k = AU +

AU −AL

tmax
⋅
√

(2tmax − t)t (5)

where AU and AL are respectively the upper and lower limits of
the explosion amplitude, t is the current number of generations
(or function evaluations), and tmax is the maximum number
of generations (or function evaluations).

For a D-dimensional problem, each spark Xj of Xi is
obtained by randomly selecting z dimensions (z < D), and at
each dimension k add a displacement to the original location
as follows:

Xj,k = Xi,k +Ak ⋅ rand(−1, 1) (6)

where rand is a function generating a random number uni-
formly distributed in a given range.

To keep the diversity, another type of Gaussian explosion
is performed on a small number Mg of randomly selected
fireworks. FWA and EFWA respectively use the following

equations for get the position of a Gaussian spark at each
dimension k:

Xj,k = Xi,k ⋅Gaussian(1, 1) (7)
Xj,k = Xi,k + (Xb,k −Xi,k) ⋅Gaussian(0, 1) (8)

where Gaussian(µ, σ) generates a Gaussian random value
with mean µ and standard deviation σ, and Xb is the best
individual found so far.

In both types of explosion, if any dimension of a spark is
out of the search space, it is reset to a random position with
uniform distribution in the search space.

At each generation, among the current sparks and firework-
s, the best location is always chosen to the next generation.
FWA selects other (n − 1) fireworks with probabilities pro-
portional to their distances to other individuals, but EFWA
suggests to select the (n − 1) fireworks randomly. Algorithm
1 presents the main procedure of EFWA.

Algorithm 1 The enhanced fireworks algorithm (EFWA).
1 Randomly initialize a population P of n fireworks;
2 while (stop criterion is not met) do
3 let R be the empty set of sparks;
4 for each firework Xi ∈ P do
5 calculate si according to Equations (2) and (3);
6 calculate Ai according to Equation (1);
7 for j = 1 to si do
8 produce a spark Xj = Xi;
9 for k = 1 to D do
10 if rand(0, 1) < 0.5 then
11 set Xj,k according to Equations (4) and (6);
12 R = R ∪ {Xj};
13 randomly select a set Q of Mg fireworks;
14 for each firework Xi ∈ Q do
15 produce a spark Xj = Xi;
16 for k = 1 to D do
17 if rand(0, 1) < 0.5 then
18 Set Xk

j according to Equation (8);
19 R = R ∪ {Xj};
20 R = R ∪ P ;
21 select the best and the other n− 1 individuals for P ;
22 update Amin

k according to Equation (5);
23 return the best individual found so far.

B. Biogeography-Based Optimization

Borrowing ideas from biogeographic evolution over space
and time, BBO [12] is another population-based heuristic to
optimization problems. In BBO, each solution in the popu-
lation is analogous to a “habitats” or “islands”, the solution
components are analogous to a set of suitability index variables
(SIVs), and the fitness of the solution is analogous to the
species richness or habitat suitability index (HSI) of the island.
The method mainly works on the principle of immigration
and emigration of the species from one island to another, and
therefore evolves the islands to find better solutions to the
problem. BBO has proven itself a competitive method to other
well-known heuristics on a wide set of problems (e.g., [12],
[14]–[17]).

A distinct feature of BBO is its migration operator, which
indicates that high HSI islands have a high species emigration
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Fig. 2. A linear migration model.

rate µ and low HSI islands have a high species immigration
rate λ. The migration rates are functions of the HSI value or
fitness of the islands. Fig. 2 presents a simple linear migration
model, in which λi and µi of each island Xi are calculated as
follows (but there are also other nonlinear migration models
can be used [12], [18]):

λi = I(
fi − fmin

fmax − fmin
) (9)

µi = E(
fmax − fi
fmax − fmin

) (10)

where I and E are respectively the maximum possible immi-
gration rate and emigration rate, which are typically both set
to 1.

At each time, the migration operator migrates an SIV
from an emigrating island to an immigrating island, which
are probabilistically selected according to the emigration and
immigration rates of the islands. Algorithm 2 presents the basic
procedure of a probably migration operation on an island Xi.

Algorithm 2 The migration operation in BBO.
1 for k = 1 to D do
2 if rand() < λi then
3 Select an emigrating island Xj with probability ∝ µj ;
4 Xi,k ← Xj,k;

III. A HYBRID BIOGEOGRAPHY-BASED OPTIMIZATION
AND FIREWORKS ALGORITHM

For a high-dimensional optimization problem, the fitness
value of a solution is co-determined by its component values
of all dimensions. A solution that has discovered the region
corresponding to the global optimum in some dimensions may
have a low fitness value because of the poor quality in the
other dimensions. Thus, some well-known population-based
evolutionary algorithms, including differential evolution (DE)
[19], comprehensive learning PSO [20], fully informed PSO
[21], enable the individuals to make the utmost use of the
beneficial information in the population and thus perform a
very effective search.

In the original FWA, the individuals in the population never
directly interacts with each other. EFWA makes a slight im-
provement by employing Eq. (8) to let some individuals learn
from the best individual found so far. On the other hand, FWA
uses a distance-based metric for selecting individuals in less
crowded regions to the next generation so as to keep diversity.

But such a selection operator is computational expensive, and
thus EFWA turns to a random selection operator.

In the hybrid algorithm, we employ a diversification strate-
gy that integrates the BBO’s migration mechanism to FWA. In
fact, the migration operator of BBO and the normal explosion
operator of FWA both have their advantages and disadvantages:

∙ The migration operator contributes greatly to the infor-
mation sharing between different individuals by mak-
ing low HSI islands probably learning from high HSI
ones. It is also computational cheap (which requires
only one function evaluation at each time, while the
explosion requires si evaluations).

∙ The normal explosion operator provides a good bal-
ance between exploration and exploitation. In par-
ticular, when a high quality firework is nearby the
global optimum, the explosion enables an intensive
local search around the optimum.

To combine their advantages while reducing their disad-
vantages as much as possible, we introduce a migration prob-
ability, denoted by ρ, to the hybrid algorithm. Each firework
Xi has a probability of ρ to apply the migration operator, and
a probability of (1− ρ) to explode.

Since the migration operator helps to enhance the infor-
mation sharing and increase the solution diversity, and the
Gaussian explosion also utilizes the information of the global
best, we do not use the elitism method that always put the
best known individual to the new population (note that the
global best is always recorded by the algorithm). Algorithm 3
presents an overview of the hybrid BBO FWA.

Algorithm 3 The hybrid BBO FWA.
1 Randomly initialize a population P of n fireworks;
2 while (stop criterion is not met) do
3 for each firework Xi ∈ P do
4 if rand(0, 1) < ρ then
5 use Algorithm 2 to perform migration on Xi;
6 else
7 use Lines 5-12 of Algorithm 1 to produce sparks;
8 for j = 1 to Mg do
9 select a random firework Xi;
10 use Lines 15-18 of Algorithm 1 to produce a spark;
11 add the new individuals to P ;
12 randomly select n individuals for P ;
13 update Amin

k and the migration rates;
14 return the best individual found so far.

In general, for problems with complex objective functions,
we prefer to set a larger value of the probability ρ which
allows a smaller number of function evaluations to reduce
the computational burden. A larger ρ can also enhance the
solution diversity and thus improve the exploration ability for
multimodal functions. In contrast, a smaller ρ is more suitable
for those functions whose optima are often located in very
narrow or sharp ridges, since the normal explosion operator can
diverse the search along different directions and thus decrease
the chance of skipping the optima. Empirically, the value of ρ
can range from 0.5 to 0.8 to achieve an obvious performance
improvement over both BBO and FWA/EFWA. In the next
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section we will evaluate the influence of different values of ρ
to the algorithm performance on a set of benchmark functions.

IV. EXPERIMENTS

A. Experimental Setup

Yao et al. [22] provided a set 23 well-known test functions
for global optimization, from which we choose the first 13
high-dimensional functions as the benchmark problems, a brief
introduction of which is given in Table I. In this paper, we
set the dimensions D = 30 for all the functions; For those
functions having non-zero optimal values, we also simply add
some constants to the expression such that their optimal values
all become 0. The maximum number of function evaluations
(NFE) are set to 300’000 for f3, f4, and f5, and 150’000 for
the other 10 functions.

TABLE I. A SUMMARY OF THE BENCHMARK FUNCTIONS USED IN THE
PAPER.

ID Function Search range X∗

f1 Sphere [−100, 100]D 0D

f2 Schwefel 2.22 [−10, 10]D 0D

f3 Schwefel 1.2 [−100, 100]D 0D

f4 Schwefel 2.21 [−100, 100]D 0D

f5 Rosenbrock [−2.048, 2.048]D 1D

f6 Step [−100, 100]D 0D

f7 Quartic [−1.28, 1.28]D 0D

f8 Schwefel [−500, 500]D 420.9687D

f9 Rastrigin [−5.12, 5.12]D 0D

f10 Ackley [−32.768, 32.768]D 0D

f11 Griewank [−600, 600]D 0D

f12 Penalized1 [−50, 50]D 1D

f13 Penalized2 [−50, 50]D 1D

We compare our hybrid BBO FWA with the basic BBO
and EFWA on the benchmark problems. For BBO, we set I =
E = 1 and n = 50. For EFWA, we set ̂A = 40, Me =
50, Mg = 5, smax

i = 40, smax
i = 2, AU = 0.02(Xmax

k −
Xmin

k ), AL = 0.001(Xmax
k −Xmin

k ), and n = 5, as suggested
in [4] and [5]. BBO FWA inherits the parameter settings of
BBO and EFWA, except it uses a population size n = 10.
As we will see in the next subsection, for different problems,
the best value of p often varies. Nevertheless, for the sake
of fairness, we will use a general setting of p = 0.68 in the
comparative experiments, rather than fine-tuning the value for
each problem. The experiment environment is a computer of
Intel Core i5-2430M processor and 4GB memory.

B. Evaluation on the Migration Probability

On each benchmark problem, we first test the performance
of BBO FWA with p ranges from 0 to 1 with an interval
of 0.05. For each given value of p, the algorithm is run
for 60 times, and the mean best function error value is
recorded. The results reveal that, on most of the problems,
BBO FWA obtains the minimum mean errors with p in the
range [0.6,0.75].

Therefore, we re-test BBO FWA with p ranges from 0.6
to 0.75 with an interval of 0.01, and record the mean best
values obtained over the 60 runs. Combining the results, we
present the best value of p with which BBO FWA obtains the
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Fig. 3. The variation of BBO FWA performance with the value of p.

minimum mean error fmin on each problem in Table II. Note
that for f6, any value of p in the range of [0.3,0.95] makes
the algorithm obtain the global optimum.

TABLE II. THE BEST VALUE OF p FOR EACH BENCHMARK PROBLEM.

Function f1 f2 f3 f4 f5 f6
p∗ 0.7 0.8 0.67 0.55 0.7 0.3-0.95

Function f7 f8 f9 f10 f11 f12 f13
p∗ 0.75 0.95 0.75 0.67 0.45 0.73 0.68

The curves in Fig. 3 illustrates the variation of the mean
bests with p, where the y-axis values are set as log(f/fmin),
i.e., the natural logarithm of the ratio of the current mean error
to the minimum mean error.

As we can see, the relation between the algorithm perfor-
mance and the value of p is generally non-linear and non-
monotonic. First of all, the setting of p = 0 (i.e., the only
use of explosion) or p = 1 (i.e., the only use of migration)
always leads to the worst results. Thus, the combination of
two operators is always preferred. Roughly, we suggest using
a migration probability in the range of [0.6,0.75] for most
unknown problems. However, in order to achieve more precise
results, fine-tuning of the parameter p is needed.

C. Comparison with BBO and EFWA

On each test problem, we respectively run three algorithms
for 60 times with different random seeds, and compute mean
best values averaged over the 60 runs. Table I presents results
of the comparative experiments. In columns 1-3, the upper
part of each cell corresponds to mean best and the lower
part corresponds to standard deviation, and the bold values
indicate the minimum mean bests among the three algorithms.
We also conduct paired t-tests between BBO FWA and the
other two methods. In columns 2 and 3 of Table III, + indicates
that BBO FWA has significant performance improvement over
EFWA and BBO (at 95% confidence level), and – indicates vice
versa.

As we can see from the results, the general performance
of BBO FWA is much better than EFWA and BBO. In partic-
ular, BBO FWA has statistically significant improvement over
EFWA on all the problems, which shows that the integration
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of migration operator can effectively improve the performance
of the normal explosion operator of EFWA. Among the 13 test
problems, BBO FWA obtains the minimum mean bests on 11
problems, and BBO has the minimum mean bests only on
f7 and f8. Moreover, BBO only has significant improvement
over BBO FWA on f7, and on f8 there is no statistically
significant difference between BBO and BBO FWA. On the
contrary, BBO FWA has significant improvement over BBO
on 10 test problems. This also shows that the integrated
explosion/migration operator of BBO FWA can perform more
effective search than the single migration operator of BBO.

Fig 4(a)−(m) respectively present the convergence curves
of the algorithms on the 13 test problems, from which we
can see that, BBO FWA converges faster than the other two
algorithms on most of the problems (including f1−f3, f5−f7,
f9, and f11 − f13). BBO and EFWA respectively converge
faster on f4 and f10 at early stages, but are both overtaken
by BBO FWA by later stages. In particular, the convergence
processes of EFWA are left far behind BBO FWA on complex
multimodal problems such as f6, f12 and f13 because it is
easy to be trapped by local optima. In fact, on these functions
EFWA can sometimes get similar results to BBO FWA, but
it also occasionally obtains very large error values, which
greatly degrades the average performance over the 60 runs. The
BBO FWA’s advantages in convergence speed demonstrate
that the integration of migration to FWA can improve the
solution diversity to a great extent, and thus effectively avoid
premature convergence.

On the other hand, on many problems the convergence
curves of BBO and BBO FWA have similar shapes, but
in general BBO FWA converges faster and reaches better
results. This also demonstrates that the combination of normal
explosion operator can improve the exploration ability of the
migration operator, resulting in much more precise optima.
In summary, the integrated explosion/migration operator of
BBO FWA can achieve a better balance between solution
diversification and intensification, and thus exhibit much better
performance than both BBO and EFWA.

V. CONCLUSIONS

FWA is a metaheuristic method inspired by the phe-
nomenon of fireworks explosion, and has received much inter-
est in recent years. FWA has drawbacks of high computational
cost and lacking of information sharing among the population.
In this paper, we propose a hybrid algorithm BBO FWA,
which integrates the migration operator of BBO with the
explosion operator of FWA based on a migration probability,
and thus effectively increases the solution diversity without
harming the exploitation ability of FWA. Comparative Experi-
ments show that BBO FWA outperforms both FWA and BBO
on a set of well-known benchmark functions.

In this paper, BBO FWA uses a fixed migration probability
p which is easy to implement. However, as indicated by the
numerical experiments, the parameter value needs to be fine-
tuned to obtain the best results on different problems. We are
currently studying a self-adaptive strategy, which can dynami-
cally adjust the probability according to the state of the search.
Ongoing work also includes extending the hybrid algorithm
for constrained optimization and multiobjective optimization
problems.

TABLE III. THE EXPERIMENT RESULTS OF THE THREE ALGORITHMS.

Problem EFWA BBO BBO FWA
f1 2.56E+01 + 3.49E+00 + 1.92E-13

(7.56E+00) (1.53E+00) (5.49E-13)
f2 5.03E+00 + 6.94E-01 + 3.95E-10

(2.74E+00) (1.15E-01) (2.63E-10)
f3 1.09E+03 + 1.28E+01 + 1.62E-15

(5.08E+02) (6.84E+00) (1.05E-14)
f4 7.22E-01 + 2.91E+00 + 3.66E-02

(7.42E-01) (4.30E-01) (7.65E-02)
f5 1.24E+05 + 3.53E+02 + 5.54E+01

(9.06E+04) (1.06E+03) (8.62E+01)
f6 1.13E+03 + 3.17E+00 + 0.00E+00

(3.24E+02) (1.97E+00) (0.00E+00)
f7 1.75E-01 + 5.72E-03 7.23E-03

(7.14E-02) (4.07E-03) (4.51E-03)
f8 1.00E+04 + 8.92E+00 – 9.19E+03

(9.55E+02) (3.34E+00) (9.22E+02)
f9 1.11E+02 + 1.70E+00 1.63E+00

(2.31E+01) (5.88E-01) (9.64E-01)
f10 4.89E+00 + 9.04E-01 + 3.09E-10

(1.01E+00) (2.42E-01) (2.78E-10)
f11 2.31E-02 + 1.00E+00 + 1.47E-02

(1.26E-02) (4.02E-02) (1.54E-02)
f12 2.52E+02 + 9.14E-02 + 2.51E-02

(5.89E+02) (4.74E-02) (7.79E-02)
f13 2.09E+04 + 5.00E-01 + 9.16E-04

(2.64E+04) (1.91E-01) (3.06E-03)
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