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Abstract— The synthesis of exact integer algorithms is a hard
task for Genetic Programming (GP), as it exhibits epistasis
and deceptiveness. Most existing studies in this domain only
target few and simple problems or test a small set of different
representations. In this paper, we present the (to the best
of our knowledge) largest study on this domain to date.
We first propose a novel benchmark suite of 20 non-trivial
problems with a variety of different features. We then test
two approaches to reduce the impact of the negative features:
(a) a new nested form of Transactional Memory (TM) to reduce
epistatic effects by allowing instructions in the program code
to be permutated with less impact on the program behavior
and (b) our recently published Frequency Fitness Assignment
method (FFA) to reduce the chance of premature convergence
on deceptive problems. In a full-factorial experiment with six
different loop instructions, TM, and FFA, we find that GP is able
to solve all benchmark problems, although not all of them with a
high success rate. Several interesting algorithms are discovered.
FFA has a tremendous positive impact while TM turns out not
to be useful.

I. INTRODUCTION

Genetic Programming (GP) is a family of Evolutionary Al-

gorithms where the candidate solutions are programs, usually

represented as tree data structures [1]. GP is most successful

in areas such as Symbolic Regression, where the evolved

programs x compute approximate results, i.e., where the

difference between the output of a program for a training

case and the expected result is a meaningful quality measure.

Synthesizing exact algorithms poses a more difficult prob-

lem. When computing the greatest common divisor of two

numbers or performing a prime test, the results are either

right or wrong. Additionally, correct solutions (programs)

need to employ memory and loops or recursion and cannot

be reduced to closed formulas. In such problems, the number

of solved training cases is often used as objective function

instead of an (meaningless) error sum. Two characteristic

pathologies emerge:

• Epistasis. Adding, removing, or rearranging instructions

has a huge (usually negative) impact on the behavior of

a program.

• Deceptiveness. The objective functions are deceptive,

since a program which can solve 80% of the training

cases is not necessarily more similar to an exact solution

which can only solve 10% [2].

As a result, the evolution of integer algorithms has not

seen much progress. Existing studies often consider only
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few and simple problems, test very few different (sometimes

problem-tailored) instruction sets, and do not target epistasis

or deceptiveness, as we will show in Section II. Our own

prior works [2–4], which build the foundations for this study,

have similar shortcomings. Here, we follow a more holistic

approach in order to improve on this situation:

• We introduce a benchmark suite for integer algorithm

synthesis with 20 problems targeting several different

aspects of the domain.

• We test two different approaches in order to improve

the success probability of GP: the new Transactional

Memory idea (TM) to reduce epistasis and the recently

published Frequency Fitness Assignment (FFA, [2]) to

find better solutions for deceptive problems.

• We conduct a large-scale experimental study where we

apply the above two methods in conjunction with six

different loop instructions from [3].

With this largest experimental study on evolutionary algo-

rithm synthesis, we explore the current limits of GP. We also

improve the capabilities of GP in this domain and with our

new methods.

We find that GP can solve several hard algorithm synthesis

tasks. Problems that require loops and many memory cells

tend to be hardest. FFA significantly improves the success

probability of GP in algorithm synthesis problems. Differ-

ently from our anticipation in the future work section of [4],

the introduction of Transactional Memory into GP did not

turn out to be helpful.

In the following section, we will discuss related works

on loop structures, epistasis, and deceptiveness in GP. Then,

in Section III, we define the approaches used in the present

study, regarding the same three topics. A new suite of twenty

benchmark problems is introduced in Section IV and then

used in the experimental study described in Section V. We

summarize our findings in Section VI.

II. RELATED WORK

A. GP of Algorithms with Loops

Non-trivial algorithm synthesis problems require iterative

computations. A program representation must thus provide

control flow primitives such as recursion or loops. The latter

is the subject of our study.

Pioneering work in this area has been done by Koza [1].

Conditional loop instructions were used by his student Finkel

[5] to solve the factoring problem. Lai [6] used GP with loops

to solve the greatest common divisor problem, which is also

present in our benchmark suite. Qi et al. [7] introduced a

loop which always performs N iterations, where N is given
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beforehand by experience. Nesting of loops is forbidden

(but allowed in our study). Ciesielski and Li [8] applied

two forms of for-loop structures to solve a modified Santa

Fe trail problem and a sorting task. The counter loop CL
(see Section III-A) in our experiments works in the same

way. Wijesinghe and Ciesielski [9] use CL-style loops to

produce regular patterns in bit strings of different length. The

main differences to our study are the problem types (exact

integer algorithms vs. bit pattern generation) and our more

general setup (multiple loop instruction, multiple different

benchmarks, FFA, TM). Chen and Zhang [10] used a loop

which is similar to our while loop to solve the factorial

problem, which we discuss in Section IV. In this work, the

instruction set used was very small so the achieved success

rates may not be generalized.

In summary, we can state that most of the related works

either focus on very few loop structures and very few

problems, have an instruction set tailored to the problem,

or consider static problems which can also be solved by

overfitted, non-general programs.

B. Epistasis in Genetic Programming

Epistasis is defined as a form of interaction between different

genes in biology. In GP, we can observe mutual dependencies

between the instructions of a program, which is one of the

main difficulties when synthesizing algorithms.

One way to reduce the epistasis in GP are soft assign-

ments [11]. Traditionally, instructions like x=y overwrite the

value of x with the value of y. In [11], this strict semantic is

replaced with xt+1 = γyt+(1−γ)xt where xt+1 is the value

that the variable x will have after and xt its value before the

assignment. In the exact algorithm synthesis domain, where

approximate results are useless, this method is not applicable.

In our previous work [4], we proposed the Rule-based

Genetic Programming (RBGP) method in order to reduce the

epistasis in GP. Here, a program is represented as a set of

rules, each consisting of a condition and an action part. The

action part of a rule may modify a variable and is executed if

the condition evaluates to true. The new value of the variable

is kept in a temporary storage W, which is committed to the

memory R after all rules have been applied. The program is

executed in a loop as long as variables change.

In RBGP, the order of rules plays almost no role. A random

permutation of its rules is unlikely to change a program’s

behavior, since R changes only after all rules have been

evaluated. The drawback of this method is that it does not

allow for nested control scopes.

C. Deceptiveness in Genetic Programming

Objective functions representing the successfully solved

training cases in algorithm synthesis are likely to be decep-

tive. A program x1 that can solve 30% of the training cases

is not necessarily structurally closer to a correct solution than

a program x2 that can solve only 10% of them [2]. However,

the selection schemes common in GP all will with high

probability choose x1 over x2, regardless of how often such

a choice has already been made in the past and whether or

not it led to any further improvement. Thus, the optimization

process may get trapped in a local optimum.

Two approaches that integrate with EAs to solve problems

with such features are Fitness Uniform Selection Scheme

(FUSS) [12] and Novelty Search (NS) [13]. FUSS selects

individuals uniformly distributed in the objective space

spanned by the current population and NS selects individuals

which behave differently from previous solutions. NS is not

applicable in this domain, since there are too many programs

with different outputs (behaviors) for a given input. We apply

FFA in our experiments, which is similar to FUSS, with the

advantage that it allows GP to temporarily perform strong

exploitation [2] (see Section III-C).

III. APPROACHES IN THIS STUDY

A. Loop Structures

The loop structures used in our experiments are based on our

prior work [3]. The first three loop instructions are similar

to what we know from high-level programming languages,

where the number of iterations is determined by an explicit

expression. The second three iterate until some implicit

condition defined over the environment is met, e.g., until

no variable changes anymore. Figure 1 illustrates algorithms

for computing the gcd (greatest common divisor) with each

of these instructions.

The nodes which represent a counter loop CL have sub-

trees, x and y. x, evaluated before entering the loop, is an

expression returning the number of times the loop body y is

to be executed.

The first subtree x of a memory loop is a terminal node

identifying a variable. The second one, y, represents the loop

body, which can access and modify x. y is executed until x
becomes less or equal to 0. x is decreased by one in each

loop iteration.

The while loop WL has the same structure as CL and is

similar to the loop used in [10]. Here, the subtree x represents

a condition. The loop body y is repeatedly executed until x

evaluates to 0.

The new conditional assignment operator CA is similar to

RBGP [4] with the extension that it also allows the nesting of

conditions and assignments and does not necessarily utilize

Transactional Memory. CA replaces the variable assignment

instruction “=” and has three subtrees: x, y, and z. x is a

single terminal node identifying the target variable. The value

of the expression z will only be computed and assigned to

the variable x (and returned) if the condition y evaluates to

a non-zero value. Otherwise, the return value of the CA node

is 0. In this representation, the complete programs will be

evaluated repeatedly until no variable changes anymore.

The implicit loop IL has only a single subtree x repre-

senting the loop body, which will be evaluated until there is

no change in any variable anymore.

Finally, we combine IL with CA and obtain the represen-

tation IC by replacing the traditional “=” operator with its
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Fig. 1: Algorithms that compute the GCD (greatest common divisor) of two variables m0 and m1 and return it in the last

memory cell m1 (m2 for ML), i.e., that solve the gcd problem. (see Table II for the definition of the instructions)

1.a: based on CL 1.b: based on ML 1.c: based on WL 1.d: based on CA 1.e: based on IL

Fig. 2: A program using transactional memory for computing

the factorial p of a natural number a.

conditional version and providing the implicit loop node in

the instruction set.

B. Transactional Memory

A single piece of transactional memory, as used in RBGP,

does not allow for more complex control structures. Loop

conditions must be repeated in each instruction inside the

loop, which makes the specification of nested loops compli-

cated and their evolution less likely.

In order to integrate the beneficial transactional memory

concept into standard GP and to enable the evolution of more

complex control flows, we propose the nesting of memory

structures, i.e., to provide one RBGP-style memory record

for each (nested) control scope. We therefore use a stack M
of these records in the program interpreter. Whenever a new

control structure (a loop or a block of instructions) is entered,

a new copy Mi+1 of the current memory Mi is pushed on top

of M. Like in RBGP, we distinguish variable values Mi.R seen

by read accesses and the uncommitted written values Mi.W.

When entering a new block or loop, both the memory

Mi+1.R and Mi+1.W are copied from Mi.W. Transparent to

the program in execution, its memory reading and writing

operations always access the memory records on top of

the stack. At the end of the control structures, this record

is committed to its predecessor record (Mi ←− Mi+1),

again invisible to the program. The process in execution

has no knowledge about the stack of memories – only the

interpretation of memory accesses has changed.

We illustrate the nested Transactional Memory approach

using the example program given in Figure 2, which com-

putes the factorial p of a natural number a. Both assignments

are implicitly translated to changing the write memory M1.W
with values computed from the read memory M1.R of the

second memory record and current top-of-stack M1. Since

M1.W is committed to M1.R only at the bottom of the loop,

both instructions inside the loop see exactly the same values,

regardless in which order they are executed. This principle

holds for arbitrarily nested loops and can be extended to

function calls. We refer to this new nested memory setup

as Transactional Memory (TM) and to GP setups with a

traditional, single memory cell array as simple memory (SM).

C. Frequency Fitness Assignment

The objective function f(x) ∈ [0, 1] in our work returns the

error rate, the fraction of training cases t for which a program

x gave the wrong result. f is specified in Equation 1, where

tc is the total number of training cases and φ is the correct

result for a training case.

f(x) =
|{i : (i ∈ 1..tc) ∧ (x(ti) 6= φ(ti))}|

tc
(1)

Frequency Fitness [2] is a fitness measure that can be

substituted in place of the direct invocation of the objective

function in an optimization process. It rewards the discovery

of new and different behaviors (from the perspective of the

original objective function) instead of just good objective

values.

The Frequency Fitness H [f(x)] represents the history of

the search accumulated in a lookup table H . If tc training

cases are used, there are tc+ 1 possible objective values 0,
1
tc

, 2
tc

, . . . , 1. For each of these objective values y ∈ [0, 1],
H holds the number of times it was discovered during the

optimization process. We use this value as fitness measure

in GP.

In our domain, most of the possible programs x cannot

solve any training case and have objective value y = f(x) =
1. Under FFA, the fact that many programs have this bad

objective value means that the frequency of y = 1, H [1],
will quickly increase. As H is subject to minimization,

these solutions will be considered as bad by the optimization

process – exactly as if f was used directly.

All objective values f(x′) are treated the same by FFA
when they are discovered first. At this point in time, they are
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Fig. 3: The GP-FFA process as an extension of the original

GP-DIR.

1) Allocate a frequency table H of appropriate size to accommodate
one integer for each of the tc + 1 possible objective values.
Initialize all table slots with 0.

2) Generate initial population with ramped-half-and-half.

3) Compute the objective value of each of the n programs x in the
population Pop.

4) FFA: update the frequency table H: ∀x ∈ Pop do
H [f(x)]←− H [f(x)] + 1.

5) Fill a mating pool of n individuals by choosing them from Pop with a
selection algorithm (e.g., tournament selection). Instead of using f(·)
for comparing individuals, use the Frequency Fitness H [f(·)].

6) Create a new population by deriving mr ∗ n individuals via sub-
tree replacement mutation and (1−mr) ∗ n individuals via sub-tree
exchange crossover from the parent programs in the mating pool.

7) If the maximum number of generations has not been exhausted, go
back to Step 3.

8) Return: The program with the best f -value found.

local optima and H [f(x′)] = 1 holds. Solutions with easy-

to-discover features will be sampled often and become unin-

teresting as the frequency of their objective value increases.

Thus, FFA allows GP to escape from local optima. GP-FFA
remembers the solution with the best objective value and

returns it even if the GP process abandons it later. We refer

to GP setups with Frequency Fitness as FFA and to those

without as DIR and illustrate both in Figure 3.

IV. BENCHMARK PROBLEMS

In order to get a broad overview of the ability of Genetic

Programming to synthesize exact integer algorithms, we

chose 20 benchmark problems with different features (as

summarized in Table I). For most of these problems, we

use tc = 100 training cases ti to evaluate the error rate f

of the candidate solutions x. Each training case t has one

expected output value φ(t) and usually one input value, but

there also are problems where with more inputs. The training

cases are stored in the first memory cells and the remainder

of the q memory cells are initialized with zero prior starting

a program x. After the execution of x, we expect its result

x(ti) to be stored in its last memory cell mq-1. Most of

the problems ask for an integer result, but two are Boolean

decision tasks and either 0 or 1 as output.

1) Polynomial Problem [po2]. In the polynomial problem

po2 [3] with φ1(ti) = t3i + t2i +2 ∗ ti the training cases are

the natural numbers from 1 to 100.

2) Sum Problem [su2]. The goal of the sum problem su2 [3]

is to find the sum φ2(ti) =
∑ti

j=1 j of the first ti natural

numbers [3], where ti = i. The division operation is not

present in the instruction set, thus forcing GP to synthesize

loops.

3) Factorial Problem [fac]. The factorial problem fac [3,

10] asks for a program which can compute φ3(ti) = ti! of

a natural number ti = i. The tc = 12 training cases are

the natural numbers from 1 to 12. The last memory cell is

always initialized to 1 before program startup.

4+5) Three Memory Cell Versions [po3, su3]. We repeat

TABLE I: Characteristics and descriptions of the bench-

marks.

A) Number q of Memory Cells
Goal: Explore impact of number of memory cells

2: Problems 1 (po2) to 3 (fac)
3: Problems 4+5 (po3) to 17 (mod)
5: Problems 18 (mi5) to 20 (sm5)

B) Number tc of Training Cases
Goal: Explore impact of number of possible objective values

12: Problem 3 (fac)
31: Problem 7 (exp)
40: Problem 8 (ℓ20)

100: all others

C) Number of Input Parameters for Program
Goal: Explore impact of number of input parameters

1: Problems 1 (po2) to 5 (su3), 7 (exp) to 14 (lsb), and 16 (qad)
2: Problems 6 (gcd), 15 (mul), and 17 (mod)
5: Problems 18 (mi5) to 20 (sm5)

D) Result Type
Goal: Explore influence of result type

1. Boolean decision problem (0/1): Problems 8 (ℓ20) and 9 (prm)
2. Computation with integer result: all others

E) Is a Loop Required?
Goal: Are problems that require loops harder, i.e., are loops harder to synthesize
than sequences with multiple copies of instructions?

1. very likely: Problems 2 (su2), 5 (su3), 7 (exp), 9 (prm), 10 (ssq),
and 14 (lsb) to 17 (mod)

2. only few iterations (may be unwound): Problems 3 (fac), 6 (gcd),
and 11 (sra) to 13 (ild)

3. no: Problems 1 (po2), 4 (po3), 8 (ℓ20), and 18 (mi5) to 20 (sm5)

F) Number of Symbols (Functions+Terminals) Available to GP
Goal: Which impact have more symbols = larger search spaces?

7: Problems 15 (mul) to 17 (mod)
8: Problems 1 (po2) to 3 (fac)
9: Problems 4 (po3) to 6 (gcd)

10: Problems 7 (exp) to 14 (lsb)
12: Problems 18 (mi5) to 20 (sm5)

This is not strictly a feature of the benchmark suite. The two constants (0 and
1) and read access to each memory cell are counted, the loop structure is not
counted, as CA does not have one.

the polynomial (po2) and sum (su2) problems, but provide

q = 3 instead of 2 memory cells, as tasks po3 and su3. This

gives information about how GP scales with the number of

available memory cells.

6) GCD Problem [gcd]. In the gcd problem [3, 6], we

try to find an algorithm which can compute the greatest

common divisor φ6(ti,1, ti,2) = gcd(ti,1, ti,2). A training

case ti = (ti,1, ti,2) this time consists of the two natural

numbers ti,1 and ti,2.

For each of the tc = 100 training cases, we first generate

a number ξ ∈ 1..16 and then, separately for ti,1 and ti,2,

use ξ multiplied with uniform random numbers in 1..16 for

a random number of repetitions. This way, we obtain a wide

set of possible gcd results.

7) Binary Exponent Problem [exp]. Solving the binary ex-

ponent problem (exp) means to find an algorithm computing

φ7(ti) = 2ti . There are tc = 31 training cases ti+1 = 2i with

i ∈ 0 . . . 30. From this problem on (except for tasks mul
to mod), the division operator is available to GP.

8) Less-Than-20 [ℓ20]. The goal of the “less-than-20” task

is to find a program that returns 0 if the training case ti
has a value of 20 or above and 1 otherwise, i.e., φ8(ti) =
{

1 if ti < 20
0 otherwise

. The difficulty here lies within producing an

accurate result (0 or 1) with arithmetic operations only. This

is made harder as only 0 and 1 are available as constants (and
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not 20). The training cases are the natural numbers from 0
to 39.

9) Prime Problem [prm]. In the prime problem, a function

needs to be found that returns 1 if a number ti is prime and

0 otherwise, i.e., φ9(ti) =
{

1 if ti is prime

0 otherwise
. This problem is

harder than the ℓ20 task, as it requires the evolved algorithms

to test all potential divisors except 1 and ti itself. All of

the tc = 100 unique training cases are from 2..499. Half of

them are prime numbers, the others are uniformly distributed

random non-prime numbers.

10) Sum-of-Squares Problem [ssq]. In the sum-of-squares

task, the expected results is φ10(ti) =
∑ti

i=1 i
2. This is a

harder version of the sum problem, as it requires squaring

the elements before adding them up. The training cases the

numbers from 0 to 99.

11) Square Root Problem [sra]. In the square root task, the

goal is to find a program which can compute φ11(ti) =
√
ti

where the tc = 100 and ti = i2 with i ∈ 0..99.

12) Square Root Problem 2 [srb]. We repeat the sra
experiment with the 100 numbers from 0..99 as training cases

and set φ12(ti) =
⌊√

ti
⌋

. This should be harder, as there now

are training cases which do not have an exact integer root.

13) Iterated Binary Logarithm Problem [ild]. The iterated

version of the binary logarithm y = 2x ⇒ ld(y) = ⌊x⌋ is de-

fined as ld⋆(y) =
{

0 if ti ≤ 1
1 + ld⋆(ld(y)) otherwise

and φ13(ti) = ld⋆(ti).

This problem is again hard, as it requires repeated division by

2 while counting up in another variable. As training cases, we

use the natural numbers from 0 to 19 additional to 80 unique

random numbers uniformly distributed in 20..(231 − 1).

14) Least Significant Bit Problem [lsb]. The value of

the least significant bit in the two’s complement repre-

sentation of an integer number ti is the value φ14(ti) =
argmaxj∈N0

{

2j |ti
}

. Here we use tc = 100 unique ran-

dom training cases which are approximately1 uniformly

distributed in φ9(ti). For each training case, this is achieved

by shifting a bit mask full of 1 bits to the left by a

random number uniformly distributed in 0..31 and computing

binary and with a random number uniformly distributed in

1..(231 − 1).

15) Multiplication Problem [mul]. In the mul problem,

we want to find an algorithm that can multiply two nat-

ural numbers φ15(ti) = ti,1 ∗ ti,2. The training cases are

tuples ti = (ti,1, ti,2) uniformly randomly distributed with

ti,1, ti,2 ∈ 0..249. For this and the following two problems,

the multiplication, division, and modulo division operators

have been excluded from the function set.

16) Quadratic Function Problem [qad]. Solving the qad
problem means synthesizing an algorithm that can compute

φ16(ti) = (ti − 1)(ti + 2), again without multiplication and

division. The training cases are the numbers from 0 to 99.

17) Modulo Division Problem [mod]. The modulo di-

vision problem mod aims at creating an algorithm that

1There are too few numbers with φ14 of 0, 1, etc. to achieve a fully
uniform distribution.

TABLE II: Basic operators in our experiments.

Operator Function

+, − Addition, Subtraction.
∗ multiplication, only available in problems 1–14 and 18–20
a/b protected division, returns a

b
if b 6= 0, and a otherwise,

only available in problems 7–14 and 18–20
a%b protected modulo division, returns a mod b if b 6= 0, and

a otherwise, only available in problems 1–14 and 18–20
mi = ξ fixed-index memory assignment, set the value of variable

mi to the result of the expression ξ (which is also returned)
a; b concatenation of two expressions a and b, return value of

b
m0, .., mq-1 the value of the one of q memory variables
0, 1 the only two ephemeral random constants (ERCs) available

can compute φ17(ti) = ti,1 mod ti,2, i.e., the remainder

of the division of ti,1 by ti,2. The training cases are

tc = 100 tuples of two numbers, this time of the form

(1, 1) , (2, 1) , (2, 2) , (3, 1) , (3, 2) , (3, 3) , (4, 1) , . . . .

18) Minimum-of-Five Problem [mi5]. The last three prob-

lems all have five memory cells and the complete operator

set (including multiplication, division, and modulo division)

available. Their tc = 100 training cases are random numbers

uniformly distributed in 0..(231 − 1). In the mi5 task, the

goal is to find the smallest of five numbers, i.e., φ18(ti) =
min {ti,1, ti,2, ti,3, ti,4, ti,5}.

The hardness of this task lies in the complex required code

structure. No comparison operator or if-then-else construct is

available. As memory is not indexed, each comparison must

be synthesized separately and code replication will not work.

19) Maximum-of-Five Problem [ma5]. In the ma5 task, the

goal is to find the largest of five numbers, i.e., φ19(ti) =
max {ti,1, ti,2, ti,3, ti,4, ti,5}.

20) Sum-of-Five Problem [sm5]. In the sm5 task, the goal

is to find the sum of five numbers, i.e., φ20(ti) = ti,1 +
ti,2 + ti,3 + ti,4 + ti,5. This should be harder than the mi5
and ma5 task, as here no partially correct program exists (a

program only computing max {ti,1, ti,2} should have a hit

rate of 40% in ma5).

V. EXPERIMENTS

A. Setup

We use the Genetic Programming implementation of the ECJ

framework [14] with a population size of 1000, a generation

limit of 100, tournament selection with 7 contestants, 10%
point mutation, 90% subtree exchange crossover, and a

maximum tree depth of 17, as these settings performed well

in previous experiments [3]. The instruction set is given in

Table II. In the experiment, each of the six loop instructions

is combined with either FFA or DIR and TM or SM. For each

setting we performed 100 runs.

During the execution of a program, all of its loops together

are allowed to perform at most 1000 iterations before it is

forcefully terminated in order to prevent endless loops. The

return value of a loop expression is the result of the sub-

expression evaluated last.
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B. Results

In total, we performed 48 000 runs, out of which only

5422 (11%) were successful, i.e., found a solution satisfying

all training cases. This shows how hard the evolutionary

synthesis of algorithms is, but also that it is not impossible.

1) Success Rate: In Table III, we print the fractions of

successful runs for the different configurations and bench-

mark problems, i.e., the average number of runs that find the

solution. The table presents the success rates of specific con-

figurations of memory, fitness assignment, and loop structure

in the lower and the mean rates aggregated over multiple

setups in the upper part. The worst value per column and

division is printed in gray color and the best in bold face.

a) Performance of Frequency Fitness: GP-FFA outper-

forms plain GP-DIR in 17 out of 20 problems and has a

40% higher mean success rate. There are 240 configuration

pairs which only differ in whether GP-FFA or GP-DIR
was applied. In 124 of these, the success rate achieved with

GP-FFA is higher and only in 31 it is lower. In total,

3378 runs of GP-FFA were successful, whereas GP-DIR
only discovered 2320 correct programs. Several task/loop

structure combinations were only successful in conjunction

with GP-FFA, e.g., IL on sm5 or CL on sra.

b) Performance of Transactional Memory: Our second

new approach, Transactional Memory, does not have an

overall good impact: its mean success rate is worse in 17

out of 20 experiments. Looking at “TM vs. SM” configuration

pairs, we find 53 situations where TM improved the success

rate and 112 where decreased it. GP with TM found 2215

solutions in total, while SM found 3483.

c) Performance of Loop Structures: The best loop

structures, memory loop ML and conditional assignment CA,

were both successful in 16% of all cases, with FFA even

in 18%. The most efficient setup is SM-FFA-ML which finds

correct solutions in about one fourth of all runs. The worst

mean success rates have configurations with implicit loop IL
and the while loop WL.

d) Influence of Problem Features: The easiest problem

was the less-than-20 task ℓ20, followed by the greatest com-

mon divisor (gcd) and maximum-of-five (ma5) problems.

Interestingly, they differ in almost all features. The only thing

they have in common is that they can be solved either without

loop structure or with an unwound loop.

Amongst the hardest tasks we find the prime number

detection prm, the least significant bit task lsb, the square

root task srb, and the sum-of-squares problem ssq. They

all require a loop structure and for none of them a loop over

a simple arithmetic operation (as, e.g., in the su2 task) is

sufficient. In the prime problem, this feature is combined

with a Boolean decision task.

Whether synthesizing a loop structure is necessary to solve

a task seems to be the problem feature with the largest impact

on the success rate. Still, for each problem there is at least

one configuration achieving a success rate of at least 4% and

each problem was solved at least 16 times, which definitely

is significant.

Increasing the number q of memory cells from two to

three (po2 and su2 vs. po3 and su3) basically halves the

success rates. Although they even require five memory cells,

the problems mi5 and ma5 can still be solved at fairly high

rates, likely because they do not require loop structures.

2) Objective Function: Since the problems may be decep-

tive [2, 13], analyzing the success rate should be preferred

over analyzing the objective values. Nevertheless, if we

compare the runs using FFA with those using f directly,

we find a much faster decline of the objective values (not

illustrated here). The runs with TM converge slower than

those with SM. Over all problems and setups, ML, CA, and

the primitive CL perform best with respect to f .

3) Runtime: In Table IV, we provide the median required

time per run measured in seconds for single-thread execu-

tions on an Intel Core i7 2.0GHz CPU, and 4GiB RAM,

Java 1.7.0 01, and Windows 7 64bit.

FFA increases the median runtime because close-to-correct

solutions are discovered more often. These often employ loop

structures and run longer. TM increases the runtime as well,

as it requires more complex interpretation.

The setup SM-FFA-ML, which needs about 40s per run at

a success rate of 24%, seems to be a very effective choice.

Although the conditional assignment CA often finds good

solutions too, its runtime is about 20% higher, as it requires

variable convergence detection.

4) Evolved Programs: Besides the statistical evaluation

of the experiments, it is also interesting to see what kind of

programs actually evolved. We cannot conduct a complete

analysis of all 5700 evolved correct programs. We selected

one program for each problem and translated it to Java. We

list the most interesting and short ones in Figure 4.

The counter-loop program given in Figure 4.c looks con-

fusing but indeed computes
⌊√

t
⌋

for any positive integer t.

Inside the loop, this program contains two identical copies

of two lines of code. If one dares to remove one of these two

copies, the program still works correctly . . . except for the

single input (training case) 5, for which it will then calculate

1 (instead of 2).

The most interesting result among the selection may be

the CA-based algorithm 4.f using Transactional Memory for

computing the lsb. It needs many iterations for small inputs

and becomes faster for larger inputs: It needs more than

42s to compute lsb(1) = 1, 13s to get lsb(3) = 1, 0.5s

for lsb(105) = 1, and 0.1s to get lsb(532) = 4 on the

aforementioned system. This algorithm seemingly utilizes an

overflow of the 32bit arithmetic.

All in all, we can confirm that GP is able to synthesize

non-trivial algorithms and even sometimes discovers entirely

new and potentially odd approaches for solving hard prob-

lems.

VI. CONCLUSIONS

The findings and key contributions of this paper can be

summarized as follows: First, we contribute a benchmark

suite with 20 test problems. This suite covers many different

aspects that make an algorithm synthesis task hard.
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TABLE III: The success rates, i.e., the number of runs which found algorithms that can solve all training cases correctly,

for different settings.

Setup po2 su2 po3 su3 fac gcd exp ℓ20 prm ssq sra srb ild lsb mul qad mod mi5 ma5 sm5 All

Memory: normal memory access (SM), transactional memory (TM), see Section III-B; aggregated over all settings

SM 0.16 0.12 0.09 0.07 0.07 0.48 0.05 0.87 0.01 0.02 0.08 0.02 0.03 0.01 0.23 0.07 0.07 0.20 0.23 0.04 0.15

TM 0.12 0.09 0.05 0.05 0.13 0.22 0.00 0.65 0.00 0.01 0.06 0.00 0.02 0.01 0.06 0.04 0.01 0.09 0.14 0.09 0.09

Fitness: error rate f used directly (DIR), Frequency Fitness (of error rate) (FFA), see Section III-C; aggregated over all settings

DIR 0.10 0.10 0.05 0.05 0.07 0.29 0.03 0.66 0.00 0.02 0.06 0.00 0.03 0.01 0.12 0.01 0.03 0.10 0.13 0.06 0.10

FFA 0.18 0.11 0.09 0.07 0.13 0.41 0.03 0.86 0.01 0.01 0.08 0.02 0.02 0.01 0.17 0.09 0.05 0.20 0.24 0.07 0.14

The full factorial resolution, i.e., results for each specific setup of memory, fitness assignment, and loop structure.

SM-DIR-CL 0.14 0.03 0.04 0.01 0.01 0.37 0.20 0.93 0.00 0.00 0.01 0.00 0.00 0.00 0.44 0.07 0.22 0.04 0.07 0.11 0.13

SM-DIR-ML 0.18 0.66 0.08 0.32 0.27 0.36 0.11 0.70 0.00 0.21 0.03 0.00 0.01 0.00 0.63 0.01 0.13 0.00 0.00 0.04 0.19

SM-DIR-WL 0.11 0.00 0.08 0.00 0.00 0.42 0.00 0.51 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.06

SM-DIR-CA 0.11 0.00 0.08 0.00 0.00 0.55 0.00 0.93 0.01 0.00 0.14 0.01 0.13 0.03 0.00 0.00 0.00 0.40 0.50 0.00 0.14

SM-DIR-IL 0.09 0.01 0.11 0.01 0.00 0.10 0.00 0.81 0.00 0.00 0.04 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.06

SM-DIR-IC 0.04 0.03 0.00 0.00 0.00 0.68 0.00 0.88 0.01 0.00 0.13 0.02 0.05 0.02 0.01 0.00 0.00 0.43 0.55 0.02 0.14

SM-FFA-CL 0.32 0.03 0.16 0.00 0.03 0.41 0.19 1.00 0.00 0.00 0.01 0.07 0.00 0.00 0.72 0.41 0.31 0.19 0.17 0.05 0.20

SM-FFA-ML 0.14 0.57 0.15 0.46 0.45 0.47 0.12 0.92 0.02 0.05 0.05 0.00 0.00 0.00 0.89 0.30 0.15 0.00 0.00 0.06 0.24

SM-FFA-WL 0.32 0.00 0.17 0.02 0.04 0.46 0.00 0.90 0.01 0.00 0.01 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.02 0.06 0.10

SM-FFA-CA 0.17 0.00 0.05 0.00 0.02 0.80 0.00 0.97 0.02 0.00 0.22 0.06 0.02 0.01 0.00 0.00 0.00 0.64 0.74 0.00 0.19

SM-FFA-IL 0.21 0.03 0.11 0.00 0.00 0.42 0.01 0.93 0.01 0.00 0.15 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10

SM-FFA-IC 0.12 0.02 0.01 0.03 0.00 0.76 0.00 0.90 0.05 0.00 0.16 0.03 0.01 0.01 0.01 0.00 0.00 0.72 0.74 0.04 0.18

TM-DIR-CL 0.12 0.07 0.07 0.03 0.01 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.05 0.04 0.00 0.00 0.13 0.08

TM-DIR-ML 0.17 0.27 0.04 0.14 0.43 0.01 0.00 0.30 0.00 0.01 0.18 0.00 0.03 0.00 0.03 0.00 0.01 0.00 0.00 0.14 0.09

TM-DIR-WL 0.15 0.00 0.07 0.00 0.00 0.11 0.00 0.24 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.04

TM-DIR-CA 0.04 0.05 0.04 0.08 0.05 0.83 0.00 0.66 0.00 0.00 0.11 0.01 0.06 0.01 0.04 0.01 0.00 0.24 0.30 0.10 0.13

TM-DIR-IL 0.03 0.01 0.02 0.00 0.00 0.04 0.00 0.75 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.05

TM-DIR-IC 0.04 0.03 0.00 0.01 0.09 0.05 0.00 0.45 0.00 0.00 0.04 0.00 0.03 0.02 0.00 0.00 0.00 0.05 0.15 0.06 0.05

TM-FFA-CL 0.20 0.04 0.12 0.06 0.01 0.00 0.02 1.00 0.00 0.00 0.00 0.00 0.01 0.00 0.34 0.32 0.07 0.00 0.00 0.09 0.11

TM-FFA-ML 0.24 0.28 0.09 0.13 0.58 0.00 0.00 0.72 0.00 0.03 0.05 0.00 0.01 0.00 0.07 0.09 0.04 0.00 0.00 0.12 0.12

TM-FFA-WL 0.17 0.00 0.15 0.00 0.00 0.17 0.00 0.74 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.08 0.16 0.16 0.08

TM-FFA-CA 0.15 0.14 0.01 0.06 0.21 0.87 0.00 0.76 0.01 0.02 0.12 0.01 0.00 0.04 0.03 0.00 0.00 0.45 0.63 0.12 0.18

TM-FFA-IL 0.03 0.06 0.03 0.02 0.02 0.42 0.00 0.76 0.00 0.00 0.09 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.01 0.04 0.08

TM-FFA-IC 0.05 0.14 0.00 0.04 0.15 0.09 0.01 0.66 0.01 0.00 0.05 0.01 0.00 0.01 0.00 0.00 0.00 0.29 0.44 0.01 0.10

All 0.14 0.10 0.07 0.06 0.10 0.35 0.03 0.76 0.01 0.01 0.07 0.01 0.02 0.01 0.14 0.05 0.04 0.15 0.19 0.06 0.12

TABLE IV: The median time per run in seconds, aggregated over all setups of the groups given in the left-most column.

Setup po2 su2 po3 su3 fac gcd exp ℓ20 prm ssq sra srb ild lsb mul qad mod mi5 ma5 sm5 All

Memory: normal memory access (SM), transactional memory (TM), see Section III-B; aggregated over all settings

SM 38.8 54.1 27.1 54.5 7.8 35.8 22.6 12.0 99.7 44.2 65.3 65.7 57.3 57.4 16.4 38.8 42.4 38.4 39.2 27.7 40.1

TM 39.8 50.3 22.0 50.3 7.2 55.2 23.5 25.6 116.8 45.8 73.4 73.8 70.5 62.3 33.3 41.7 64.3 58.1 58.8 32.9 48.4

Fitness: error rate f used directly (DIR), Frequency Fitness (of error rate) (FFA), see Section III-C; aggregated over all settings

DIR 35.7 54.4 21.9 55.1 9.6 44.6 24.6 22.9 52.5 48.6 70.3 66.9 56.2 56.2 28.9 18.7 45.9 41.5 41.9 30.8 41.0

FFA 44.0 50.6 25.4 50.1 5.4 44.5 21.3 11.8 155.2 40.4 69.2 72.5 70.9 64.1 19.9 59.6 64.7 54.5 55.5 29.0 47.7

Loops: counter loop (CL), memory loop (ML), while loop(WL), implicit loop(IL), conditional assignment (CA), see Section III-A; aggregated

CL 61.7 91.6 36.7 84.1 8.7 73.0 30.2 4.9 201.6 74.3 92.5 132.9 74.7 61.5 49.0 30.8 85.0 56.6 59.0 48.3 62.9

ML 41.0 40.0 26.7 51.9 3.9 74.9 18.1 9.2 92.2 39.8 80.4 77.8 59.4 64.6 23.9 19.3 42.1 51.4 52.4 45.1 44.4

WL 37.9 44.0 26.3 45.4 10.8 72.8 25.8 20.1 63.6 36.3 59.6 72.0 74.8 69.5 22.5 30.4 50.9 56.9 56.3 35.3 43.5

CA 34.8 54.5 13.2 63.0 8.6 5.4 25.1 34.8 239.1 57.0 89.3 70.0 72.1 66.3 31.2 97.7 66.8 44.9 44.5 25.3 48.6

IL 42.6 45.1 32.5 41.4 6.7 34.3 19.5 20.0 93.7 28.3 40.1 51.5 49.3 44.2 17.8 42.4 41.0 40.5 39.8 18.6 35.5

IC 18.5 50.3 12.8 47.6 7.4 28.1 23.0 37.6 116.6 46.4 64.0 49.3 49.1 45.8 19.1 53.5 44.7 35.4 35.2 16.5 36.5

All 39.3 52.8 24.1 52.5 7.5 44.6 23.2 17.9 108.7 45.1 69.7 69.7 63.3 59.7 22.8 40.3 53.3 48.3 48.9 29.9 44.1

Second, to the best of our knowledge, this work is the

largest and most complete experimental study of integer

algorithm synthesis. It provides a good overview over what

GP can do and where its limits are in this domain.

Third, although the evolutionary synthesis of exact integer

algorithms is hard, even truly non-trivial programs were

discovered. Even though we were able to investigate only a

small subset of the evolved programs manually, we found

that GP discovers unusual, interesting, but still efficient

algorithms.

Fourth, we were able to confirm with great significance

that FFA has a tremendous positive impact on the perfor-

mance of GP, as it can increase the success rate by 40%.

Fifth, we proposed the new Transactional Memory idea TM
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Fig. 4: Manual translation to Java for selected short and interesting programs solving the benchmark problems.

4.a. Translated CL-TM program for qad.

static int qad(int m0) {
int m1 = 0, t = (m0 - 1), tm1 = 0;
for (int i = t; i > 0; i--) {

tm1 = (m1 + m0);
t = m0 + m0 + m1 - 1;
m1 = tm1;

}
return (m0 - (1 - t));

}

4.c. Translated CL-SM program for srb.

static int srb(int m0) {
int m2 = 0, t = 0;
for (int i = m0; i > 0; i--) {

t = m0 / (1 + m2);
m2 = (1 + m2 - ((t != 0) ? (m2 / t) : m2));
t = m0 / (1 + m2);
m2 = (1 + m2 - ((t != 0) ? (m2 / t) : m2));

}
return m2;

}

4.e. Translated IC-SM program for mi5.

static int mi5(int m0, int m1, int m2,
int m3, int m4) {

int t;
for(;;) {

t = m4;
if(m4 > m0) m4 = m0;
if(m4 > m2) m4 = m2;
if((m4 == t) && (m2 == m1) &&

(m1 == m3)) return m4;
m2 = m1;
m1 = m3;

}
}

4.b. Translated WL-SM program for ℓ20.

static int ℓ20(int m0) {
int t = ((m0 - 2) / 3) / 3; // integer division

if (t < 2) return 1;
else return 0;

}

4.d. Translated CA-TM program for gcd.

static int gcd(int m0, int m1) {
int m2 = 0, tm0 = 0, tm1 = 0, tm2 = 0;
for (;;) {
if (m1 != 0) tm1 = m0;
tm0 = (m0 != 0) ? (m1 % m0) : m1;
if ((m0 != 0) && (m1 != 0) &&

((m1 % m0) == 0)) tm2 = m0;
if ((m0 == tm0) && (m1 == tm1) &&

(m2 == tm2)) return m2;
m0 = tm0; m1 = tm1; m2 = tm2;

}
}

4.f. Translated CA-TM program for lsb.

static int lsb(int m0) {
int m1 = 0, m2 = 0, tm0 = m0, tm2 = m2;
for (;;) { // small m0 ⇒ many iterations!

if (m0 != 0) {
tm2 = (m1 - m0);
m1 = 1;
if (m2 != 0) {

tm2 = (m2 - m0);
if (tm2 != 0) tm0 = (m0 % tm2);

}
}
if ((tm0 == m0) && (tm2 == m2)) return m2;
m0 = tm0; m2 = tm2;

}
}

to reduce epistasis in GP. However, it turned out to be a bad

idea. It works best together with the conditional assignment-

based program CA, but even there decreases the mean success

rate by 1%. Interestingly, CA-TM is most similar to our

eRBGP method introduced in [4], from which we aimed to

transfer the idea of transactional memory to standard GP.
Sixth, in terms of loop structure, both the traditional mem-

ory loop ML and the conditional assignment CA performed
best, in average over all settings and experiments.
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