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Abstract— The field of process mining deals with the extrac-
tion of knowledge from event logs. One task within the area
of process mining entails the discovery of process models to
represent real-life behavior as observed in day-to-day business
activities. A large number of such process discovery algorithms
have been proposed during the course of the past decade,
among which techniques to mine declarative process models
(e.g. Declare and AGNEs Miner) as well as evolutionary based
techniques (e.g. Genetic Miner and Process Tree Miner). In
this paper, we present the initial results of a newly proposed
evolutionary based process discovery algorithm which aims to
discover declarative process models, hence combining these
two classes (declarative and genetic) of discovery techniques.
To do so, we herein use a language bias similar to the one
found in AGNEs Miner to allow for the conversion from a set
of declarative control-flow based constraints (determining the
conditions which have to be satisfied to enable to execution
of an activity) to a procedural process model, i.e. a Petri net,
though this language bias can be extended to include data-based
constraints as well.

I. INTRODUCTION

PROCESS MINING entails the research field which deals
with the extraction of knowledge from event logs as

recorded by process aware information systems. During
the past decade, the field has situated itself between the
areas of Business Process Management (BPM) [1] and data
mining [2]. As more and more process aware information
systems are implemented, an increasing amount of event logs
has become available. Analysis of such event logs provide
insights into the way processes take place in real life and to
what degree processes deviate from a normative, prescriptive
process model.

Within the process mining field, a distinction is commonly
made between three prominent tasks [3]. First of all, process
discovery deals with the automated construction of a process
model out of an event log. Conformance checking, secondly,
starts from a process model and event log and analyzes
the quality of the process model in comparison with the
behavior seen in the event log or the degree of deviation
which occurred in real life compared to the normative model.
Lastly, process enhancement also assumes the presence of
an existing process model and extends this model based on
additional or more fine grained data.

Without doubt, the process discovery task has received
the most attention within the process mining research com-
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munity, with a multitude of algorithms being proposed to
this regard. In this paper, we present a new approach for
an evolutionary based process discovery algorithm which is
able to learn the constraints determining the execution of an
activity in a declarative manner. We combine this approach
with the language bias as presented in the AGNEs Miner
process discovery technique [4] to enable the conversion
from a set of declarative constraints to a procedural control-
flow model, i.e. a Petri net.

The remainder of this paper is structured as follows.
Section II provides an overview of related work. Section III
briefly outlines preliminary concepts and definitions. Next,
Section IV describes the evolutionary process discovery
technique in detail. Section V describes the first experimental
results obtained by our technique. The paper is concluded
in Section VI, where possibilities for future work are also
discussed.

II. RELATED WORK

In the past years, many process discovery techniques
have been proposed. Process discovery can be seen as an
application of the machine learning of grammars [4], where
the learning task can be formulated as follows: “given a
sequence database that contains a finite number of sequence,
extract a generative model that describes its spatio-temporal
properties.” The foundational approaches to process discov-
ery were formulated by Agrawal et al. [5], Cook and Wolf
[6], and Lyytinen et al. [7].

The α-algorithm can be considered as one of the most
substantial techniques in the process mining field. Van der
Aalst et al. [8] prove that it can learn structured workflow nets
from complete event logs (with respect to all allowable binary
sequences), assuming that the event log does not contain
any noise. Therefore, the α-algorithm is sensitive to noise
and incompleteness of event logs. Moreover, the original α-
algorithm is incapable of discovering short loops or non-
local, non-free choice constructs. Alves de Medeiros et al.
[9] improved the original α-algorithm to mine short loops
and named it α+. Other techniques have also been proposed
to improve the original α-algorithm. Wen et al. [10] for
instance propose the α++-algorithm, capable to detect non-
free choice constructs. The same authors have also proposed
to take advantage of both “start” and “complete” event types
in order to detect concurrency.

In order to remedy the robustness problem of the α-
algorithms, Weijters et al. developed Heuristics Miner [11].
This process discovery technique extends the formal α-
algorithm by applying frequency information with regard to
relationships between activities in an event log. Heuristics
Miner can discover short loops and non-local dependencies,
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but lacks to detect duplicate activities. In 2010, Burattin
and Sperduti proposed an adaption of the Heuristics Miner
algorithm, named Heuristics Miner++ [12], which extends
the former by considering activities with time intervals, i.e.
having a starting and ending time instead of being logged
as an atomic, zero-duration event. The same authors have
also proposed a modified Heuristics Miner which is able to
deal with streaming event data [13]. Weijters and Ribeiro
have also created a modified version of their Heuristics Miner
algorithm, denoted as Flexible Heuristics Miner [14], which
outputs the mined model as a Causal net. The Flexible
Heuristics Miner also incorporates a new strategy to mine
split/join semantics, based on the frequencies each input and
output binding is activated for each task.

Following closely after the inception of Heuristics Miner,
Günther and van der Aalst developed another heuristic pro-
cess discovery technique, Fuzzy Miner [15], geared specifi-
cally towards mining unstructured, spaghetti like processes.
Just as Heuristics Miner, this technique does not mine
duplicate or invisible activities. Users can apply a number of
filters to create higher-level abstractions of complex process
models, either by filtering out activity nodes or edges, or by
clustering groups of activities in the mined model. Although
this approach enables the robust exploration of event logs,
it suffers from the drawback that a Fuzzy model cannot be
translated to a formal Petri net which limits a comparative
evaluation to other process discovery techniques [16].

Scholars have also proposed to use machine learning
techniques in the context of process discovery. Maruster
et al. [17] investigate the use of rule-induction to predict
dependency relationships between business process activities,
by using a propositional rule induction technique (RIPPER)
on a table of direct metrics for each process task in relation
to each other process task. Ferreira and Ferreira [18] apply
a combination of ILP learning and partial-order planning
techniques to process mining. Lamma et al. [19] also describe
the use of ILP to process mining. The authors assume the
presence of negative sequences to guide the search algorithm,
unlike the approach of Ferreira and Ferreira, who use partial-
order planning to present the user with an execution plan to
accept or reject (a negative example), this approach does not
provide an immediate answer to the origin of such negative
examples, or: “negative events.” AGNEs Miner proposed by
Goedertier et al. [4] addresses the difficulty by representing
the discovery task as first-order classification learning on
event logs, supplemented with artificially generated negative
events. The process discovery algorithm then learns the
discriminating conditions that determine whether an activity
can take place or not. Another approach based on machine
learning theory was proposed by Greco et al. This technique,
called DWS mining, can be described as a hierarchical and
iterative procedure that refines the process model in each
step, based on clustering of patterns sharing similar behavior
[20]. This approach guarantees full compliance with the event
log and increasingly improves the precision of the process
model. The authors later also introduce AWS mining [21],

consisting of both mining and abstraction algorithms geared
to build a tree-like schema. The idea to represent mined
process models through different views at different levels
of abstraction is also the driver behind FSM Miner/Petrify, a
process discovery technique proposed by van der Aalst et al.
[22], which constructs a transition system from the traces in
an event log which is then synthesized by means of theory
of regions to a Petri net. A similar technique is described
by Carmona et al. [23]. Another algorithm, ILP Miner [24],
entails the application of Integer Linear Programming (ILP)
to process discovery. This technique is also based on the
well-known theory of regions.

Due to the limitations of local search, early approaches
to process discovery were generally not able to discover
complex constructs such as non-free choice, invisible tasks
and duplicate tasks. Therefore, Alves de Medeiros et al.
[25] were the first to apply a genetic algorithm for process
discovery so as to benefit from global search. Their Genetic
Miner defines its search space in terms of causal matrices.
Because of the global search property, Genetic Miner is
capable of detecting non-local patterns in the event log. Buijs
et al. have also proposed an evolutionary algorithm towards
process discovery [26]. Contrary to earlier approaches, the
authors aim to discovery another process representation—
Process Trees—which guarantees the discovery of sound
Petri nets. The main drawback of this technique lies in the
time-intensive step of performing the fitness evaluation.

In this paper, we propose a new approach towards evolu-
tionary process discovery. Contrary to earlier techniques, we
aim to discover a declarative process model, by deriving the
constraints that determine whether an event can take place or
not, given a history of events of other activities. However, we
combine this approach with the declarative language bias as
outlined in AGNEs Miner [4] so that the set of preconditions
for each activity can be converted to a Petri net.

III. PRELIMINARIES

This section outlines some preliminary concepts and defi-
nitions which will be utilized in the remainder of the paper.

A. Event Logs

Process discovery algorithms start from a so-called event
log and output a process model using a particular representa-
tional language. An event log consists of events that pertain
to process instances: executions of a process in a system.
A process instance is a grouping of activities whose state
changes are recorded as events. In order to obtain a usable
event log, it is assumed that it is possible to record events
so that each event refers to an activity (e.g. “sign order”),
the process instance (e.g. “PI101”) and that the events are
ordered, either based on a time stamp (e.g. “2012-11-10
09:08:07”) or on the basis of relative ordering (a sequence
number). In some cases, the specific state transition of the
activity is also recorded in the event, for example to denote
both when an activity was started (“start” activity transition)
versus its time of completion (“complete” activity transition).
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We will make use of the following notations. Let event
log L be defined as a multiset of traces (process instances).
The cardinality (or size) of an event log |L| denotes the
total number of traces in the log, including duplicates. A
trace σ ∈ L is a finite sequence of events with length |σ|
and with σi the event at position i in trace σ. Since an
ordering is explicitly defined between events in a sequence
and the related process instance can be left implicit, the
events themselves can simple be denoted based on their
activity name, e.g. σ = 〈a, b, c, d〉. The set of activities
occurring in the event log is then denoted as A = {σi|σ ∈
L, i = 1 . . . |σ|}.

B. Petri nets

Our proposed process discovery algorithm attempts to
derive constraining pre-conditions determining whether an
activity can take place or not, but since we will ultimately
convert the set of mined constrained to a Petri net, we provide
the definition of a Petri net as follows. A Petri net is a triplet
PN = (P, T, F ) with P a finite set of places and T a finite
set of transitions with P ∩ T = ∅. F is the set of flows
F ⊆ (P × T ) ∪ (T × P ). The state of a Petri net is defined
by its marking M : P → N0. A transition is enabled in
a given marking whenever all of its input places contain at
least one token. Firing a transition then consumes a token
from each input place and produces a token in each output
place [27].

C. Control-flow Based Declarative Constraints

The general learning task consists of predicting for a given
activity a ∈ A whether it is possible to execute this activity at
a given time point (or position) in a given historical execution
sequence σ ∈ L.

To learn the preconditions for each of the activities in a
given event log, we apply a similar language bias as the
one utilized in AGNEs Miner [4], as the goal (here) remains
to construct a graphical process model from a given event
log. As such, we re-use the logical “no-sequel” predicate,
NS(a1, a, σ, t) with a1, a ∈ A, σ ∈ L and t the position (or
time) of observation. The NS predicate can thus be defined
as follows:

∀a1, a ∈ A, σ ∈ L, t ∈ [1, |σ|] : [∃σi ∈ σ : [σi = a1 ∧ i < t]

∧@σj ∈ σ : [σj = a ∧ i < j < t]]

⇒ NS(a1, a,σ, t)

The predicate NS(a1, a, σ, t) evaluates to true when at the
time of observation t, an activity a1 has been completed but
not yet followed by an activity a. In AGNEs Miner, these
predicates are learnt per trace (σ) and per time of observation
(t), but are then left implicit to create the actual activity
preconditions, as the resulting process model should hold in
all traces at all times of observation. Since we will not derive
these predicates from the event log but immediately use the
same language bias as a declarative modeling construct, we

also leave the arguments σ and t implicit and will thus denote
the predicate simply as: NS(a1, a).

By creating conjunctions and disjunctions of the NS pred-
icate, this construct enables to learn fragments of Petri nets.
Fig. 1 shows the Petri net patterns which can be learnt
in this manner. Note that parallelism (i.e. AND join/splits)
are not represented by a single conjunction or disjunction
of NS(a1, a) predicates (i.e. NS(a1, a) ∧ NS(a1, a2) for an
activity a denotes a XOR split) but rather by the number
of such groups present in the preconditions for an activity
(i.e. NS(a1, a)∧NS(a2, a) for an activity a denotes an AND
join). Section IV provides more details on the conversion to
a Petri net.

a1 a

Sequence pattern: NS(a1, a).

a1

a2

a

XOR join pattern: NS(a1, a) ∨ NS(a2, a).

a1

a2

a

XOR split pattern: NS(a1, a) ∧ NS(a1, a2)
(same precondition for a2).

a1 a2

a

skip

Skip pattern: NS(a1, a) ∧ NS(a1, a2)
(precondition for a2: NS(a1, a2)).

Fig. 1. The different Petri net patterns which can be modelled by the NS
predicates [4].

Given the definition of the NS(a1, a) predicate and the
control-flow patterns it enables, we now present our evolu-
tionary approach in order to discover the set of constraints
for a set of given activities. Our approach differs from
AGNEs Miner in the sense that no information about negative
events is required during the discovery phase, and that an
evolutionary technique is applied, rather than Inductive Logic
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Programming, which resolves some of the drawbacks of this
earlier approach (such as the limited length of disjunctions
and conjunctions). Our approach differs from other evolu-
tionary process discovery algorithm since we do not define
our solution structure in terms of a procedural process model,
but rather as a set of declarative constraints.

IV. METHODOLOGY

A. General Overview

To implement our evolutionary algorithm, we utilize
the Watchmaker Java library [28], an extensible, high-
performance, open-source, object-oriented framework for
implementing platform-independent evolutionary algorithms
in Java. As with any genetic algorithm, the general flow
of our approach can be summarized as follows. First, an
initial population of solutions with a given size is constructed
(genesis) using either blank, randomized, or other genesis
operator. Next, the algorithm loops through different “gen-
erations” in which the following steps are performed. First,
a fitness evaluation is executed to score each member of the
population. Based on this ranking, population members are
selected (selection) to produce the “offspring” for the follow-
ing generation. The creation of such offspring is performed
by applying crossover operators on the selected population
members. Finally, once a new generation is constructed, a
series of mutation operators is applied in order to introduce
variety in the solution space covered by the population (this
step serves as a way to escape from local optima). The
algorithm stops whenever a certain fitness or number of
generations threshold is reached.

In the following subsections, we describe each of the steps
mentioned above in more detail.

B. Solution Representation

We represent solutions as a rule base of preconditions R
with the set of preconditions for an activity a ∈ A repre-
sented as Ra ∈ R. Our approach allows one to learn multiple
sets of preconditions for an activity type,

∨
(Rai ) (with i =

1, . . . , |Ra|) which correspond to duplicate transitions once
the conversion to a Petri net is performed. Each particular
set of precondition Rai is defined as a conjunction of groups
of NS predicates: Rai =

∧(
Rai,j

)
(with j = 1, . . . , |Rai |).

Each such group will be converted to an input place in
the resulting Petri net. The NS predicates in each group
Rai,j are either in a conjunctive or disjunctive relation (see
Fig. 1), representing XOR splits and joins respectively. When
only one NS predicate is present in a group, a sequence is
modelled. When a disjunction (∨) of NS predicates is present
in a group, they share the same second argument and model
a XOR join (see Fig. 1). When a conjunction (∧) of NS
predicates is present in a group, they model a XOR split or
skip patternm and shere the same second argument. Fig. 2
provides an example of a rule base of preconditions and its
respective Petri net representation.

Converting a set of preconditions to a Petri net is a
relatively trivial operation. For each set of preconditions

a : - true.

b : -NS(a, b) ∧ NS(a, c).

c : -NS(a, b) ∧ NS(a, c).

d : -NS(a, d) ∧ NS(a, f).

e : -NS(b, e) ∨ NS(c, e).

f : -NS(d, f).

g : - (NS(e, g))
∧

(NS(f, g)) .

a

b

c

d

e

f
g

Fig. 2. Example of a set of activity preconditions and conversion to Petri
net.

Rai ∈ Ra, a Petri net transition is constructed. Next, for
each group of NS predicates Rai,j ∈ Rai , an input place for
the transition at hand is added and connected. Once this is
done, all NS predicate groups are reiterated to construct the
Petri net patterns as shown in Fig. 1. Finally, source and sink
places are added and connected.

A pruning step was implemented to prune the precon-
ditions for an activity. Empty NS groups are purged, and
duplicate activities, XOR joins and XOR splits are removed if
they are subsumed by a more specific construct. This pruning
step is applied during each generation of the evolutionary
algorithm on the whole population.

C. Genesis Operators

To construct an initial population, two genesis operators
are implemented. The first one constructs population mem-
bers with no preconditions for each activity type, so that each
activity is free to execute at any point in time. In terms of
process model quality dimensions, this compares to models
having a perfect recall, but low precision score. This trivial
method to construct fitting process models emphasizes the
need to incorporate both recall and precision in the evaluation
of solutions, which we will touch upon again below. The
second genesis operator constructs random solutions where
the maximum values for |Ra|, |Rai | and |Rai,j | can be
provided.

An important remark entails the way groups of NS pred-
icates Rai,j are changed or modified during the execution of
the evolutionary algorithm. To enable the valid construction
of a set of preconditions, each group of NS predicates needs
to adhere to the following conditions:

• NS predicates belonging to groups Rai,j containing one
NS predicate or a disjunction of multiple NS predicates
(sequence or XOR join) should be of the form NS(ai, a);
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• NS predicates belonging to groups Rai,j containing a
conjunction of NS predicates (XOR split or skip) should
contain one predicate of the form NS(a1, a) with the
remaining predicates of the form NS(a1, a2).

All genesis, crossover and mutation operators ensure that
these conditions are adhered to.

D. Crossover Operator

One crossover operator is implemented in our evolutionary
approach. This operator swaps a set number (the amount
of “crossover points”) of randomly chosen groups of NS
predicates (i.e. Rai,j with i and j random) between the parents
to create two new solution members, ∀a ∈ A.

E. Mutation Operators

Ten mutation operators are executed by the evolutionary
algorithm. Two of them deal with randomly adding and
removing a rule base for a duplicate activity, i.e. adding or
removing an Rai ∈ Ra. The next two operators randomly
add or remove a group of NS predicates, i.e. add or remove
an Rai,j ∈ Rai and thus change existing solutions at a more
granular level. The next two operators are defined on the
most granular level, and add or remove random NS predicates
to existing NS groups. Next, two mutation operators are
included which change a random NS predicate, or change
the a1 argument in a conjunctive group of NS predicates
NS(a1, a2) to another activity.

Another mutation operator switches the type of a group
of NS predicates (i.e. from conjunction to disjunction and
vice versa). To change a group of conjunctive predicates
NS(a1, a2) ∧ NS(a1, a3) ∧ · · · ∧ NS(a1, a) to a disjunction,
a predicate is added for the shared first argument of the
conjunctive group, together with predicates for each second
argument of the conjunctive group different from the activity
under consideration, so that the new disjunctive group reads
as: NS(a1, a) ∨ NS(a2, a) ∨ · · · ∨ NS(a3, a). Changing a
disjunction to a conjunction is performed similarly, with one
random activity from the first arguments of the predicates in
the disjunctions chosen to become the shared first argument
in the conjunction.

The final mutation operator completely discards a solution
and generates a new population member in its stead.

F. Fitness Evaluation

A first straightforward manner to evaluate the fitness of
population members is to convert each solution to a Petri
net and apply a well-known process model quality metric,
such as the alignment based fitness/precision metrics [29] or
the Weighted Behavioral Recall/Precision metrics [30]1.

However, since both the conversion to a Petri net and the
calculation of the aforementioned metrics are a time intensive

1Note that the use of the the term “fitness” here both applies to the
overall score of a population member in the evolutionary pool and to one of
the four quality dimensions relating to the quality of process models [31],
which is sometimes also denoted with “recall”. To avoid confusion, we will
henceforth utilize the term “score” to indicate a solution’s overall evolution
fitness score.

procedure, we also implement an additional scoring proce-
dure which is directly applied on the collection of activity
preconditions. For each activity in each trace in the event log,
we evaluate whether the current set of preconditions indeed
allows the execution of this activity given its history. As such,
we can derive a fitness metric f as follows:

f =
|{σi|σi ∈ σ, σ ∈ L : correct(σi, σ, Rσi)}|

|{σi|σi ∈ σ, σ ∈ L}|

with correct(σi, σ, R
σi) a function denoting whether an

activity can execute given a trace history and a set of
preconditions, meaning that there ∃Rσi

x ∈ Rσi which is
satisfied at the current position of observation. Note that
scoring population members in terms of fitness alone does
not suffice, as this would lead to the derivation of trivial
solutions where each activity is free to be executed at any
point in time. As such, we also define a precision metric p
as follows:

p =
|{n|n ∈ NE(σi), σi ∈ σ, σ ∈ L : ¬correct(n, σ,Rσi)}|

|{n ∈ NE(σi), σi|σi ∈ σ, σ ∈ L}|

with the NE(σi) function returning a set of so called “neg-
ative events”, meaning activities which should be prohibited
from being executed given the execution history before σi.
Such set of negative events can be derived in linear time
from a given event log by utilizing an artificial negative event
generation technique we have described in [30].

Finally, for both of the above fitness evaluation alterna-
tives, a solution’s global score is then calculated as the F-
measure [32], i.e. the harmonic mean between fitness and
precision: F = 2

(
p×f
p+f

)
.

V. EXPERIMENTAL EVALUATION

This section discusses the first experimental results of the
proposed genetic algorithm. We apply the genetic mining
algorithm on the l2l event log which has also been utilized
in earlier benchmarks by Alves de Medeiros et al. in the
context of their Genetics Miner [33]. The “true” process
model of this event log is depicted in Fig. 3. In addition,
we have also performed experiments on the three event
logs utilized in [26] to test the genetic Process Tree Miner:
event log seq contains a single trace: 〈a, b, c, d, e, f〉, event
log xor contains six activities in an exclusive choice: L =
{〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉} and event log and contains all
720 possible permutations of the six activities, and thus
described the model where these activities are executed in
parallel.

Start A
C

B

D End

Fig. 3. The underlying model behind the l2l event log.
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The configuration parameters of the genetic algorithm are
as follows:

• Population size: 30;
• Genesis operator: randomized solution, no duplicate

tasks, one or two (random choice) conjunctions Rai , one
or two (random choice) NS groups per conjunction Rai,j ;

• Crossover enabled with 1 crossover point;
• All mutation operators enabled with default occurrence

chances;
• Fitness evaluation: harmonic mean between Weighted

Behavioral Recall/Precision metric calculated on the
converted Petri net.

We compare the performance of our genetic algorithm to
the case where solutions are generated randomly (using the
same randomized genesis operator as used by the genetic
algorithm to construct the initial population). Table I shows
the result of this experiment after generating ten thousand
randomized solution. For none of the logs, a solution with
perfect fitness could be obtained (the 0 fitness for the xor log
is due to (i) the fact that none of the randomized solutions
could be converted to a Petri net with a unique source place,
and (ii) traces in this log only containing a single event,
leading to a recall score of zero).

TABLE I
AVERAGE SOLUTION SCORE WITH CONFIDENCE INTERVAL AFTER

GENERATING TEN THOUSAND RANDOMIZED SOLUTIONS.

Event Log: seq xor and permu
Avg. Fitness: 0.28 0.00 0.54 0.25

Conf. Int. (95%): [0.09, 0.47] [0.00, 0.00] [0.37, 0.70] [0.09, 0.42]

Next, we run our evolutionary algorithm on the four event
logs. Table II shows the results obtained after running the
experiment. For the seq event log, we obtain a perfectly
fitting model, albeit containing a superfluous AND construct
which does not impact the model’s quality regarding fitness
and precision, but is less straightforward to interpret than
the model just modeling the sequence as is. Incorporating
simplicity-based criteria in the evaluation of solution candi-
dates is thus a possible avenue for further improvement.

The xor and l2l logs are mined correctly. However, for
the and event log, no suitable model could be found.
The evolutionary algorithm attempts to improve the model
by introducing more invisible and duplicate activities and
entangling them by connecting them together, instead of
reverting to the situation where all activities are included in
a single AND split. Fine-tuning the mutation operators helps
to resolve this issue, but as this requires user-intervention, we
do not report those in Table II. Adapting the parameters of
the evolutionary algorithm is thus also left for future work.

We conclude that our experiment clearly shows an im-
provement over the random case. As such, we believe that
this technique forms an interesting approach towards process
discovery.

VI. DISCUSSION AND CONCLUSION

This paper presented a new outline for an evolutionary
based process discovery algorithm which is able to learn
the constraints determining the execution of an activity in
a declarative manner. To do so, we utilize the language
bias from AGNEs Miner in order to enable to conversion
from a set of declarative constraints to a procedural control
flow model. Initial results of our technique prove promising,
although various possibilities towards future work exist,
which we discuss in the following paragraphs.

A first possibility towards future work entails the incor-
poration of declarative constraints other than the control-
flow based constraints as modeled by the NS predicate. For
example, it is possible to incorporate conditions governing
the maximum amount of times a loop can be executed, or
incorporate data-based value checks so that activity precondi-
tions model that a certain activity can only be executed when
certain data-based properties are satisfied. (I.e. an activity
perform exhaustive claim check in an insurance process is
only executed when the claim amount is higher than a certain
number.) Initial tests indeed support this idea. Fig. 4 for
example shows the l2l process model where the evolutionary
algorithm has learned an extra precondition for activity B
based on the number of occurrences of B already observed
in the trace, which is converted to a transition guard in the
resulting Petri net. It is also possible to construct a declarative
model which only incorporates a minimal required set of
control-flow based constraints, for example by incorporating
the Declare rule templates.

Start A

C
B

D End

occurrence(b) < 11

Fig. 4. Model learnt for the l2l event log with an extra occurrence based
precondition for B.

Second, possibilities exist to modify the population scoring
function. A first way to do so entails the incorporation
of generalization and simplicity quality dimension based
metrics [31]. Second, since the preconditions for each ac-
tivity are learned independently, it is possible to “guide”
the evolutionary algorithm in a more focused manner by
preventing certain modifications to preconditions of a certain
activity once it is determined that these fittingly describe the
behavior as observed in a given event log for this activity.
Initial tests performed indeed seem to indicate that this is a
promising avenue to speed up and improve the performance
of the evolutionary algorithm.

Finally, we also plan to incorporate more experiments in
future work to accurately compare our proposed technique
to other process discovery algorithms.
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TABLE II
SOLUTIONS OBTAINED BY THE GENETIC MINER FOR THE FOUR EVENT LOGS INCLUDED IN THE EXPERIMENT.

Event Log Solution Comments

seq a
e

c fdb

Fitness: 1.00
Generations: 153
Time taken: 2m13s
(Superfluous AND construct)

xor a b c d e f
Fitness: 1.00
Generations: 7
Time taken: 6s
(Perfect model)

and

f

f

c

f

d

e

d

e e

f

d

c

d

b

b

a

b

Fitness: 0.86
Generations: 200 (aborted)
Time taken: 5m42s

l2l
Start

C

End

A

D

B Fitness: 1.00
Generations: 37
Time taken: 43s
(Perfect model)
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