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Abstract—Ant Colony Optimization (ACO) is a very popular
metaheuristic for solving computationally hard combinatorial
optimization problems. Runtime analysis of ACO with respect
to various pseudo-boolean functions and different graph based
combinatorial optimization problems has been taken up in recent
years. In this paper, we investigate the runtime behavior of an
MMAS*(Max-Min Ant System) ACO algorithm on some well
known hypergraph covering problems that are NP-Hard. In
particular, we have addressed the Minimum Edge Cover problem,
the Minimum Vertex Cover problem and the Maximum Weak-
Independent Set problem. The influence of pheromone values
and heuristic information on the running time is analysed. The
results indicate that the heuristic information has greater impact
towards improving the expected optimization time as compared
to pheromone values. For certain instances of hypergraphs, we
show that the MMAS* algorithm gives a constant order expected
optimization time when the dominance of heuristic information
is suitably increased.

I. INTRODUCTION

Ant colony Optimization (ACO), first proposed by Dorigo
[1], is a class of nature-inspired stochastic algorithm which
is widely used for various combinatorial optimization prob-
lems. The ACO algorithm is derived from the food searching
behaviour of real ant colonies, who have demonstrated their
ability to find the shortest path from their nest to the food
source by stigmergic communication via pheromones. For a
given problem, the ACO algorithm constructs a solution by
random walk on a construction graph, with the walk influenced
by pheromone values and heuristic information. Thus, ACO is
able to incorporate problem specific knowledge in terms of
heuristic information which separates it from other classes
of Evolutionary Algorithms (EAs), etc. Although ACO is
not evolutionary in nature, it has by and large attracted the
attention of Evolutionary Computing researchers because it
is also a random search heuristic and both have overlapping
application domains. Many different variants of the original
ACO algorithm have been proposed and applied successfully
to many real-world problems [2].

Initial theoretical studies on ACO focussed on convergence
properties and speed of different variants of ACO. Stützle
and Dorigo presented the convergence proof for the Max-Min
ant system (MMAS [5]) in [4], while Gutjahr showed it for
the Graph based ant system (GABS) [6]. The foundations of
runtime analysis of ACO were laid in [8][9]. The analysis

is typically done in a fashion that has been widely used for
randomized algorithms and for simple evolutionary algorithms
like (1+1) EA. In this approach, either the expected optimiza-
tion time and/or the success probability after a certain number
of steps are analysed.

Investigations on the runtime performance of ACO first
started for various pseudo-boolean functions [3,10,11,12]
where a simple ACO variant 1-ANT was analysed like (1+1)
EA [7]. Another ACO variant MMAS has also been widely
investigated for which the phase transition present in 1-ANT
due to the evaporation factor does not occur [13,14]. The above
techniques have been extended to different polynomial time
combinatorial optimization problems, namely the Minimum
Spanning Tree problem[15], Single Destination Shortest Path
problem[16,17] and Minimum-cut problem[18]. Among NP-
Hard problems, certain instances of the Travelling Sales-
man Problem have been investigated in [19,20]. A detailed
overview of runtime behaviour of Randomized Search Heuris-
tics (RSHs), (1+1) EA and ACO on different pseudo-boolean
functions can be found in [21] and on several graph based
combinatorial optimization problems can be found in [22].

In this paper, we undertake the runtime analysis of ACO
for covering problems on hypergraphs. A hypergraph is a
generalization of a graph where an edge, known as hyperedge
consists of a non-empty set of vertices with any number of
elements. On a hypergraph, different covering problems are
the vertex cover and the edge cover problems, both of which
can be weighted or unweighted. Independent set problems
are also related to covering problems. The decision versions
of these problems are NP-complete, while the optimization
versions (minimum vertex/edge cover/maximum independent
set) are NP-Hard[29]. The vertex cover problem is also known
as transversal or hitting set problem, where the edge cover
problem is a special case of set cover problem for hypergraphs.
Computing the transversal hypergraph has many applications
in machine learning, game theory, indexing of databases, SAT
problem, data mining and optimization.

Several interesting results have been obtained by applying
various approximation algorithms for determining the vertex
cover and set cover problems on a hypergraph or special
cases of hypergraphs. Khot has published several results on
the approximability and hardness of vertex cover problem on
k-uniform hypergraphs[24,26]. In [24], the hypergraph vertex
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cover problem is shown to have applied directly to several
scheduling problems : concurrent open shop and makespan
minimization of assembly line. Okun[25] discusses the ap-
proximation of hypergraph vertex cover for hypergraphs of
bounded degree and bounded number of neighbouring vertices.
Complexity and approximation results for the connected vertex
cover problem on graphs and hypergraphs [30], vertex cover
on dense hypergraphs [27], set covering on hypergraphs [28]
and vertex cover on k-partite k-uniform hypergraphs [29] have
been obtained. Independent set problems are closely related to
covering problems. A comprehensive study of several approx-
imation algorithms on hypergraph independent set problems
can be found in [31]. However, the applications of EAs and
ACO to these problems are still unexplored.

In the present work, theoretical analysis of ACO is car-
ried out for the minimum weight edge cover problem on
generalized hypergraphs. The minimum vertex cover and
the maximum weak-independent set problems are shown as
special cases of the minimum weight edge cover problem.
An incremental construction procedure of ACO is employed
in this paper. The expected optimization time is calculated
for the MMAS* algorithm with the impact of pheromone
values and heuristic information investigated in detail. The
expected number of iterations for finding a minimum weight
edge cover is found to be of exponential order for generalized
hypergraphs without heuristic information present. However,
for certain families of hypergraphs, we show that with proper
adjustment of the heuristic parameter, expected optimization
time of constant order can be achieved.

The rest of the paper is organized as follows. Section II
introduces the fundamental concepts of a hypergraph and
gives the problem definitions. Section III gives the detailed
description of the MMAS* algorithm and the construction
procedure for the minimum weight edge cover problem. In
section IV, the upper bound on the expected optimization
time is analysed. In section V, the solution methods for the
minimum vertex cover and the maximum weak-independent
Set problems on hypergraphs are presented as a special case
of the minimum weight edge Cover problem. Section VI
concludes the paper with a brief discussion on the obtained
results.

II. PRELIMINARIES

This section gives the definitions to different covering and
independent set problems in case of hypergraphs.

A. Basic Definitions:

A Hypergraph H is a pair H=(V,E), where
V ={v1, v2, ..., vn} is a set of discrete elements known
as vertices and E={e1, e2, ....em} is a collection of non-
empty subsets of V , known as hyperedges. Thus, a hyperedge
typically contains any number of vertices. In the rest of
the paper, the terms edge and hyperedge will be used
interchangeably.

The size, or the cardinality, |e| of a hyperedge is the number
of vertices in e. A hypergraph is known as k-uniform if all the

hyperedges have cardinality k. A pendant vertex is a vertex
which is contained in only one hyperedge.

A hypergraph H(V,E) is vertex-weighted if every vertex
in V is assigned a weight. Similarly, a hypergraph is edge-
weighted if every edge in E is assigned a weight. In this
paper, a weighted hypergraph will refer to an edge-weighted
hypergraph, unless stated otherwise.

The dual of a hypergraph, H(V,E) is a hypergraph H*, whose
vertices and edges are interchanged with H. Thus, for each
vertex v in H, there is an hyperedge e* in H*, formed by
vertices in H* which correspond to hyperedges incident on v
in H. Thus e* = {ei ∈ E|v ∈ ei}.

B. Covering Problems:

For a hypergraph H(V,E), a Vertex Cover or a Hitting Set is
a subset of V that intersects every edge of H in at least one
vertex.

Similarly an Edge Cover of a hypergraph H is a subset of
E that contains all vertices in V. Edge Cover is a special case
of the Set Cover problem. From the definitions, a hitting set
in H is a set cover in the dual graph H*. Mathematically,
Vertex Cover: A set S ⊆ V such that ∀ e ∈ E:|e

⋂
S| ≥ 1.

Edge Cover: A set T ⊆ E such that ∀ v ∈ V ∃ e ∈ T : v ∈ e.
The Minimum Vertex Cover and the Minimum Edge Cover

of a hypergraph are optimization problems to find the vertex
cover and the edge cover of minimum cardinality in a given
hypergraph H, respectively. Similarly, the Minimum Weight
Vertex Cover and Minimum Weight Edge Cover problems for
edge-weighted and vertex-weighted hypergraphs respectively
would mean to find the edge cover and the hitting set of
minimum weight.

C. Independent Set Problems:

The Independent Set problem has two variants in case
of hypergraphs. A Weak-Independent Set in H is a subset
of V that doesn’t contain any edge of H completely. If an
independent set intersects any hyperedge in E in at most one
element, then it is a Strong-Independent Set. Thus for graphs,
both the above categories of independent sets are identical. In
this paper, independent set refers only to Weak-Independent
Set unless stated otherwise. Mathematically,
Weak-Independent Set: A set Iw ⊂ V such that ∀ e ∈
E:|e

⋂
Iw| < |e|.

Strong-Independent Set: A set Is ⊂ V such that ∀ e ∈
E:|e

⋂
Is| ≤ 1.

The goal of the Maximum Weak-Independent Set of a
given hypergraph H is to find a weak-independent set in
H of maximum cardinality. Similarly for a vertex-weighted
hypergraph H, the Maximum Weight Weak-Independent Set
problem is to find a weak-independent set in H of maximum
weight.

III. ALGORITHM

In this section, we propose an MMAS* (Max-Min Ant Sys-
tem) ACO algorithm in the context of Minimum Weight Edge
Cover problem in an edge-weighted hypergraph. MMAS* is
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an iterative algorithm, which in each step, constructs a new
candidate solution and keeps track of the best-so-far solution.
The construction procedure uses a construction graph in which
the vertices are the elements to be chosen to generate a new
solution. As the name suggests, the pheromone values are
bounded between a maximum and minimum value in case
of MMAS* algorithm. Thus a typical iteration of MMAS*
consists of three steps : a)Construction of a new solution; b)
Selection of the generated solution; c) Pheromone update. The
heuristic information is kept unchanged throughout.

A. Construction of a new solution:
In each iteration, a new solution is obtained by the procedure

Construct, as described in Algorithm 1. This is an iterative
procedure, in which the artificial ant selects the components
of the candidate solution, one at a time, by random walk
on the construction graph. For the edge cover problem, the
components of the solution are the edges of the input hyper-
graph H(V,E). Thus, we choose the construction graph C(H)
to be a directed graph, with vertices {e0, e1, e2, ....em}, where
ei∀i > 0 corresponds to an edge of H and e0 is a starting
vertex. The edge set U of C(H) is given as:
U={(ei, ej) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}
i.e., in the graph C(H), there is no edge pointing to the starting
vertex, e0.

For the edge cover problem, we first select all the edges
which contain at least one pendant vertex to be part of the
solution by default as per the definition. Then, we make the
construction graph omitting all the vertices that correspond
to the hyperedges containing pendant vertices in the original
hypergraph. In the first step, the artificial ant is at the starting
node e0. In each subsequent step, it goes probabilistically to
another node in the construction graph avoiding multiple visits
to a particular node and only if the new node contains at
least one new vertex of the hypergraph which is not covered
by the previously visited nodes (i.e. hyperedges of the given
hypergraph). Let us assume, without loss of generality, that
the ith node traversed is denoted by ei. Hence, we define the
notion of feasible neighbourhood N(ek) for a given node ek
with the previously visited nodes being {e1, e2, ...., ek−1, ek}
as follows:
N(ek) := E′ \ {e′ ∈ E′ | ∀ v ∈ e′, v ∈ e1 ∪ e2 ∪ ... ∪ ek},
where E′ = (E \ {e1, e2, ...., ek}).

Thus, at every step, a new node is selected by the ant
within its feasible neighbourhood. The selection process
is determined by the current pheromone values τ of the
edges and the heuristic information η of the vertices of the
construction graph. The probability of selecting any ek+1 in
the (k + 1)th step is given as:

p(ek+1) =


τα(ek,ek+1)·η

β
ek+1∑

e′∈N(ek)

τα(ek,e′)· η
β
e′

, ek+1 ∈ N(ek)

0, otherwise

where α and β are two positive parameters which control the
relative strengths of pheromone value and heuristic informa-

tion respectively in choosing the new edge of the hypergraph
or the node on the construction graph. The construction
procedure continues till we get a set of edges such that all
the vertices are covered at least once. So, in each step after
choosing an edge, we keep track of all the vertices covered so
far.

Since, we are interested in the minimum weight edge cover,
we would like to prefer edges with less weight and containing
more number of vertices. Thus, for a hyperedge e, we define
the heuristic information as ηe = |e|

w(e) .

Algorithm 1: The Procedure Construct on (C(H), τ, η)

begin
V ′ = φ
E′ = φ
e← e0
while V ′ 6= V do

Choose a node ek+1 ∈ N(ek) after choosing ek

with probability
τα(ek,ek+1)·η

β
ek+1∑

e′∈N(ek)

τα(ek,e′)· η
β
e′

E′ = E′ ∪ ek+1

V ′ = V ′ ∪ v′, ∀v′ ∈ ek+1

return E′

B. Fitness Evaluation and Selection:

The fitness of a candidate solution x, f(x)={e1, e2, ...ek} is
the total weight of the edges in x. Our objective is to minimize
this fitness value. Formally, the fitness function is stated as
follows: f(x) :=

∑
ei∈x

w(ei).

The new solution replaces the best-so-far solution if its
fitness value is strictly less than the fitness value of the best-
so-far solution.

C. Pheromone update:

Initialization of pheromone values is done at the start of the
MMAS* algorithm in such a way that their sum is equal to
1. Thus, τ(u,v) = 1/ |U | ; ∀(u, v) ∈ U .

After an initial solution is x* obtained using Construct, the
pheromone values are updated using the procedure Update.
Update(τ, x∗) = τ ′ is defined as follows:

∀(e, e′) ∈ U : τ ′(e,e′) =

{
h, if e∗ ∈ x∗

l, otherwise

where h and l are the upper and lower bounds on the
pheromone values and h ≥ l. In the subsequent iterations,
the procedure Update is used to update the pheromone val-
ues, only if the new solution obtained from the procedure
Construct replaces the best-so-far solution obtained till the
previous iteration. Thus, all the nodes of the construction graph
selected in the best-so-far solution have pheromone value h
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on the incoming edges to them. The remaining edges have
pheromone value l.

See Algorithm 2 for the complete algorithm MMAS*.

Algorithm 2: The Algorithm MMAS* on H(V,E)

begin
τu,v ← 1/ |U | ,∀(u, v) ∈ U
η ← |e|

w(e) ,∀ e ∈ E
x∗ ← Construct(C(H), τ, η)
τ ← Update(τ, x∗)
while true do

x← Construct(C(H), τ, η)
if f(x) < f(x*) then

x*← x
τ ← Update(τ, x∗)

IV. UPPER BOUNDS

In this section, we show the upper bounds on the expected
optimization time of the proposed MMAS* algorithm on the
minimum weight edge cover problem of hypergraphs. The
results are expressed in terms of the parameters α, β, the
pheromone bounds h and l, the number of hyperedges m, and
the number of hyperedges in the optimal solution k and some
other parameters which will be introduced later in this section.
First, we do the analysis for generalized hypergraphs and then
we show constant order expected optimization time for certain
families of hypergraphs.

A. Upper Bounds for the Generalized Hypergraph

In case of generalized hypergraphs, we separately
investigate the influence of pheromone values and heuristic
information respectively.

Theorem 1: Let α = 1 and β = 0 and 0 < l ≤ h, and let

cn =
h

l
. Then the expected optimization time of the MMAS*

is O
(

((m−k)cn+k)!
((m−k)cn)!k!

)
.

Proof: For the purpose of calculating the upper bound,
we first need to find a lower bound on the probability that the
MMAS* algorithm gives the optimal solution. We consider
the worst possible case . Thus, we assume that there are no
edges having vertices with degree 1, the k edges belonging to
the optimal solution have pheromone level l and the rest of the
edges have pheromone level h. The probability of selecting an
edge belonging to the optimal solution in step i is at least:

(k − i)l
(m− k − i)h+ (k − i)l

=
(k − i)l

((m− k)h+ kl)− i(h+ l)

=
k − i

((m− k)cn + k)− i(cn + 1)

The probability that the MMAS* algorithm gives the opti-
mal solution is at least:

k−1∏
i=0

k − i
((m− k)cn + k)− i(cn + 1)

=
k!((m− k)cn)!

((m− k)cn + k)!

Hence, the expected optimization time is found to be of

O

(
((m− k)cn + k)!

k!((m− k)cn)!

)

It can be observed that in the case where h = l, the upper
bound becomes the same as that of the brute force algorithim.

Now, we move to the second scenario, where we analyse
the upper bound for the expected optimization time when
α = 0 and β = 1. Here we examine the behaviour of the
algorithm in the presence of heuristic information.

Theorem 2: Choosing α = 0 and β = 1, the
expected optimization time of the MMAS* is bounded

by O
[(

ηmax
ηmin

)
(m− k)

]k
.

Proof: Let e1, e2, ......, em be the hyperedges of the hy-
pergraph and η1, η2, ......, ηm be their corresponding heuristic
information values. Let T = {η1, η2, ....., ηk, ......., ηm}denote
the set that contains the heuristic information of all the hy-
peredges. Without loss of generality, let S = {η1, η2, ....., ηk}
be the set that contains the heuristic information of the edges
present in the optimal solution. Let Pi denote the probability
that the ith hyperedge selected during the course of one
iteration, belongs to S. Also, let Ri be the set containing the
elements of S which have not been included in the solution
till the (i− 1)th iteration.

Pi =

∑
ηj∈Ri

ηβj∑
ηj∈((T\S)∪Ri

ηβj
=

∑
ηj∈Ri

(ηβmin + Cj)∑
ηj∈Ri

(ηβmin + Cj) +
∑

ηj∈(T\S)

ηβj

≥

∑
ηj∈Ri

ηβmin∑
ηj∈Ri

ηβmin +
∑

ηj∈(T\S)

ηβj
≥

∑
ηj∈Ri

ηβmin∑
ηj∈Ri

ηβmin +
∑

ηj∈(T\S)

ηβmax

≥ ηβmin

ηβmin + (m− k)ηβmax
=

1

1 +
(
ηmax
ηmin

)β
(m− k)

where ηmin = min {η | η ∈ T} , ηmax = max {η | η ∈ T}
and Cj = ηj − ηmin for ηj ∈ S , j = 1 to k, are
positive constants. Therefore, PMIN , the lower bound on the
probability of choosing S as the solution is:

PMIN =
1[

1 +
(
ηmax
ηmin

)β
(m− k)

]k
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Substituting β = 1 and taking the inverse of PMIN , we find
the expected optimization time to be of

O

[
1 +

(
ηmax
ηmin

)
(m− k)

]k
i.e. O

[(
ηmax
ηmin

)
(m− k)

]k
.

It can thus be noted that the expected optimization time of
the MMAS* algorithm depends on the nature of the graph. In
the worst case though, the parameter k stated above, has an
upper bound of n. It can be shown that there exists a certain
family of graphs for which the expected optimization time is
of constant order.

B. Upper Bounds for Specific Instances of Hypergraphs

We consider only the case where α = 0 and β = 1
since this case yields better results as compared to the case
where α = 1 and β = 0. It may thus be noted that heuristic
information is more important than pheromones for faster
convergence.

Definitions: Before proceeding to theorem 3, let us define
the terms η1max and η′min.

η1max = max {η | η ∈ T \ S}

η′min = min {η | η ∈ S}

where S and T are as defined in the proof of theorem 2.

Theorem 3: If η′min > η1max and we choose
β ≥ log(k(m−k))

log(η′min/η1max) , the expected optimization time
for the MMAS* algorithm is of constant order.

Proof: Using the definitions mentioned in the proof of
Theorem 2 and proceeding in a similar fashion, we obtain:

Pi =

∑
ηj∈Ri

ηβj∑
ηj∈((T\S)∪Ri

ηβj
=

∑
ηj∈Ri

(η′βmin + C ′j)∑
ηj∈Ri

(η′βmin + C ′j) +
∑

ηj∈(T\S)

ηβj

≥

∑
ηj∈Ri

η′βmin∑
ηj∈Ri

η′βmin +
∑

ηj∈(T\S)

ηβj
≥

∑
ηj∈Ri

η′βmin∑
ηj∈Ri

η′βmin +
∑

ηj∈(T\S)

ηβ1max

≥ η′βmin
η′βmin + (m− k)ηβ1max

=
1

1 +
(
η1max
η′min

)β
(m− k)

where C ′j = ηj − η′min for ηj ∈ S , j = 1 to k are positive
constants.

Therefore, P ′MIN , the lower bound on the probability of
choosing S as the solution is:

P ′MIN =
1[

1 +
(
η1max
η′min

)β
(m− k)

]k

In the expression of P ′MIN , if we choose[(
η1max
η′min

)β
(m− k)

]
to be bounded above by 1

k , we

would obtain:

P ′MIN ≥
(

1 +
1

k

)−k
≥ 1

e

Then, the expected optimization time of MMAS* would be
bounded above by the inverse of P ′MIN i.e. of O(e), which
is of constant order.

For the above assertion to be true, the condition[(
η1max
η′min

)β
(m− k)

]
≤ 1

k must hold for some non-

negative β. Two cases may arise.

Case 1:
(
η1max
η′min

)
≥ 1

This case will never hold good for any non-negative β, and
hence is rejected.

Case 2:
(
η1max
η′min

)
< 1

[(
η1max
η′min

)β
(m− k)

]
≤ 1

k

⇒ β log

(
η1max
η′min

)
≤ log

(
1

k(m− k)

)
⇒ β ≥ log(k(m− k))

log
(
η′min
η1max

)

Hence, it can be concluded that, if η′min > η1max and we
choose β ≥ log(k(m−k))

log(η′min/η1max) , the expected optimization time
for the MMAS* algorithm is of constant order.

Some instances of hypergraphs for which the above
conditions hold good and thus the MMAS* algorithm
has constant order expected optimization time, are
discussed below. It may be noted here that, since we
have η′min > η1max, the following instances are also
polynomial-time solvable by greedy algorithms.

Instance 1: We shall construct a weighted complete
r-uniform hypergraph H1 = (V1, E1) on the vertex
set V1 = {1, 2, ....., n} and the hyperedge set
E1 = {e1, e2, ....., em}, where each hyperedge e is treated as
a set of vertices. Let S = φ and T = φ be empty sets and
i be initialized to 0. Let weight of an edge e be denoted by
w(e). We construct the hypergraph as follows:
(i) increment i and select a new hyperedge e′i ∈ (E \S) such
that T ∩ e′i = φ
(ii) assign w(e′i) = 1. Update S = S ∪ {e′i} and T = T ∪ e′i
(iii) if i < bnr c, repeat steps (i), (ii) and (iii). Else, goto
step (iv)
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(iv) increment i and select a new hyperedge e′i such that
(V \ T ) ⊆ e′i
(v) assign w(e′i) = 1. Update S = S ∪ {e′i} and T = T ∪ e′i
(vi) set w(ej) = randj ∀ e ∈ (E \ S), where randj is a
random integer > 1

Clearly, for the above hypergraph H1, the minimum weight
edge cover is the set S1. Also, since H satisfies the conditions
of Theorem 3, expected optimization time would be of
constant order.

Instance 2: We construct an unweighted hypergraph
H2 = (V2, E2) on the vertex set V2 = {1, 2, ....., n} and the
hyperedge set E2 = {e1, e2, ....., em}. Let S = φ and T = φ
be empty sets and i be initialized to 0. Let p be an integer
such that 2 ≤ p ≤ n.
(i) increment i and construct a new hyperedge e′i such that
e′i /∈ S as follows:
|e′i| = p
if p ≤ |V \ T |, then e′i ⊆ (V \ T )
else (V \ T ) ⊂ e′i
(ii) update p = q such that 2 ≤ q ≤ p, S = S ∪ {ei} and
T = T ∪ ei
(iii) if |T | < |V |, then repeat steps (i) and (ii), else goto
step (iv).
(iv) terminate construction procedure if so desired or if
the maximum limit for the number of hyperedges i.e. 2n

is reached. (v) update p = q such that 2 ≤ q ≤ p and
S = S ∪ {ei} .
(vi) increment i and construct a new hyperedge e′i such that
e′i /∈ S and |ei| = p.

The expected optimization time of the MMAS* algorithm
for the above mentioned Instance 2 of hypergraphs, is of
constant order.

Proof: Let the set of all hyperedges belonging to S
that were constructed using step (i) be denoted as Ψ. Let
Φ = S \ Ψ. Let the last hyperedge that was constructed
using step (i) be denoted by elast. Since the hypergraph is
unweighted, we may assume that each hyperedge has weight
equal to 1. Now, in order to show that Ψ is the minimum
edge cover of the hypergraph H2, we need to show that no
subset of Ψ can be replaced by any subset of Φ while not
increasing the total number of edges used in the edge cover.
Let U ⊆ (Ψ \ {elast}) and V ⊆ Φ. For V to be able to
replace U , there must exist some V s.t. |V | < |U | and V
covers all vertices covered by U . However if |V | < |U |, the
number of vertices covered by V is less than the number
of vertices covered by U since ∀(eU , eV ) s.t. eU ∈ U and
eV ∈ V, |eU | ≥ |eV | and elements of U are disjoint while
elements of V are not necessarily disjoint.

Hence, for no U can a corresponding V exist, which can
replace U while satisfying the condition |V | < |U |. (1)

Also, for no (U ∪ {elast}) can a corresponding V exist,
which can replace (U ∪{elast}) while satisfying the condition
|V | ≤ |U |. (2)

Hence, using statements (1) and (2), it can be concluded
that, no subset of Ψ can be replaced by any subset of Φ while
not increasing the total number of edges used in the edge
cover. Thus, Ψ is a minimum vertex cover.

Applying theorem 3, there exists β s.t. the expected opti-
mization time for the MMAS* algorithm is of constant order.

V. OTHER HYPERGRAPH COVERING PROBLEMS

A. Minimum Vertex Cover Problem

The vertex cover, as defined earlier, is a set of vertices such
that each hyperedge contains at least one vertex belonging to
this set. The minimum vertex cover problem is finding a vertex
cover of minimum cardinality.

The minimum edge cover problem is a special case of the
set cover problem where we treat each set as a hyperedge and
the union of all the given sets as the set of vertices. Similarly,
the minimum vertex cover problem is a special case of the
hitting set problem. It is known that the set cover problem
and the hitting set problem are equivalent reformulations of
one another. Thus, for hypergraphs, the minimum vertex cover
problem is an equivalent reformulation of the minimum edge
cover problem.

Hence, we can address the minimum vertex cover problem
by reducing to the minimum edge cover problem, for which
we have already provided an MMAS* algorithm. For this
purpose, we take the given hypergraph H(V,E) as input, find
its dual hypergraph H∗(V ∗, E∗) with unweighted edges and
then apply the MMAS* algorithm for finding the minimum
edge cover to H∗. The MMAS* algorithm gives a set of
hyperedges as output which is a subset of E∗. By the definition
of dual of a hypergraph, these set of hyperedges of H∗ given
as output, are vertices of the hypergraph H and hence form
a solution for the minimum vertex cover problem for the
hypergraph H .

B. Maximum-Weak Independent Set Problem

We know that a given set of vertices forms a weak-
independent set if and only if its complement is a vertex cover.
Hence, the solution to the weak independent set problem can
be obtained directly from the solution of the minimum vertex
cover problem, by taking the complement of the minimum
vertex cover.

It should also be noted that the maximum clique problem
can solved by taking a complement hypergraph H ′ of the
input hypergraph H and then finding the maximum weak-
independent set for H ′.

VI. CONCLUSION

In the present work, we obtain results for the upper bound
of expected optimization time of MMAS* ACO algorithm
for the minimum weight edge cover problem on generalized
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hypergraphs by taking into account pheromone values and
heuristic information separately. The results obtained are of
exponential order with respect to the number of hyperedges
for generalized hypergraphs. However, for certain families
of hypergraphs, by suitably choosing the heuristic parameter,
expected optimization time of constant order could also be
obtained. We show two such theoretical instances where the
above holds true. Also, we show that the minimum vertex
cover and maximum weak-independent set problems are spe-
cial cases of the minimum weight edge cover problem.

Further work may be taken up in the following directions.
• Investigation of different ACO construction procedures

and corresponding runtime analysis for the covering prob-
lems on specific classes of hypergraphs, i.e. k-uniform,
k-partite, dense/sparse hypergraphs, etc.

• In-depth analysis of the impact of pheromone values and
the pheromone evaporation factor on the running time.

• Analysis of lower bounds on the expected optimization
time for different classes of hypergraphs.

• Extension of the present work to other NP-Hard/NP-
Complete problems on hypergraphs, eg. coloring prob-
lems, minimum spanning tree problem, etc.

The present study thus points to several interesting open
areas in the theoretical ACO research that may contribute to
a better understanding of the runtime behaviour of ACO for
computationally harder problems.
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[2] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
brigde, MA, 2004.

[3] B. Doerr, F. Neumann, D. Sudholt, and C. Witt.“On the runtime analysis
of the 1-ANT ACO algorithm”. In Proc. Genetic and evolutionary
computation (GECCO ’07),London. ACM,pp. 33−40,2007.
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