
An algorithm for scalable clustering:

Ensemble Rapid Centroid Estimation

Mitchell Yuwono∗, Steven W. Su†, Bruce D. Moulton‡, Ying Guo§, Hung T. Nguyen¶

Abstract—This paper describes a new algorithm, called En-
semble Rapid Centroid Estimation (ERCE), designed to handle
large-scale non-convex cluster optimization tasks, and estimate
the number of clusters with quasi-linear complexity. ERCE
stems from a recently developed Rapid Centroid Estimation
(RCE) algorithm. RCE was originally developed as a lightweight
simplification of the Particle Swarm Clustering (PSC) algo-
rithm. RCE retained the quality of PSC, greatly reduced the
computational complexity, and increased the stability. However,
RCE has certain limitations with respect to complexity, and is
unsuitable for non-convex clusters. The new ERCE algorithm
presented here addresses these limitations.

I. INTRODUCTION

C
LUSTERING is the unsupervised classification of pat-

terns (observations, data items, or feature vectors)

into groups (clusters), based on a measure of similarity.

Clustering has proven to be useful in exploratory pattern-

analysis, grouping, decision-making, machine learning, data

mining, document analysis, image segmentation, and pattern

classification [1]. Attempts to develop and improve clustering

methods, however, are complicated by the fact that there

is no general consensus on how to define/classify natural

groupings, where each member of a group is in some way

“more similar” to other members of the same group — it has

been argued that the notion of “similarity” lacks objectivity

[2], [3].

Prior research has shown that stochastic search heuristics,

and in particular, particle swarm optimization (PSO), are

capable of achieving relatively high levels of clustering

quality [4]–[8]. Van Der Merwe reported that PSO could

achieve superior results when used to refine the clustering

result of k-means on benchmark datasets [4]. Inspired by the

success of PSO, Particle Swarm Clustering (PSC) [5] and

modified PSC (mPSC) [6] were proposed as PSO variants

specifically devised for clustering problems.

Rapid Centroid Estimation (RCE), an algorithm based on

PSC, was proposed in 2013 and reported to increase the effi-

ciency of PSC by providing leaner computational complexity

and higher stability [8]. However, we have observed that

RCE does not scale well during parallel processing. A further

limitation of RCE is that it is suitable only for Gaussian

clusters.

∗Mitchell Yuwono, †Steven W. Su, ‡Bruce D. Moulton, and ¶Hung.
T. Nguyen are with the Faculty of Engineering and Information Tech-
nology, University of Technology, Sydney, New South Wales, Australia.
§Ying Guo is with the Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO), Marsfield, New South Wales, Australia.
(email: ∗mitchellyuwono@gmail.com; §Ying.Guo@csiro.au; {†Steven.Su,
‡Bruce.Moulton, ¶Hung.Nguyen}@uts.edu.au).

This paper describes research that sought to address the

above limitations. An outcome of this research is the newly

developed Ensemble RCE (ERCE) algorithm. ERCE differs

from RCE in the following ways

1) ERCE further simplifies RCE’s update rules and re-

duces its overall memory-usage and computational

complexity,

2) ERCE employs an efficient hybrid ensemble aggrega-

tion technique using [9]–[11] which allows it to handle

non-convex clusters and estimate the number of clusters

in larger datasets.

3) ERCE increases the diversity of particles during swarm

mode, by using the concept of “charged particles”.

Examples of ERCE’s clustering capability are shown in

Figure 1.
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(a) Half rings dataset. Number of particles = 15, number of swarms = 20,
distance metric = euclidean (ℓ2). Purity = 100%.
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(b) Path-based dataset. Number of particles = 50, number of swarms = 5,
distance metric = euclidean (ℓ2). Purity = 97.33%

Fig. 1. Examples of ERCE’s clustering capabilities, shown using two
different synthetic datasets. During clustering, each ERCE swarm returns
locally optimum voronoi tessellations, which are shown here as lines
overlayed on the plots. An efficient hybrid ensemble aggregation technique
is applied for aggregating these ensemble tessellations. (+) and (−) signs
indicate positively and negatively charged particles, respectively.
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Section II of this paper discusses related prior research,

including ensemble methods, PSC, mPSC, and RCE. Sec-

tion III describes ERCE. Section IV provides a benchmark

analysis, which compares ERCE with other methods. Section

V focusses on issues relating to computational complexity.

Section VI provides conclusions and avenues for further

research.

II. RELATED PRIOR RESEARCH

A. Ensemble Methods

Clustering algorithms can be broadly subdivided into two

types: partitional and hierarchical [2]. Partitional clustering

defines clusters as compact partitions, while hierarchical

clustering defines clusters as groups of connected components

[2]. Commonly applied hierarchical algorithms include the

single-linkage (SL), complete-linkage (CL), average-linkage

(AL), and ward-linkage (WL) algorithms. Recent studies

show that natural clusters can be recovered by employing

ensemble methods which combine both the partitional and

hierarchical paradigms [3], [9]–[12]. Listed below are four

ensemble methods:

1) Evidence Accumulation (EAC)

The EAC was originally proposed by Fred and Jain [12].

The idea is to combine the results of multiple clusterings into

a single data partition, by viewing each clustering result as

an independent evidence of data organization. The proposed

strategy follows a split-and-merge approach.

EAC treats the co-occurrences of pairs of patterns in the

same cluster as votes for their association. The partition of

n patterns are mapped into a n × n co-association matrix,

CEAC(i, j) =
nij

N
, (1)

where nij denotes the number of times the pattern pair i

and j is assigned to the same cluster among the N clustering

results.

The natural cluster is recovered by performing agglom-

erative clustering on the co-association matrix. The final

partition is effected by the characteristic of the selected ag-

glomerative algorithm (e.g. SL biases towards connectedness,

while AL biases towards compactness). The optimum cut can

be identified with the highest lifetime criterion [12].

2) Weighted Evidence Accumulation (WEAC)

Weighted Evidence Accumulation (WEAC) was proposed

by Duarte in 2005 to improve the voting mechanism with

the inclusion of internal and relative cluster validity indices

to weigh multiple clustering results [11]. Given a crisp binary

membership matrix from the qth clustering, Uq ∈ [0 1], the

co-association matrix is computed as follows,

CWEAC =

∑
N

q=1 wqU
T

q
Uq∑

N

q=1 wq

, (2)

where wq is a scalar denoting the degree of importance

(weight) of the qth clustering result.

3) Fuzzy Evidence Accumulation (fEAC)

Wang proposes the Fuzzy EAC (fEAC) as the extension of

EAC for fuzzy clusters [10]. A fuzzy clustering is represented

by a fuzzy membership matrix U, where each element utj

defines the membership of the data yj in the tth cluster. The

co-association matrix can be calculated as follows,

CfEAC =

N∑
q=1

UT

q
Uq , (3)

where q denotes the clustering solution index. The aggrega-

tion product uses the minimum t-norm product [10],

uti,qutj,q =

kq∑
t=1

min[uti,q, utj,q], (4)

which is simply the minimum membership of the pattern pair

i and j over all cluster indices, t = {1, . . . , kq}. kq denotes

the number of clusters in the qth clustering result.

4) Co-Association Tree (CA-tree)

The CA-tree is proposed by Wang in 2011 [9] in order to

reduce the computation and memory complexity of EAC to

extend its applicability to larger datasets. The CA-tree applies

compression to the co-association matrix in a way that only

important representative nodes are retained.

The CA-tree constructs a hierarchical structure similar to a

dendrogram using the base cluster label vectors. The CA-tree

construction process uses an recursive top-down clustering

followed by an efficient bottom-up distance calculation [9].

An illustration showing the effect of the CA-tree compression

on a resulting co-association matrix is shown in Figure 2.

(a) CfEAC (original) (b) Cc fEAC (th=0.15) (c) Cc fEAC

(th=0.35)

Fig. 2. An illustration showing the construction of CA-tree and its compres-
sion effect on the resulting co-association matrix on different thresholds.

B. PSC and mPSC

1) General Principles

Particle Swarm Clustering (PSC) variants can be viewed

as a special modification of PSO, devised specifically for

clustering [5]. Conventional PSO clustering assigns each

particle to be a representative of a candidate solution [4].

PSC, on the other hand, assigns each particle as a potential

centroid candidate [5].

Given a data matrix Y,

Y =
[
y1 . . . yj . . . ynj

]
, (5)

where j denotes the observation index, nj denotes the

number of data (volume); and a particle position matrix X,

X =
[
x1 . . . xi . . . xni

]
, (6)

where i denotes the particle index, ni denotes the number of

particles; PSC variants performs high dimensional voronoi
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tessellation on the data such that each observation in Y is

mapped to the nearest particle. In other words, each particle

xi corresponds to a voronoi cell of the set Ci,

C1,...,ni
=

[
C1 . . . Ci . . . Cni

]
, ∅ ⊆ C1,...,ni

, (7)

which may contain empty sets. The clustered set,

CX = Cr,...,nc
∩ Ci,...,ni

, ∅ 6⊆ CX, (8)

is the sets in Ci,...,ni
which partitions Y to nc non-empty

clusters.

The core mechanics of PSC can be explained as follows.

Each particle position is recursively updated for each iteration

t,

xi(t + 1) = xi(t) + ∆xi(t + 1), (9)

∆xi(t + 1) = ω(t)∆xi(t) + vi(t), (10)

∆xi(t + 1) ∈ [−∆xmax, +∆xmax] (11)

where ω(t) represents inertia weight, usually set to a geo-

metrically decreasing function, xi(t) and ∆xi(t) denote the

position and displacement vectors of a particle i, ∆x is lower-

and upper-bounded by ±∆xmax which is set to a percentage

relative to the search space, and vi(t) denotes the direction

vector which determines the movement of a particle.

When any of the particles moves, the distance matrix,

which measures the pairwise distances between particles and

data points, is calculated. This matrix is used to update the

cognitive∗ matrix, social† matrix, and self-organizing‡ matrix

which is equivalent to the cluster membership.
∗Cognitive ability refers to the ability of each particle to

remember the closest position for each data as it moves

around the search space. The cognitive position vectors

are stored in the cognitive matrix Pd×nj×ni
.

†Social term refers to the ability of each data to remember

the historical position of a particle that has been closest

to the data during optimization. The social position

vectors are stored in the social matrix Gd×nj
.

‡Self-organizing term refers to the ability of each data

to attract the nearest particle. PSC performs voronoi

tessellation on the input space using its particles as

the voronoi cells. The self-organizing matrix Uni×nj
is

equivalent to the k-means (or Hard C-Means, HCM)

membership matrix.

At t = 0, X is initialized at random inside the search

space, while ∆X is set to a zero matrix. The matrices P,

G, and U are calculated based on the initial X. Afterwards

the aforementioned routines are iteratively computed on

each iteration until maximum iteration or equilibrium [5] is

reached.

The pseudocode can be written in Algorithm 1.

2) Particle Swarm Clustering (PSC)

PSC particle direction vector is computed as follows. In

each iteration the cognitive coj

i
(t), social scj

i
(t), and self-

organizing soj

i
(t) terms are computed for a data vector j,

coj

i
(t) = ui,jK1ϕ1(p

j

i
(t) − xi(t)), (12)

scj

i
(t) = ui,jK2ϕ2 (gj(t) − xi(t)) , (13)

soj

i
(t) = ui,jK3ϕ3 (yj − xi(t)) . (14)

Algorithm 1 PSC variants pseudocode

1. Initialize X, ∆X,P, G, and U.
2. while t <maximum iteration or stopping criterion not met
3. for i = 1, i < ni, i++
4. for j = 1, j < nj , j++
5. Update ∆x(t) and x(t).
6. Calculate distance matrix,
7. Update P,G, and U.
8. end for
9. end for

10. t++;
11. end while
12. return U.

The direction vector of each PSC particle with more than

one member is simply a sum of all the term weighted by

scalar uniform random numbers,

vpsc
j

i
(t) =

{
coj

i
(t) + scj

i
(t) + soj

i
(t) if Ci 6∈ ∅

xIwin(t) − xi(t) if Ci ∈ ∅
, (15)

where K1,...,3 are user-set parameters. Guidelines for se-

lecting the appropriate values for K1,...,3 are noted in [5].

Any particle i with zero members is redirected towards the

winning particle Iwin, which represents the cluster with the

most members.

3) Modified Particle Swarm Clustering (mPSC)

Szabo proposed a modification to the original PSC called

the Modified PSC (mPSC) in 2010 [6]. mPSC sets the inertia

weight ∀t, ω(t) = 0 and displacement vector limits to ∆X ∈
[−∞, +∞]. The calculation of the direction vector and flow

of the algorithm follows that of PSC, as described in Section

II-B2 and Algorithm 1.

C. Rapid Centroid Estimation (RCE)

RCE is broadly based on the PSC algorithm but is re-

configured to require less computational complexity, without

sacrificing its optimization capability [8]. The principles of

RCE are summarized as follows:

1) Particle positions are updated only once per iteration.

2) The distance matrix and best positions are updated after

all particle positions are updated.

3) RCE introduces the §minimum term which stores the

best particles that minimize a user defined objective

function. The objective function is generally defined as,

but not restricted to, the average intra-cluster distances

which is implemented as follows,

AWD(C) =
1

nj

nj∑
j=1

ni∑
i=1

uijd(yj ,xi), (16)

which measures the sum of all distances between each

data j to the nearest centroid normalized by the number

of data.

The minimum matrix returned by RCE is simply,

∀t,M = arg min
X

AWD(∀CX(t) 6∈ ∅), (17)

which is a set of all non-empty particles in X that

minimizes the average intra-cluster distances over all
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iterations. The optimum self-organizing matrix is re-

ferred to in this paper as U
M.

RCE particle direction vector is computed in the following

steps. In each iteration the cognitive∗ coi(t), social
† sci(t),

self-organizing‡ soi(t), and minimum§ mii(t) terms are

computed for all data vector j for each particles with at least

one member,

coi(t) =

∑nj

j=1 ui,j(p
j

i
(t) − xi(t))∑nj

j=1 ui,j

, (18)

sci(t) =

∑nj

j=1 ui,j (gj(t) − xi(t))∑nj

j=1 ui,j

, (19)

soi(t) =

∑nj

j=1 ui,j (yj − xi(t))∑nj

j=1 ui,j

, (20)

mii(t) =

∑
nk

k=1 u
M
i,k

(mk − xi(t))∑
nk

k=1 ui,k

, (21)

where nk denotes the number of vectors in the M matrix, and

u
M
i,k

denotes the binary membership value of the ith particle

to the kth vector in the M matrix.

The direction vector of each RCE particle is simply a sum

of all terms weighted by a uniform random vector Φ,

vrcei(t) =




Φ ◦ (coi(t) + sci(t)

+ soi(t) + mii(t)) if Ci 6∈ ∅

xIwin(t) − xi(t) if Ci ∈ ∅

, (22)

where the ◦ operator denotes Hadamard product.

In addition, the substitution and swarm strategies are

introduced to further improve RCE’s search reliability [8].

1) substitution strategy

The purpose of the substitution strategy is to force particles

in a search space to reach alternate equilibrium positions by

introducing position instability. For each particle i,

xi(t + 1) =

{
xIwin(t + 1) + N(0, σ) if ϕ < ε

xi(t + 1) otherwise
,

∆xi(t + 1)=

{
0 if ϕ < ε

∆xi(t + 1) otherwise
,

(23)

is calculated after its position is updated. In eq. (23) ϕ

denotes a uniform random number ϕ ∈ {0, 1}, xIwin is the

position of the winning particle, and N(0, σ) is a Gaussian

random vector with mean 0, and σ equal to the empirical

standard deviation of the search space, and ε denotes the

substitution probability parameter. Larger ε increases the

substitution frequency. Optimal ε values lie between 0.01 ≤
ε ≤ 0.05 [8].

2) swarm strategy

The swarm strategy is simply a collaborative parallel

search between RCE groups. In the swarm mode each RCE

group shares its minimum matrix such that,

Mswarm =

nm⋃
m=1

Mm(t), (24)

which is the union of all Mm matrices, m = {1, . . . nm}.

The minimum term mi in the swarm mode is termed the

collective minimum cm, as follows

cmi,m(t) =

∑
nk

k=1 u
Mswarm

i,m,k
(mswarm

k
− xi,m(t))∑

nk

k=1 ui,m,k

, (25)

where m denotes the index for the mth swarm, u
Mswarm

i,m,k

denotes a crisp membership of the ith particle in the mth

swarm to the kth vector of the collective minimum matrix.

Accordingly, the direction vector of each RCE particle in

the swarm mode is similar to eq. (22) except that Mswarm

is used in place of the minimum matrix M.

RCE pseudocode with the substitution and swarm strate-

gies can be written in Algorithm 2.

Algorithm 2 RCE pseudocode

1. Initialize X, ∆X,P, G, Uand M.
2. while t <maximum iteration or stopping criterion not met
3. for m = 1, m < nm, m++
4. for i = 1, i < ni, i++
5. Update ∆x(t) and x(t).
6. Apply substitution at a given ε value.
7. end for
8. Calculate distance matrix,
9. Update Pm,G, Um,Mm, and M

swarm.
10. end for
11. t++;
12. end while
13. return UM1,...,nm

.

III. ENSEMBLE RAPID CENTROID ESTIMATION (ERCE)

This section explains in detail our proposed ensemble clus-

tering method. The Ensemble Centroid Estimation (ERCE) is

proposed as an extension and simplification of RCE when the

swarm mode is applied. During the clustering stage, ERCE

is specially developed to minimize memory consumption and

maximize computation efficiency. For the ensemble aggrega-

tion, ERCE utilizes a hybrid algorithm using the CA-tree

[9], WEAC [11], fEAC [10]. This efficient split-and-merge

method allows ERCE to detect non-convex clusters in a

quasi-linear complexity. The illustration on the algorithmic

flow of the algorithm is shown at Figure 3. The following

subsections will discuss how this concept is applied in more

detail.

A. Simplification

The main challenge for the implementation of RCE as

an ensemble algorithm is its memory consumption. The P
and G matrices in PSC variants, including mPSC, RCE, and

swarm RCE contribute largely to the memory complexity

during optimization. This is because the size of P grows

linearly as more particles/swarms are added. Taking this

into consideration, both the original cognitive∗ and social†

terms are not used in ERCE. The calculations for cognitive∗

and social† terms are discarded which consequently leads to

ERCE having an even less computational complexity to that

of RCE.
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(a) Various voronoi tessellations returned by ERCE.

(b) Cc fWEAC obtained using the proposed CA-
tree – fuzzy WEAC Hybrid. The size of the co-
association matrix is reduced from 373×373 to
115×115.
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l
2

(c) The dendrogram (single link) obtained using the
proposed method (Cc fWEAC SL). The compressed
solution, Uc ensemble , is obtained using the highest
lifetime criterion.

 

 

(d) The desired decompressed solution,
Uensemble , obtained by performing inverse
mapping on the CA-tree.

Fig. 3. The algorithmic flow of the proposed method explained using the half rings dataset.

B. Swarm Diversification: The concept of “Charges”

Heyden proposes that the presence of redundant partitions

in ensemble clustering aggregation may produce an undesire-

able bias to the final solution [13]. In order to diversify the

particles, ERCE introduces a new concept of charge which

is inspired by the physical behaviour of electric charges.

The diversification strategy, together with the substitution

strategy, is devised to create a constant chaotic turbulence

in the search space, such that the possibility of creating a

duplicate partition is minimized.

There are two types of electric charges – positive and

negative. Charges of the opposite polarity will attract one

another while charges of the same polarity will repel oth-

erwise. Applying this concept, the ERCE particles can carry

either positive¶ or negative‖ charge. The initialization is done

at random and each particle remains the same charge until

the end of the optimization. Every data is assumed to be

negatively charged. The definitions of positive and negative

particles are as follow.

¶Positive (+) particles are attracted to their member data

such that the self-organizing‡ vector is positive,

so+
i
(t) = +soi(t). (26)

Readers are to refer to (20) for soi(t).
‖Negative (−) particles are repelled by their member data

such that the self-organizing‡ movement vector is neg-

ative,

so−

i
(t) = −soi(t), (27)

Readers are to refer to (20) for soi(t).

Negative particles are attracted to their nearby non-

empty positive particles. For negative particles, the so-

cial† term is redefined as follows,

∀Cl 6∈ ∅, sc−
i

(t) =

∑
nl

l=1 ui,l

(
x+

l
(t) − x−

i
(t)

)∑
nl

l=1 ui,l

, (28)

where l denotes the index of positively charged particles,

ui,l ∈ [0, 1] denotes a crisp membership value of the ith

negative particle to the lth nearest positive particle.

The direction vector of each ERCE particle is calculated

as follows,

vercei,m(t) =




Φ ◦
(
so+

i,m
(t)

+cmi,m(t)
)

if Ci,m 6∈ ∅,

and xi,m ∈ (+)

Φ ◦
(
so−

i,m
(t)

+sc−
i,m

(t)

+cmi,m(t)
)

if Ci,m 6∈ ∅,

and xi,m ∈ (−)

xIwin,m(t) − xi,m(t) if Ci,m ∈ ∅

,

(29)

where m denotes the index for the mth swarm, xi ∈ (+)
indicates that the particle i is positively charged, xi ∈ (−)
indicates that the particle i is negatively charged.
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C. Fuzzification of the Distance Matrix

Given a distance matrix between particles and data, D =
D(X,Y), the fuzzy membership value for the jth observation

with respect to the ith cluster, uij can be obtained as follows,

uij =
e−dij/(2λi)∑
ni

i=1 e−dij/2λi
, (30)

where dij is the distance between the ith particle to the jth

observation, and λi denotes the bandwidth of the ith cluster

center.

Given the fuzzified dissimilarity for the jth data relative to

the ith center,

Dij = uijdij , (31)

and its Shannon entropy,

H(uij) = −uij log uij , (32)

where uij is the fuzzy cluster membership vector of the jth

data relative to the ith cell, the optimum bandwidth for each

cell λ1,...,nc
can be calculated using a compromise between

eq. (31) and (32). In other words, for each cluster, Ci, the

optimum λi can be found by solving a convex optimization

problem,

min
s.t.

∀i,λi>0

||H −D||2, (33)

which optimizes λi for all cells, i = 1, . . . , ni, that best

describe the Gaussian probability distribution of the data

governed in each corresponding voronoi cell. However, as

minimizing eq. 33 requires a relatively high computational

complexity, for the sake of efficiency it is usually assumed

that every voronoi cell has equal bandwidths, such that

∀i, λi = λ.

D. Fuzzy Ensemble Aggregation

The fuzzy ensemble aggregation method can be explained

in five steps summarized as follow:

1) Use CA-tree to find the representative nodes from the

label vectors.

2) Use the average of the corresponding fuzzy member-

ship representation for each representative nodes.

3) Calculate the weights using average simplified sil-

houette width criterion (SSWC) [14] and Generalized

Dunn Index (GDI) [15],

wq = SSWCq(C
(q)) × GDIq(C

(q)), (34)

where C
(q) is the crisp partition obtained from the qth

clustering.

4) Calculate the weighted co-association matrix of the

representatives nodes,

Cc fWEAC =

∑
N

q=1 wqUT

q
Uq∑

N

q=1 wq

, (35)

where Uq is the compressed fuzzy membership matrix

of the qth clustering, the calculation of UT

q
Uq follows

eq. (4).

5) Recover the ensemble label matrix Uensemble from

Cc fWEAC .

The pseudocode for ERCE is shown in Algorithm 3.

Algorithm 3 ERCE pseudocode

1. %% Ensemble clustering stage (split)
2. Initialize X, ∆X,Uand M.
3. while t <maximum iteration or stopping criterion not met
4. for m = 1, m < nm, m++
5. for i = 1, i < ni, i++
6. Update ∆x(t) and x(t).
7. Apply substitution at a given ε value.
8. end for
9. Calculate distance matrix,

10. Update Um, Mm, and M
swarm.

11. end for
12. t++;
13. end while
14. %% Ensemble aggregation stage (merge)
15. Optimize the fuzzy membership matrices UM1,...,nm

.
16. Calculate Cc fWEAC .
17. Recover Uensemble .
18. return Uensemble

IV. BENCHMARK ANALYSIS

The proposed algorithm is evaluated using two real-world

datasets from the UCI Machine Learning Repository [16] and

a high resolution image clustering problem. The performance

of the proposed algorithm will be compared with existing the

partitional clustering algorithms including k-means (Hard C-

Means - HCM), Fuzzy C-Means (FCM), PSC, mPSC, and

swarm RCE. Fixed number of clusters will be supplied for

these algorithms.

A comparison to conventional ensemble methods including

ensemble HCM EAC, ensemble HCM WEAC, and ensemble

FCM fEAC will also be presented. Ensemble HCM WEAC

uses SSWC [14] and GDI [15] as the weighting factor.

Exponent for the partition matrix in FCM is set to 2. Number

of clusterings/repetitions (q) is set to 80 times. the number

of clusters for each repetition varies uniformly between 2

to
√
|N |, where |N | is the volume of the dataset. For all

ensemble algorithms, the number of clusters are assumed to

be unknown.

Parameters for ERCE is set as follow. CA-tree compression

threshold is set to 0.1. Number of particles is set to 20,

number of swarms is set to 20. Substitution probability, ǫ, is

set to 0.03, maximum iteration is set to 20. Positive (+) and

negative (−) particles are uniformly spread for each swarm.

The number of clusters are assumed to be unknown.

A. Fisher-Iris dataset

The Fisher-Iris dataset [16] contains 150 instances of

iris flowers collected in Hawaii. The dataset consists of 50

samples from each of three species of Iris (Iris setosa, Iris

virginica and Iris versicolor). Four features were measured.

The performance of each algorithms will be evaluated ac-

cording to the purity and entropy of the clustering results

against the ground truth.

Pearson’s correlation and WL is selected as the distance

metric and ensemble aggregation scheme due to the shapes

of the clusters being three elongated Gaussian mixtures. A

monte-carlo simulation using 200 trials of various algorithms
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is shown in Table I. Shaded cells in Table I indicate ensemble

algorithms, dark gray cells indicate ERCE results.

TABLE I
EXPERIMENTAL SUMMARY ON THE FISHER-IRIS DATASET [16].

Algorithm
Purity Entropy Time

Mean Std Mean Std Mean Std

HCM 78.60% 16.80% 0.16 0.03 1.50E-03 6.00E-04

FCM 89.33% 0.00% 0.27 0.00 8.91E-02 1.84E-01

PSC 79.90% 11.60% 0.31 0.11 3.90E-02 3.00E-04

mPSC 88.60% 10.70% 0.32 0.09 3.80E-02 3.00E-04

RCE 94.61% 4.90% 0.16 0.17 1.60E-03 2.00E-05

Swarm RCE 95.80% 0.66% 0.15 0.02 9.50E-03 6.40E-05

HCM EAC 76.22% 16.70% 0.24 0.05 5.76E-01 2.21E-02

HCM WEAC 82.44% 9.19% 0.22 0.03 1.27E+00 3.86E-02

FCM fEAC 89.02% 2.23% 0.21 0.02 1.54E+00 1.96E-01

ERCE 96.30% 0.51% 0.12 0.01 9.69E-01 4.38E-02

From Table I, it can be seen that the ERCE yields best

purity relative to the other ensemble algorithms and parti-

tional algorithms. The HCM EAC performs slightly faster on

this dataset than ERCE, however it produces the least stable

results, which can be seen from its high standard deviation.

B. Optical digits dataset

This dataset is used to benchmark the capability the pro-

posed algorithms discover patterns in data. A good algorithm

is expected to find correct assignments based on the data

alone. The optical digits dataset [16] describes an optical

digit recognition problem from pictorial bitmaps. The data

were obtained from a total of 43 people. 32×32 bitmaps are

divided into nonoverlapping blocks of 4×4 and the number

of on pixels are counted in each block. This generates an

input matrix of 8×8 where each element is an integer in the

range from 0 to 16. The total volume of the dataset is 5620.

The results from HCM EAC(AL) and ERCE is shown in

Figure 4.

(a) HCM EAC (AL), 80 repetitions k = 2–75. The algorithm failed to
group 9 in an individual cluster. Two clusters of 1 are discovered. Time
for optimization = 192.6 seconds.

(b) HCM WEAC (AL), 80 repetitions k = 2–75. Similarly to HCM EAC,
HCM WEAC algorithm failed to group 9 in an individual cluster. Time
for optimization = 186.1 seconds.

(c) FCM fEAC (AL), 80 repetitions k = 2–75. The algorithm consistently
finds only 3 clusters at most after numerous trials. Time for optimization
= 351.6 seconds.

(d) ERCE (AL), 15 particles, 20 swarms, 100 iterations. All 10 patterns are
discovered and correctly clustered. Time for optimization = 32.66 seconds.

Fig. 4. Clustering results for the Optical Digits recognition dataset

C. Natural image segmentation

One of the important criteria for a clustering algorithm

is its capability to handle high volume data. To benchmark

the performance of ERCE we use a 634×505 RGB image

(volume = 320170, dimension = 3) showing an animal panda

and a grass background [17]. Because the colors of the

panda (black/white) are contrast to those of its background

(green) segmenting this image should be relatively easy. The

clustering result of ERCE(SL) is shown in Figure 5.

Fig. 5. ERCE (SL) clustering result for clustering a panda image in the RGB
color space (634×505×3). ERCE settings: 15 particles, 20 swarms, 50 iter-
ations. 5 clusters were discovered: the panda’s fur (white(1) and black(2));
shadows on the panda’s fur(3); green background(4) ; and edges(5) . Time
for optimization = 56.74 seconds.

The total memory requirement for ERCE for processing

this image is 165 Megabytes (MB). Results for other ensem-

ble algorithms are not available as the memory requirements

for all methods exceed 5 Terabytes (TB).

V. COMPLEXITY ANALYSIS

A. Memory Complexity

To test the memory consumption of various clustering

algorithm on a random data (byte precision, volume = 1 Byte

– 1 Megabytes, dimension = 2) can be seen in Figure 6.
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Fig. 6. Memory complexity for clustering 2-dimensional random noise (vol
= 1 Byte – 1 Megabytes, d = 2) using various algorithms. The global settings
for all algorithms are as follow: the number of representatives (k, ni) = 30;
the number of trials/swarms (nm) = 30.)
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It can be seen from Figure 6 that the lowest memory

requirement for non-ensemble methods is achieved by Hard

C-Means (HCM, or k-means), followed by Fuzzy C-Means

(FCM), PSC, mPSC, RCE, and Swarm RCE. For ensemble

methods, ERCE achieves the lowest memory complexity,

followed by HCM EAC, HCM WEAC, and FCM fEAC. The

scalability problem of EAC-based methods are clearly shown

in the graph.

B. Computational Complexity

A known issue with traditional ensemble algorithms —

such as the HCM EAC, HCM WEAC, and FCM fEAC, —

is that they do not scale well to larger datasets. The main

bottleneck for these algorithm is the EAC algorithm [9].

Realizing this issue, the ERCE make use of the EAC

algorithm efficiently on the representative nodes which are

extracted using CA-tree. The computational complexity of

ERCE will be explained in the following paragraphs.

During the clustering stage, ERCE computational com-

plexity is O(nmniN) for a single iteration, where nm

denotes the number of swarms, ni denotes the number of

particles, and N denotes the number of data. When compared

with that of HCM/k-means, it is simply the HCM complexity

multiplied by the number of swarms nm. The complexity for

distance fuzzification is O(nmniNLm), where Lm is the

number function evaluations required for the mth swarm.

During the ensemble aggregation scheme, the ERCE com-

plexity relies on the complexity of both CA-tree (O(N)
[9]) and fcWEAC, O(ninmN2

th
), where nm denotes the

number of swarms, ni denotes the number of particles, and

Nth denotes the number of representative nodes at a given

threshold, Nth < N . For higher threshold the volume of the

node representatives will be much smaller than the dataset,

Nth << N , which in turn makes the fcWEAC assume a

quasi-linear complexity, O(nmnilog
2(N)).

The overall complexity of ERCE is therefore,

O(

clustering + fuzzification︷ ︸︸ ︷
[nmniN(tmax + Lm)] +

CA-tree︷︸︸︷
[N ] +

fcWEAC︷ ︸︸ ︷
[nmnilog

2(N)]), (36)

where tmax denotes the predefined number of iterations.

VI. CONCLUSION

This paper proposes the Ensemble Rapid Centroid Estima-

tion (ERCE) as an extension of Rapid Centroid Estimation

(RCE) for dealing with large scale ensemble cluster optimiza-

tion problem. Its formulation leads to the reduction of over-

all memory and computational complexity, increase in the

swarm diversity using the concept of “charged particles” and

the ability to handle non-convex clusters and estimate natural

grouping for larger dataset in quasi-linear time. The ERCE’s

low memory and computational complexity are mainly at-

tributed to the modifications on the RCE update rules and

the employment of CA-tree [9]. Preliminary experimental

result on benchmark datasets including Fisher-Iris, optical

digits, and natural image clustering have shown promising

results. When clustering a relatively high resolution RGB

image, ERCE correctly returns the desired clustering result

in less than 1 minute with only 165 Megabytes memory

consumption, as opposed to 5 Terabytes using other ensemble

algorithms.

Notwithstanding the encouraging results, further work for

investigating the stability, reliability and scalability of the

ERCE on larger and more complex datasets will be required.
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