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Abstract—This study presents a soft computing based 
optimization methodology, the evolutionary regional neural 
network modeling for engineering applications with sampling 
constraints. Engineering optimization often involves expensive 
experiment costs. Intelligent optimization advocates establishing 
a neural network model using small training samples such as 
orthogonal array to set up a surrogate model for the engineering 
system followed by an optimum search in the model to reduce 
optimization cost. However, scarce training samples might 
compromise modeling generality for a complex problem. 
Empirical rules suggest reliable predictions are likely restricted 
to the neighboring space of training samples, and interpolating 
designs are more reliable than extrapolating designs. To avoid 
imperfection of model due to small learning samples, an 
evolutionary regional network model is set up to confine the 
search of quasi-optimum using genetic algorithm. The 
constrained search in the regional network model provides a 
reliable quasi-optimum. The verification of the optimum is added 
to the learning samples to retrain the regional network model 
while the size and the distribution of reliable space will evolve 
intelligently during the optimization iteration using a fuzzy 
inference according to the prediction accuracy. An engineering 
case study, the optimal die gap parison programming of 
extrusion blow molding process for a uniform thickness, is 
presented to demonstrate the robustness and efficiency of the 
proposed methodology. 

Keywords- Neural Network; Genetic Algorithm; Fuzzy Logics; 
Evolutionary Optimization; Surrogate Model, Extrusion Blow 
Molding 

I.  INTRODUCTION 

Cost constraints in engineering optimization often impose 
a limit on the number of samples that could be actual 
experiments or time consuming numerical simulations. 
Taguchi’s method [1] is well known for its efficiency and 
simplicity in parameter design. Inspired from statistical 
factorial experiments, Taguchi’s method features orthogonal 
arrays (OAs) and analysis of mean (ANOM) to estimate the 
effects of design variables. Use of orthogonal arrays helps 
reducing the number of experiments; however, the optimum 
prediction is sensitive to the selection of parameter ranges and 
possible interaction effects. Also, the restriction of parameter 
values to factorial levels reduces possibilities of exploring 
better designs between preset levels. 

An artificial neural network (ANN) model could be 
established from a set of training data as a surrogate model to 
predict system responses. Nonlinear continuous systems can 
be approximated by multilayer artificial neural network 
[2]~[4]. The optimum setting of ANN parameters in a 
multilayer perceptron (MLP) network trained with the back 
propagation algorithm can be identified using Taguchi’s 
design of experiments [5] and genetic algorithms [6]. Instead 
of a direct interaction with the real system, the optimum 
search is applied to the surrogate model to increase the 
searching quality and reduce the experimental cost. The 
combinations of a simulated neural network and evolutionary 
optimization [7], such as genetic algorithms, have thus 
attracted much research attention [8]~[10]. 

The size and the distribution of training data are essential 
to the prediction accuracy of a simulated network model. The 
training samples are usually existed field data or planned 
experiments such as Taguchi’s orthogonal arrays (OA). 
However, possible bias distribution of field data will decrease 
the prediction accuracy of simulated models. Though OA 
experiments provide a smaller and even sample distribution, 
scarce training data might result in the lack of model 
generality for a complex problem. Also, because ANN is 
mainly based on fitting methods to learning data, the 
prediction reliability will be related to the distance between 
the point of interest and the nearest learning sample [11] and 
the estimation error of the learning sample [12]. 

This study proposes a novel optimization methodology 
based the iterative constrained search in the evolutionary 
regional network model that is defined as the union of the 
neighboring space of the training sample. The regional model 
will evolve intelligently based on the fuzzy inference of the 
prediction accuracy. The process parameter optimization of 
the extrusion blow molding of a HDPE gas tank with uniform 
thickness is  presented to demonstrate the robustness and 
efficiency of the proposed scheme. 

II. REGIONAL NEURAL NETWORK MODEL FROM LIMITED 

TRAINING SAMPLES 

A. Generality of ANN model 

To reduce experiment costs in the engineering applications 
of design optimization, an artificial neural network (ANN) 
model is established from a set of finite sample data served as 
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a surrogate model to predict system responses in optimum 
search. A four-layer structure with two hidden layers is 
selected, which provides good approximation for most 
engineering applications [5]. This study applies Taguchi’s 
method to tune both network structure and parameters of the 
neural network including the number of hidden neurons, 
transfer functions, and learning parameters . The number and 
the distribution of training data are essential to the prediction 
accuracy of a simulated neural network. If the distribution of 
training data is biased or the number of samples is not 
sufficient, the generality of the trained network will be in 
jeopardy, which affect the prediction accuracy of optimum. 
Taguchi’s orthogonal array is often used as the initial training 
samples to reduce the number of experiments [13]. However, 
a small number of experiment will also cause low generality 
of trained network.  

For the example of the Peaks function as shown in (1), the 
theoretical contour plot is highly non-linear and includes 3 
peaks and 2 valleys and flattens out gradually outside the 
range shown in Fig.1(a). Fig. 1(b) is a simulated network 
model from 9 random learning samples and 4 testing samples. 
The simulated model shows a rough profile of the original 
function, but significant errors present especially for the 
prediction farther away from training samples. Increasing the 
number of samples is a simple solution, but will raise a cost 
concern.  
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B. Regional Neural Network Model 

Empirical rules for the prediction accuracy of a simulated 
model from limited training samples suggest: 

(1) The prediction accuracy is worse for a design farther 
away from the training samples. 

(2) The prediction accuracy of an interpolation design is 
better than an extrapolation designs. 

This study proposes the trained NN is effective only in the 
reliable region of the model. Here, the Sampling Distance, rij, 
is proposed as a neighboring index between a predictive 
design, Pi, and the sample Sj, which is defined as the mean 
Euclid distance: 
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where n represents the number of variables. To prevent the 
scaling problem, continuous variables xk are first normalized 
to zk to transform all the dimensional entries of the training 
samples into the space of [-1, +1]. For discrete variables, the 
factorial values are assigned equally spaced between -1 and +1.  

As the predictive errors of the training samples will be 
controlled to an acceptable level, the neighboring space of the 
training samples is likely as reliable as the training samples. 
The reliable region is defined as a hyper-sphere centered at a 
training sample. To differentiate interpolating and 
extrapolating designs, the Sampling Enclosure Space (SES) is 
defined as a least convex hyper-polyhedron enclosing all 
training samples. Two parameters: the Reliable Interpolating 

Radius (RI) and the Reliable Extrapolating Radius (RE) are 
proposed to define the reliable regions of a simulated model 
(Fig. 2). The reliable regions outside and inside the Sampling 
Enclosure Space (SES) are defined by hyper-spheres with 
radius RE and hyper-spheres with radius RI respectively. 
Because the interpolating designs have better prediction 
accuracy than extrapolating designs, RE is often smaller than 
RI. The determination of the reliable radii will depend on the 
model complexity and prediction accuracy, and is a key issue 
in the following study. However the determination of RE and 
RI will be an important issue.  

 

 
 (a) (b) 

Fig. 1. Contour plots of the Peaks function (a) theoretical plot (b) sample 
contour plot of the ANN model from 13 training samples 

 
Fig. 2. Schematic reliable regions of a two-dimensional example with 5 

learning samples. 

 

 
Fig. 3. The reliable regions (RI = 0.3, RE = 0.2) of a simulated network model 

 

Learning samples
Searching samples
Test samples
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III. EVOLUTIONARY OPTIMIZATION USING REGIONAL 

NEURAL NETWORK 

A. Flowchart of Evolutionary Optimization 

The searching flowchart of the proposed optimization 
scheme, Evolutionary Regional Neural network with Genetic 
Algorithm, (ERNGA), is shown in Fig. 4. A simulated 
network model is established from the initial training data. 
The proposed scheme confines the GA search to the reliable 
regions of the network model for a quasi-optimum. The 
reliable regions are the union of the hyper-spheres defined by 
the RI and the RE surrounding the training data. The 
verification of the quasi-optimum provided by the GA search 
is introduced to retrain the neural network and to adjust the 
reliable radii using a fuzzy inference. The reliable regions of 
the simulated network will then continue to evolve from the 
accumulation of training samples and self-learning mechanism 
of the reliable radii. The optimum search iterates until the 
convergence of optimum. 

B. Fuzzy Inference for the Reliable Radii 

The selections of RI and RE depend on the model generality. 
The verification of the regional optimum will become a 
feedback mechanism to adjust the Reliable Radii based on the 
following fuzzy concepts. If the verification result is close to 
the model prediction, increase the Reliable Radii to expand the 
reliable regions; otherwise, decrease the Reliable Radii. This 
section proposes a heuristics based fuzzy inference to 
intelligently evolve the Regional Neural Network Model as 
Table 1. 

Table 1 FUZZY INFERENCE RULES OF RELIABLE RADII 

1 If Extrapolation and MEI is [Small] then [Slightly Increase] RE and 
[Increase] RI 

2 If Extrapolation and MEI is [Medium] then [Maintain] RE and 
[Slightly Increase] RI 

3 If Extrapolation and MEI is [Large] then [Slightly decrease] RE and 
[Maintain] RI 

4 If Interpolation and MEI is [Small] then [Maintain] RE and  
[Slightly increase] RI 

5 If Interpolation and MEI is [Medium] then [Maintain] RE and  
[Slightly decrease] RI 

6 If Interpolation and MEI is [Large] then [Slightly decrease] RE and 
[Decrease] RI 

 

Three linguistic levels are defined to describe the condition 
variable of prediction error: Large, Medium, and Small based 
on the Modeling Error Index, (MEI) in Eq.(3). Five action 
levels are defined to describe the adjustment factor (AF) for 
the Reliable Radii: Increase, Slightly Increase, Maintain, 
Slightly Decrease, and Decrease. Standard triangle 
membership functions are applied to define the fuzzy variables 
as illustrated in Fig. 5 and Fig. 6. 

Test
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=  (3)

where Yj is the model prediction, Tj is the verification result of 
the quasi-optimum at iteration j, and RMSETest is the root mean 
squared error of the testing samples.  

The adjustment factors from the fuzzy inference are used 
to modify the reliable radii of interpolation and extrapolation 

as shown in Eq. (4) and (5) respectively, and dynamically 
adjust the reliable regions in the next iteration. 

(RI)i+1 = AFI × (RI)i (4)
(RE)i+1 = AFE  × (RE)i (5)

Therefore, the searched result will be less sensitive to the 
imperfection of the trained model. If the verification result is 
good, the reliable regions will expand in the next iteration to 
investigate more possible regions; otherwise, the reliable 
region will retract for a more conservative search.  
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Fig. 4.Optimization flowchart of ERNGA. 
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Fig. 5. Membership functions of the condition levels of MEI. 
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Fig. 6. Membership functions of the action levels of the adjusting factor (AF). 

C. Optimum Search of the Peaks Function 

Optimization of the Peaks function in (1) is used to 
illustrate the applications of ERNGA. L9 OA is selected for 
the learning samples, and L4 OA is selected for the testing 
samples in the initial investigating ranges of ]2,2[, +−∈yx  
for the Peaks function. Fig. 7 show that the iterations converge 
smoothly to the theoretical optimum with relative error of 
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0.7% at 24th iteration although the accuracy of the initial NN 
model is poor due to a bad distribution in the flat region for 
initial samples. As the addition of the learning samples from 
the searched optima and the self-learning mechanism of the 
reliable regions, the accuracy of the simulated model improves, 
especially in the most probable regions of the global optimum 
as shown in Fig. 8. ERNGA will congregate additional 
samples in the most probable regions of the design optimum 
without wasting costly experimental resources in unlikely 
regions. 

If the constraint of the reliable regions is relieved as in 
convention intelligent optimization, GA will assume global 
accuracy, and search for the design with the best fitness based 
on the model prediction in the investigating range. The 
prediction accuracy of the optimum is poor because of the lack 
of generality for the network model. Although the best result 
of the iteration is happened to be close to the global optimum 
with the relative error of 1.6%, the iteration is very unstable 
and shows no convergence tendency in 45 iterations as shown 
in Fig. 9. The search result is very sensitive to the global 
accuracy. Also, unlike ERNGA, additional samples from the 
iteration of conventional NN and GA may scatter all over, and 
are thus less efficient. 

A continuous discrepancy presents between the predicted 
optimum and the verified results for the conventional NN and 
GA iteration due to the over-confidence on the global 
accuracy of the simulated models. On the other hand, the 
fuzzy inference of reliable radii in ERNGA constrains the GA 
search and provides a reliable quasi-optimum. The 
evolutionary regional network model expands intelligently to 
the most probable regions of global optimum. 

IV. OPTIMIZATION OF EXTRUSION BLOW MOLDING 

A. Parision Programing for Extrusion Blow Molding 

Extrusion blow molding is a low cost manufacturing 
process for complex hollow parts [14] which involves four 
processes: parison extrusion, mold clamping, parison inflation, 
and part solidification.  First, the parison extrusion produces a 
molten thermoplastic tube from the die.  The parison shape is 
determined by the die geometry, die gap programming, and 
flow rate. To control the parison thickness over time, a 
mandrel is moved in and out to the die as in Fig. 10. The 
parison profile can be controlled by manipulating the die gap 
opening over time. The parison is clamped and high-pressure 
air is blown into it to obtain the hollow part. The design 
objective of the parison programming is to control the die gap 
openings to obtain a uniform thickness of the blown part [15]. 

The programming points are the die gap openings of the 
parison in the extruder specified as a function of time. For the 
gas tank made of high density polyethylene (HDPE) shown in 
Fig. 11, the die gap openings at 13 discrete extrusion times: 
P(t1) ~ P(t13) are identified as the design variables. The finite 
element tool, BlowSim developed by National Research 
Council of Canada is applied to simulate parison extrusion and 
blow molding processes to obtain the thickness distribution of 
the inflated part [16]. 

 

 
Fig. 7. ERNGA iteration for the Peaks problem 

 
 Initial learning samples 
× Initial testing samples 
 Iteration of searched optima

 
Fig. 8. The contour plot of the simulated model and the distribution of the 

searched optima using ERNGA 

 
Fig. 9. Conventional NN and GA iteration using for the Peaks problem 

 

B. Objective Function 

The design objective is to target a uniform part thickness 
of 5 mm. Any deviation from the on-target thickness will 
impose a quality loss. To reach this goal, the objective 
function is defined as the mean squared deviation of the wall 
thickness, 
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where hi stands for the thickness of node i, T for the target 
thickness, and n for the total number of nodes of the 
simulation model. The parameter design searches for the 
optimum with a minimum objective. 

0% open 100% open

Die

Mandrel

Parison programming             % die open in function of time

Parison

 
Fig. 10. Control of the parison thickness using the parison programming 

 
(a) 

 
(b) 

Fig. 11. Extrusion blow molding of the gas tank example. (a) Exemplar 
programming points of the parison extrusion (b) the blown part. 

C. Design of Experiment 

The die gap openings at 13 discrete extrusion times are 
selected as the design variables. The initial design adopts a 
uniform die gap opening of 10% for first four control points 
and 20% for the rest.  Taguchi’s L36 orthogonal array as in 
Table 2 is selected as the experimental design.  For each 
opening, we assume a three-level variation around the initial 
design located in the middle of the design space. The range 
between upper and lower levels represents the design space.  

Taguchi’s method applies the analysis of means (ANOM) 
to estimate the factor effect. Fig. 12 represents the factor 
effects for each die opening on the objective. The additive 
model predicts the optimum treatment to be 
A1B3C3D2E2F1G1H1I1J1 K1L1M3. The variation of Taguchi’s 
optimum using BlowSim simulation shows the objective of 
6.44, which is not even the best design in Table 2. The failure 
of Taguchi’s approach might due to interactions among design 
variables and strong system non-linearity. 

D. Establish Regional Nerual Network Model 

This study applies Taguchi’s L36 orthogonal array as the 
initial training samples for the regional NN model. The L36 
experiments are divided into two smaller orthogonal arrays as 
differentiated by the shade in Table 2. Eighteen experiments 
are used as learning samples and the others are used as testing 
samples. There are 15 neurons in the hidden layer. The initial 
learning rate is set to 1.0 and the initial momentum term is set 
to 0.5. The steepest descent method is combined with learning 
samples to train the weighted matrix among network units, 
thus, increasing the prediction accuracy of the neural network.  

Table 2. L36 ORTHOGONAL ARRAY 

A B C D E F G H I J K L M

L36 Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 Pt9 Pt10 Pt11 Pt12 Pt13 Obj.

1 5 5 5 5 30 30 30 30 30 30 30 35 35 4.93

2 5 10 10 10 40 40 40 40 40 40 40 40 40 10.6

3 5 15 15 15 50 50 50 50 50 50 50 45 45 18.5

4 5 5 5 5 30 40 40 40 40 50 50 45 45 13.9

5 5 10 10 10 40 50 50 50 50 30 30 35 35 13.1

6 5 15 15 15 50 30 30 30 30 40 40 40 40 10.2

7 5 5 10 15 30 40 50 50 30 40 40 45 40 12.1

8 5 10 10 15 30 40 50 30 30 40 50 45 35 11.8

9 5 15 15 5 40 50 30 40 40 50 30 35 40 9.62

10 5 5 5 15 40 30 50 40 50 40 30 45 40 11.5

11 5 10 10 5 50 40 30 50 30 50 40 35 45 11.3

12 5 15 15 10 30 50 40 30 40 30 50 40 35 11.5

13 10 5 10 15 30 50 40 30 50 50 40 35 40 13

14 10 10 15 5 40 30 50 40 30 30 50 40 45 10.9

15 10 15 5 10 50 40 30 50 40 40 30 45 35 12.6

16 10 5 10 15 40 30 30 50 40 50 50 40 35 13.2

17 10 10 15 5 50 40 40 30 50 30 30 45 40 12.1

18 10 15 5 10 30 50 50 40 30 40 40 35 45 10.8

19 10 5 10 5 50 50 50 30 40 40 30 40 45 15

20 10 10 15 10 30 30 30 40 50 50 40 45 35 11.6

21 10 15 5 15 40 40 40 50 30 30 50 35 40 10.4

22 10 5 10 10 50 50 30 40 30 30 50 45 40 14.9

23 10 10 15 15 30 30 40 50 40 40 30 35 45 7.59

24 10 15 5 5 40 40 50 30 50 50 40 40 35 12.4

25 15 5 15 10 30 40 50 50 30 50 30 40 40 10.7

26 15 10 5 15 40 50 30 30 40 30 40 45 45 10.3

27 15 15 10 5 50 30 40 40 50 40 50 35 35 12.6

28 15 5 15 10 40 40 30 30 50 40 50 35 45 10.7

29 15 10 5 15 50 50 40 40 30 50 30 40 35 15.6

30 15 15 10 5 30 30 50 50 40 30 40 45 40 11.4

31 15 5 15 15 50 40 50 40 40 30 40 35 35 11.2

32 15 10 5 5 30 50 30 50 50 40 50 40 40 18.6

33 15 15 10 10 40 30 40 30 30 50 30 45 45 8.08

34 15 5 15 5 40 50 40 50 30 40 40 40 45 12.3

35 15 10 5 10 50 30 50 30 40 50 50 35 40 13.1

36 15 15 10 15 30 40 30 40 50 30 30 40 45 8.63

Initial 10 10 10 10 40 40 40 40 40 40 40 40 40 11.5  
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Fig. 12 Factor effects plot of the 13 design variables 

Table 3 GENETIC ALGORITHM PARAMETERS 

Population 
size 

Pool selection 
style 

Scale style Cross 
Over rate 

Mutation 
rate 

Max 
iteration 

37 Parent and 
offspring 

Linear 
scale 

0.75 0.1 100 

 

E. Iteration for ERNGA 

Real-parameter Genetic Algorithm (RGA) [17] is applied 
to search for the quasi optimum of the regional network model. 
The GA parameters used in this study are listed in Table 3.  
The fitness function adopts the negation of the objective in (6) 
predicted from the simulated model.  

The prediction generality of a simulated network is limited 
if the number of training samples is deficient. This study 
suggests constraining the GA search to the reliable regions of 
the network model. During the evolution processes of 
mutation, crossover, and reproduction, the offspring outside 
the reliable regions of the network model will be discarded 
and regenerated to constrain the searching domain. The GA 
search constrained to the regional neural network prevents the 
prediction error due to deficient generality and provides a 
reliable quasi-optimum. 

The extrusion blow molding using the parameter of the 
provided quasi optimum is conducted to verify the replication 
quality, which is later introduced to the learning samples to 
retrain the model. The self-learning mechanism from this 
fuzzy inference of reliable radii dynamically adjusts the 
reliable regions. Therefore, the searched result will be less 
sensitive to the imperfection of the trained model. If the 
verification result is good, the reliable regions will expand in 
the next iteration to investigate more possible regions; 
otherwise, the reliable region will retract for a more 
conservative search. The evolution and the optimum search of 
the Regional Neural Network iterate until the convergence of 
the optimum. The iteration history of ERNGA is shown in Fig. 
13. 

F. Comparison of Results 

Fig. 14 presents the die gap openings of the parison 
programming obtained from Taguchi’s method and ERNGA. 
ERNGA reached the convergence criteria at iteration 6. Table 
4 compares the experimental results of initial design, 
Taguchi’s optimum and ERNGA’s optimum. Each iteration 
requires an additional function call to the finite element 
simulation. There are total 43 simulation samples after 7 
iterative evolving and search using ERNGA. The optimum 

design from ERNGA exhibits the smallest objective of 3.42 
which stands for of an average thickness of 5.63 (mm) and the 
standard deviation of 1.74 (mm), which outperforms 11.48 of 
the initial design and 6.44 of Taguchi’s optimum. Fig. 15 
compares the thickness distribution of the optimization results. 
ERNGA’s result is not only closer to the target thickness of 5 
(mm), but also presents a more uniform distribution. 

 
Fig. 13. Iteration history of the gas tank example using ERNGA 

Table 4 COMPARISON OF VARIOUS OPTIMA 

 Initial Design Taguchi’s ERNGA’s 
Mean 7.40 6.17 5.63 

Standard Deviation 2.39 2.25 1.74 
Objective 11.48 6.44 3.42 

 

 
Fig. 14 Comparison of the die gap openings of the parison programming 

obtained using Taguchi’s method and ERNGA 

 
Fig. 15 Thickness distributions of various designs for the gas tank molding 
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V. CONCLUSIONS 

The integration of a simulated neural network from 
sampling data following by an optimum search using genetic 
algorithm has shown a promising tool in real life applications. 
However, if the generality of prediction accuracy is 
compromised due to limited number or possible biased 
distribution of training samples, the iteration process may be 
unstable and inefficiency. Certainly, a well-trained network 
will have better prediction accuracy and thus reduce the 
number of iteration in the optimum search, but the 
optimization of the simulated model is no guarantee in 
engineering applications. The proposed evolutionary regional 
neural network reduces the sensitivity of the searched 
optimum to the trained generality of the network model. The 
proposed evolutionary regional network constrains the 
optimum search in the reliable space that evolves intelligently 
according to the prediction accuracy, and reaches a reliable 
optimum with much less iteration. ERNGA provides 
additional samples in the most probable regions to increase 
sampling efficiency, which is particularly important in 
engineering applications. The engineering application of 
extrusion blow molded gas tank demonstrates the 
effectiveness of the proposed scheme compared with 
Taguchi’s method and conventional intelligent optimization. 
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