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Abstract—Existing methods for multi-objective optimization 
usually provide only an approximation of a Pareto front, and 
there is little theoretical guarantee of finding the real Pareto 
front. This paper is concerned with the possibility of fully 
determining the true Pareto front for those continuous multi-
objective optimization problems for which there are a finite 
number of local optima in terms of each single objective function 
and there is an effective method to find all such local optima. To 
this end, some generalized theoretical conditions are firstly given 
to guarantee a complete cover of the actual Pareto front for both 
discrete and continuous problems. Then based on such conditions, 
an effective search procedure inspired by the rising sea level 
phenomenon is proposed particularly for continuous problems of 
the concerned class. Even for general continuous problems to 
which not all local optima are available, the new method may still 
work well to approximate the true Pareto front. The good 
practicability of the proposed method is especially underpinned 
by multi-optima evolutionary algorithms. The advantages of the 
proposed method in terms of both solution quality and 
computational efficiency are illustrated by the simulation results. 

Keywords—Index Terms—Continuous Problem, Local 
Optima, Pareto Front, Multi-Objective Optimization, 
Evolutionary algorithm.  

I. INTRODUCTION 
Multi-objective optimization has a very wide set of realistic 

applications including, inter alia, product and process design, 
finance, aircraft design, the oil and gas industry, and 
automobile design [1], [2]. In multi-objective optimization 
problems, decisions have to be made in order to achieve the 
best trade-offs between two or more conflicting objectives. As 
is well known, it is in general impossible to identify a single 
solution that simultaneously optimizes each objective for 
nontrivial multi-objective problems. In such problems, 
improving one objective often makes other objectives suffer as 
a result. Therefore, Pareto-optimality becomes a crucial 

concept for solving multi-objective problems. A tentative 
solution is called non-dominated, Pareto optimal, or Pareto 
efficient if it cannot be eliminated from consideration by 
replacing it with another solution which improves one 
objective without worsening another one [3]-[5]. Therefore the 
goal of multi-objective optimization is to find such non-
dominated solutions and quantify the trade-offs in satisfying 
the different objectives. All the Pareto-optimal solutions 
comprise the Pareto-optimal set, and the projection of this set 
in the objective space is called the Pareto front. 

Basically, there are three main categories of methods to find 
the Pareto front for a multi-objective problem. The first 
category is referred to as aggregate objective function based 
methods, because their core idea is to integrate all original 
objectives into a single aggregate objective function (e.g., the 
weighted linear sum of the objectives) [4], [5] and thus a set of 
aggregate objective functions needs to be constructed. Then in 
terms of each aggregate objective function in the set, a single-
objective optimization problem is resolved to produce a 
Pareto-optimal solution to the original multi-objective 
problem. Aggregate objective function based methods are 
often criticized for their subjectivity in constructing aggregate 
objective functions, as well as their incapability of calculating 
a non-convex Pareto front  [6]-[10]. The second category is 
called constrained objective function based methods, often 
known as ε -constraint methods, which only attempt to 
minimize one single objective while treating all other 
objectives as extra constraints [1], [11]. If the constraints on 
objective functions are properly set, this category of methods 
may deliver good performance. The third category, probably 
the most widely used category, is called Pareto-compliant 
ranking based methods. This category of methods needs to be 
able to generate and operate on a pool of candidate solutions, 
in order to take advantage of a Pareto-compliant ranking 
procedure. Population-based evolutionary approaches, such as 
genetic algorithm (GA), particle swarm optimization and ant 
colony optimization, are important family members of this 
category [12]-[24]. A problem is, however, that due to the 
stochastic nature of multi-objective evolutionary approaches, 
the outputs of such techniques are in theory approximations of 
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the true Pareto front; in other words, it is likely that there is no 
Pareto-optimal solution at all contained in the final generation 
of the evolutionary process [12], [14]. This is different from 
the other two categories of methods, in which each output 
solution is usually a Pareto-optimal solution [10], as long as 
certain conditions are satisfied. For example, some 
constrained objective function based methods may 
theoretically guarantee to find the true Pareto front in specific 
circumstances [1].  

In short, most existing methods for multi-objective 
optimization problems mainly aim to or are only able to 
provide an approximation of the true Pareto front, and there 
are very few theoretical results regarding how to guarantee the 
finding of the complete Pareto front [1], [6], [12], [25]. In 
contrast to most existing results, we have recently reported in 
[26] a deterministic method to calculate the complete Pareto 
front for a class of discrete problems for which it is possible to 
develop an effective method to find the k best solutions in 
terms of each single objective. Some theoretical conditions 
were given in [26] in order to guarantee the finding of the 
complete Pareto front, and then a practicable search procedure 
was proposed, whose effectiveness and efficiency were 
demonstrated by comparative experiments. The theoretical 
results were successfully applied to the discrete problem of 
multi-objective new product development [27]. This paper 
attempts to shed a little more light on the issue of whether it is 
possible, theoretically and practically, to calculate the 
complete Pareto front for multi-objective optimization 
problems. In particular, we will focus on how to extend the 
work in [26] from discrete problems to continuous problems. 
To this end, firstly we generalize the theoretical conditions in 
[26]. Then based on the new conditions, we propose a 
practicable search procedure inspired by the natural rising sea 
level phenomenon, in order to calculate the complete Pareto 
front for a special class of continuous multi-objective 
problems, where the number of local minima in terms of each 
single objective function is finite and there is an effective 
method to find all such local minima. The proposed method is 
then also extended to problems for which it is not possible to 
find all local minima. In this case, a good approximation of 
Pareto front is still achievable by the new method, and well-
developed multi-optima evolutionary algorithms can provide a 
concrete support to the practicability of the proposed method.      

II. GENERALIZED THEORETICAL CONDITIONS FOR 
FINDING PARETO FRONT 

Some theoretical conditions for finding the complete Pareto 
front were recently reported in [26] for either discrete 
problems or continuous problems (but not for both). In this 
section, we will generalize those conditions to guarantee a 
complete cover of the true Pareto front, regardless of the 
continuous nature or discrete nature of multi-objective 
optimization problems. 

A general mathematical formulation of multi-objective 
optimization problems can be described as following: 

   T
N

X
XgXgXg

Obj
)](),...,(),([ 21min ,              (1) 

subject to   0)( ≤XhI ,                                           (2) 

0)( =XhE ,                                           (3) 

XX Ω∈ ,                                              (4) 
where gi is the ith objective function of the total NObj objective 
functions, hI and hE are the inequality and equality constraints, 
respectively, and X is the vector of optimization or decision 
variables belonging to the set of ΩX. A Pareto-optimal solution 
X* to the above problem is such that there exists no x that 
makes  

   )()( *XgXg ii ≤ , for all i=1,..,NObj,                 (5) 

   )()( *XgXg jj < , for at least one j ∈[1,..,NObj].       (6) 
The projection of such an X* in the objective space, i.e., the 

point )](),...,(),([ **
2

*
1 XgXgXg

ObjN , is called a Pareto 

point. For the above problem, there is usually a set of Pareto-
optimal solutions, and the projection of this set in the 
objective space is called the Pareto front.  

Based on the definition of the Pareto front, we have the 
following statements regarding a complete cover of the true 
Pareto front of multi-objective optimization problems, no 
matter whether they are continuous or discrete. 

Theorem 1: Suppose there exist 
ObjNXX ,...,1  such that for 

any ],...,1[ ObjNj ∈ , 

   )()( iiji XgXg ≤ , for all i=1,..,NObj.                   (7) 
Then all Pareto-optimal solutions are included in the union set  

)}()(:{
1

1 iii

N

i
U XgXgX

Obj

≤=Ω
=
∪ .                   (8) 

Proof: Assume Theorem 1 is false. Therefore, there exists at 
least one Pareto-optimal solution, say X*, that does not belong 
to the union set ΩU1, which means, according to the definition 
of ΩU1 in (8), we have *)()( XgXg iii <  for all i=1,..,NObj. 

Then for any ],...,1[ ObjNj ∈ , we have     

   )()()( *XgXgXg iiiji <≤ , for all i=1,..,NObj.      (9) 

This means 
ObjNXX ,...,1  are all more Pareto efficient than 

X*. In other words, X* is not a Pareto-optimal solution at all. 
Therefore, the assumption must be false, and Theorem 1 must 
be true. 

Theorem 2: For any given set of solutions ],...,[ 1 GSNXX , 
all Pareto-optimal solutions are included in the intersection set  

)})()(:{(
11

1 jii

N

i

N

j
IS XgXgX

ObjGS

≤=Ω
==
∪∩ .                      

                            (10) 
Proof: For any XX Ω∈+ , all Pareto-optimal solutions are 

included in the union set  

)}()(:{
1

2
+

=
≤=Ω XgXgX ii

N

i
U

Obj

∪ ,                 (11) 
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Because if we += XX i  for all i=1,..,NObj, then Condition (7) 
in Theorem 1 will definitely  hold. Thus, for each solution 
in ],...,[ 1 GSNXX , we can work out a union set ΩU2, 
respectively. Then, the intersection set of all such union sets, 
i.e., ΩUIS1 as defined in Eq.(10), will always cover all Pareto-
optimal solutions. Therefore, Theorem 2 must be true. 

One may notice that Theorem 1 is more restrictive than 
Theorem 2, whilst the cover given by Theorem 1 seems worse 
than that of Theorem 2. However, as will be shown later, 
Theorem 1 may have a computational efficiency from the 
viewpoint of practicability.   

III. APPLICATION TO A SPECIAL CLASS OF CONTINUOUS 
PROBLEMS 

Please note in Section 2, variable X may be either discrete or 
continuous, whilst in this section we only consider continuous 
multi-objective optimization problems. Therefore, we need to 
modify the problem formulation of Section 2 to the follows: 

   T
N

xxX
XgXgXg

Obj

XN

)](),...,(),([ 21
],...,[

min
1=

,         (12) 

subject to Conditions (2), (3) and 

iXix Ω∈ , i=1,...,NX,                               (13) 

where X=[
XNxx ,...,1 ] are the NX≥1 optimization or decision 

variables of continuous real number, and ΩXi is the set of 
possible values for variable xi. The set ΩXi can be further 
defined as a union set of NRXi ≥1 ranges of real number 

 ]},{[ ,,
1

jiji

N

j
X xx

RXi

i =
≡Ω ∪ ,                         (14) 

where jix , ≥-∞ and jix , ≤∞ are the lower bound and upper 
bound of the jth range for variable xi, respectively, and  

jiji xx ,, ≤ , j=1,...,NRXi,                             (15) 

jiji xx ,1, >+ , j=1,...,NRXi-1.                         (16) 
Since variable xi is a continuous real number, Condition (15) 
implies that a range for xi can include either infinite values 
(when jiji xx ,, < ) or just only one value (when jiji xx ,, = ). 
Condition (16) means there is no intersection between any two 
ranges for the same variable xi.  In this study, we assume that 
every objective gi is a continuous, differentiable function of X 
within all ranges. We also assume that the number of local 
minima in terms of each single objective gi is finite.  Let 

),(* jiX LM  denote the X that is associated with jth local 

minimum in terms of gi, where j=1,…, )(iNLM , and 

∞<≤ )(1 iNLM  is the number of local minima in terms of 

gi. ),(* jiX LM  has the jth smallest gi value in all the )(iNLM  
local minima of gi. In this study, it is assumed that no local 
minimum exists when xi=∞ or xi=-∞ for any i=1,...,NX. 

   Suppose there is a certain effective method to find all the 
local minima in terms of each single objective gi in the 

continuous multi-objective optimization problem defined by 
(12) to (16). Then based on the theoretical results in Section 2, 
we can calculate the complete Pareto front by starting a search 
from local minima. Basically, for each objective gi, we start 
from its first smallest local minimum ))1,(( * iXg LMi  
(actually the global minimum in terms of gi). We keep 
increasing gi by a predefined constant igΔ , and then checking 
all solutions whose gi is no larger than the current gi level, 
until certain conditions derived from the theoretical results in 
Section 2 are satisfied. This is likened to the rising sea level 
phenomenon as illustrated in Fig.1.(a), where every time the 
sea level rises by igΔ , all lands which are below the new sea 
level will flood. The flooded lands are the areas where we 
need to check in order to guarantee the finding of the complete 
Pareto front. Sometimes a small increase in gi may result in a 
substantial change in X. To better search the landscape of the 
solution space, we can expand the current coast lines by a 
predefined constant XΔ  in all feasible directions, then we 
increase the sea level to the minimal gi associated with the 
expanded coast lines, and at last we correct the expanded coast 
lines to make sure that any solution in the coast lines has the 
same gi. Fig.1.(b) illustrates how the sea level rises as X 
changes by XΔ .  

Now the question is: To which level does the sea need to rise 
so that a complete cover of the true Pareto front is guaranteed? 
With Theorem 1 in Section2, we have the following rising-
sea-level inspired search procedure to answer this question. 

Step 1. Calculate with a certain method all local minima 
),(* jiX LM , i=1,…,NObj, j=2,…,NLM(i). Predefine 

XΔ . For each i=1,…,NObj, let )(iCLΩ  denote the 
coast lines associated with the objective gi, initialize 

)(iCLΩ ={ )1,(* iX LM }, and mark )1,(* iX LM  as 
explored. Set the current sea level of gi as 

)(iLCSL = ))1,(( * iXg LMi . Let the current time t=0. 

Let the )(iX MSL = )1,(* iX LM  denote the solution in 

the coast lines )(iCLΩ  that has the minimal sea 
level of gi.  

Step 2. If )1(MSLX ,…, )( ObjMSL NX  make Condition (7) 
in Theorem 1 hold, i.e., for any j=1,..,NObj.   

   ))(())(( iXgjXg MSLiMSLi ≤ , for all i=1,..,NObj,    (17) 
then go to Step 3. Otherwise, t=t+1, and do the 
follows for each i=1,…,NObj: 
Step 2.1. Move from )(iX MSL  by XΔ  in all 

unsearched feasible directions (or well 
discretized directions when NX>1), and update 
the cost lines )(iCLΩ  by adding new 
solutions which are found by changing 

)(iX MSL .  
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Step 2.2. Update )(iX MSL  with the solution which 

has the minimal gi in )(iCLΩ , and update the 

current sea level )(iLCSL = ))(( iXg MSLi .  
Step 2.3. For an unexplored local minimum 

),(* jiX LM , j=2,…,NLM(i), if 

)(iLCSL ≥ )),(( * jiXg LMi , then add 

),(* jiX LM  to the cost lines )(iCLΩ , and 

mark ),(* jiX LM  as explored.. 
Step 3. Well sample those solutions in all flooded areas, and 

calculate the Pareto front by crosschecking the 
sampled solutions according to the definition of 

Pareto optimality given by (5) and (6). 
One can see that in Step 2, the result of Theorem 1 is used as 

the termination criteria for stopping the search procedure. We 
can also integrate other theoretical results of Section 2 into the 
search procedure as criteria for terminating the simulation of 
sea level rising. For example, for a single given solution XGS, 
to apply Theorem 2, we simply need to change Step 2 above 
as following: 

Step 2. Go to Step 3 if 
   )()( GSiCSL XgiL ≥ , for all i=1,..,NObj.              (18) 

Otherwise, t=t+1, and for any i=1,…,NObj with 
)()( GSiCSL XgiL < , do Step 2.1 to Step 2.3. 

(a)  gi increases by igΔ  directly 

 

(b)  gi increases as x changes by xΔ  
 

Fig.1 Exploration of the solution space by simulating rising sea leve 
It should be noted that in the above search procedure, in 

each time instant, we do not expand all the coast lines 
simultaneously, and we do not require that all solutions in 

)(iCLΩ  have the same sea level, either. This is different from 
the natural sea level rising phenomenon, but from the 
viewpoint of practicability, they are all necessary designs. 
This is because it is usually much easier to calculate gi based 
on X rather than to calculate X based on gi. Since the )(iCLΩ  
does not share the same sea level, then expanding the entire 
coast lines makes no sense, and instead, expanding the point 
which has the minimal sea level in )(iCLΩ  step by step is 

more practicable and will eventually give the same result as 
expanding the entire coast lines.  

It is clear from the above that in the proposed search 
procedure, a brute-force search strategy is actually employed 
within all explored x ranges. Fortunately, the size of the 
explored x ranges is much smaller than the entire search space, 
as will be illustrated in the simulation section.  

The guarantee that the proposed search procedure finds the 
true Pareto front requires an effective method to find all local 
minima to each of the NObj single-objective problems. Even if 
this is not possible, the proposed method may still work well 
to approximate the true Pareto front, just as most existing 
methods do. There are many well-developed methods to 
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search for multiple optima, such as multi-optima evolutionary 
algorithms [28]-[30]. Although such methods might not 
guarantee to find all local optima, they can often find most of 
them even for very complicated problems. With these methods 
for multi-optima problems at hand, the proposed search 
procedure will have a good practicability. 

IV. SIMULATION RESULTS 

In this section, we conduct numerical simulations to 
demonstrate the practicability and the effectiveness of the 
proposed methodology to determine the complete Pareto front 
for continuous problems, and also to verify the theoretical 
results given in the above sections.  

The following continuous optimization problem model with 
two objectives is employed: 

   T

x
xgxg )](),([ 21min ,                               (19) 

subject to  

   

),14.3)01.0sin(()01.0(
|)14.3)01.0sin((01.2|

)14.3)01.0sin(()01.0()(

987

654

3211

ααα
ααα
ααα

++++
++−+×
+++=

x
x
xxg

        (20) 

   

),14.3)01.0sin(()01.0(
|)14.3)01.0sin((01.2|

)14.3)01.0sin(()01.0()(

181716

151413

1211102

ααα
ααα
ααα

++++
++−+×
+++=

x
x
xxg

        (21) 

and 
]100,0[∈x ,                                      (22) 

where 10 ≤≤ iα , i=1,...,18 are randomly generated 
coefficients. A problem framed in this model has a finite 
number of local minima in terms of each of the two objective 
functions. It is fairly easy to check the complete Pareto front 
once the coefficients ],...,[ 181 αα  are given, which makes it 
possible to verify the correctness of the theoretical conditions 
in Section 2 as well as to assess the effectiveness of the 
proposed method in Section 3.  

In the simulations, we used the above model to construct 
200 different bi-objective optimization problems by randomly 
generating 200 sets of coefficients ],...,[ 181 αα . Then we 
applied the proposed method as well as other relevant methods 
to search for the Pareto front of each bi-objective problem. 
Since the proposed method is inspired by the rising sea level 
phenomenon, it is hereafter denoted as RSL. There are two 
versions of RSL used in the experiment, one based on 
Theorem 1 (denoted as RSL-T1), and other based on Theorem 
2 (RSL-T2). The expanding step was set to 01.0=Δx . In 
addition to RSL, we also used two well-known multi-objective 
optimization methods for the sake of comparison. One was the 
constrained objective function based method in [1] (denoted as 
COF hereafter). The reason COF was used was because it is 
one of a few existing method that may theoretically guarantee 
(naturally under certain conditions) finding the true Pareto 
front. Therefore, comparing RSL with COF is a must-do task 
in order to verify the theoretical results in Section 2. The other 

method used was the well-established NSGA-II in [16] as a 
representative of multi-objective evolutionary algorithms, and 
a comparison with NSGA-II helps to assess how well the 
proposed RSL may perform even if there is no effective 
method to find all local minima. Aggregate objective function 
based methods were not considered in this study, because, as 
illustrated in Fig.2, the Pareto front to a problem defined by 
(19)-(22) is often not globally convex, which makes it difficult 
to apply aggregate objective function based methods. In the 
experiment, all methods were coded and all tests were 
conducted in a Matlab environment on a personal computer 
with a 2.6GHz CPU, 4GB memory and the Windows 7 
operating system. 

A. Calculation of Complete Pareto Front 
In this subsection, we aim to experimentally verify the 

correctness of the theoretical conditions in Section 2, and also 
to test whether the proposed RSL has the capability to find the 
complete Pareto front, and how good the capability is. To this 
end, two versions of RSL are compared COF. As is well 
known, in COF, a multi-objective problem is treated as a 
single-objective problem by imposing constraints on all other 
objectives. For example, when applying COF in this 
experiment, we restricted the value of g2 (or g1), and then 
actually only minimized g1 (or g2); In other words, g1 (or g2) 
was minimized with g2 (or g1) within a constrained range 

],[ 22 gg  (or ],[ 11 gg ). Then we moved the constrained 

range by a small increment, and minimized g1 (or g2) again. 
This was repeated until some termination criteria were 
satisfied. There are two conditions for COF to find the 
complete Pareto front: (i) The change in the constrained range 
must be small enough each time; (ii) Every constrained 
objective function must have moved through a sufficient value 
range. In this study, the change step for moving the 
constrained range is set as 0.01, and the total range for a 
constrained objective are determined by 

))]1,2(()),1,1(([ *
1

*
1 LMLM xgxg  or ))]1,1(()),1,2(([ *

2
*

2 LMLM xgxg .  
Fig.2 gives the results of a test case. The subplots on the left-

hand side show the landscape of the solution space, as well as 
the explored x value ranges by different methods (red parts) 
and the Pareto front associated x value range (black parts). 
The subplots on the right-hand side give the projections of all 
solutions in the objective space, the areas explored by 
different methods (red parts plus black parts separated from 
green parts by a horizontal yellow line and a vertical yellow 
line), and the true Pareto front (black parts). Fig.2.(a) gives the 
results of RSL-T1, Fig.2.(b) shows those of RSL-T2, where 
the given solution XGS for the termination criteria (18) is 
randomly chosen, and Fig.2.(c) is associated with COF with g2 
as the constrained objective function within the range 

))]1,1(()),1,2(([ *
2

*
2 LMLM xgxg . From Fig.2, one can see 

intuitively that (i) both RSL and COF can find the complete 
Pareto front, and (ii) RSL-T1 has the best search efficiency, 
followed by COF, whilst RSL-T2 is the worst. 

The average results of all 200 test cases are given in Table 1, 
where RPFXR is a ratio by dividing the Pareto front associated x 
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value range by the length of the solution space, NFCPF indicates 
in how many test cases a method has found the complete 
Pareto front, REXR is a ratio by dividing the explored x value 
range of a method by the length of the solution space, NTLM is 
the total number of local minima,  NELM is the number of local 
minima explored by a method, and CT stands for 
computational time. From Table 1 we have the following 
observations: 

(a) RSL-T1 

 
(b) RSL-T2 

 
(c) COF 

 
Fig.2 Results of a test case in finding the complete Pareto front. 

 
 All methods have found the complete Pareto front in all 

the 200 test cases, which proves experimentally the 
correctness of the Theoretical results in Section 2. 

 Among the three methods, RSL-T1 is the best in terms of 
either REXR, NELM, or CT. In other words, compared with 
RSL-T2 and COF, RSL-T1 explores about 3 times less x 
value ranges and roughly 10% less local minima, and 
saves about 30% computational time to find the Pareto 
front. Put simply, RSL-T1 can find the complete Pareto 
front by exploring the smallest proportion of solution 
space and consuming the least computing resources.   

 Actually, COF can be viewed as a special case of RSL-T2 
where the given solution XGS is always chosen as either 

)1,1(*
LMx  or )1,2(*

LMx . Compared with a RSL-T2 with a 
randomly chosen XGS, it is then not a surprise to see that 
COF has a better performance than RSL-T2. 

 The obvious advantage of RSL-T1 against RSL-T2 and 

COF implies that the condition (7) in Theorem 1, although 
it seems more restrictive, is practically much more 
effective than the condition (10) in Theorem 2. 

 REXR for RSL-T1 is about 6 times RPFXR, which means the 
x value ranges explored by RSL-T1 is a fairly small cover 
of the complete Pareto front associated x value ranges, 
further demonstrating the search efficiency of RSL-T1. 

 Comparing NELM for RSL-T1 with NTLM, shoes that it is 
usually not necessary to have all local minima. RSL-T1 
can find the complete Pareto front with fewer than half of 
them but the local minimum used should be among those 
smallest to guarantee finding the complete Pareto front. 

 
TABLE I 

AVERAGE RESULTS TO FIND THE COMPLETE PARETO FRONT 
( RPFXR=0.04;  
NTLM=21.05 ) 

RSL-T1 RSL-T2 COF  

NFCPF 200.00 200.00 200.00 
REXR 0.23 0.74 0.52 
NELM 9.36 12.85 10.37 

CT (second) 0.19 0.33 0.26 
 

B. Approximation of Pareto Front 
The ability of the proposed method in Section 3 to find the 

complete Pareto front relies, in theory, on the assumption that 
a continuous problem has a finite number of local minima in 
terms of each single objective function, and that there is an 
effective method to find all these local minima. This 
assumption is however unrealistic in many real-world multi-
objective optimization applications, as it is often uncertain 
whether the number of local minima is finite, or whether a 
method could find all such local minima (sometimes even the 
first best solution to a single-objective problem cannot be 
guaranteed). Therefore, existing methods such as multi-
objective evolutionary algorithms focusing on approximating 
the true Pareto front seem still to be practically more desirable. 
Here we investigate whether the proposed method is still 
applicable to problems with infinite local minima and/or 
without an effective method to find all local minima. 
Moreover, if it is applicable, then how good will its 
performance be when compared with existing methods? We 
show by simulation in this subsection that the proposed 
method can also be used to approximate the true Pareto front 
effectively when there is no guarantee of the availability of all 
local minima.  

To approximate the true Pareto front, we actually do not 
need to modify the proposed method. We just feed the method 
with a set of randomly generated assumed local minima to 
start the search procedure, and as will be demonstrated later, 
the method will perform almost as well as it is fed with all true 
local minima. Regarding how to generate a set of assumed 
local minima, there are many methods for multi-optima 
problems, which are particularly good at finding multiple (not 
necessarily all) local optima. Multi-optima evolutionary 
algorithms are some examples of this kind [28]-[30]. In this 
subsection, we will use the multi-optima evolutionary 
algorithm in [28] to generate a set of assumed local minima in 
terms of each single objective function of (20) and (21), which 
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will then be used to start RSL-T1 and RST-2, in order to 
approximate the Pareto front. As revealed in Table 1, for the 
problem defined by (19)-(22), RSL needs approximately 10 
local minima on average to finish the search job. Therefore, a 
relatively small population size for the multi-optima 
evolutionary algorithm may be enough to find the first 10 
smallest local minima or similar solutions. Here we set the 
population size to 50. The multi-optima evolutionary 
algorithm is run twice, one time for g1 and the other time for 
g2. Once the evolutionary algorithm stops, we choose the first 
25 best solutions in terms of g1 and also the first 25 best 
solutions in terms of g2 in the final generations, and feed them 
to RSL as assumed local minima. To distinguish from RSL-T1 
and RSL-T2 in the previous subsection, hereafter we denote 
multi-optima evolutionary algorithm based RSL as GARSL-
T1 and GARSL-T2.  

 
(a) GARSL-T1 

 
(b) GARSL-T2 

 
(c) NSGA-II 

 
Fig.3 Results of a test case in approximating the true Pareto front. 

 
TABLE II 

AVERAGE RESULTS TO APPROXIMATE THE TRUE PARETO FRONT 
(RPFXR=0.04) GARSL-T1 GARSL-T2 NSGA-II  

NFCPF 191 184 167 
REXR 0.31 0.82 0.25 

CT (second) 4.28 4.61 11.67 
 

To better assess the performance of RSL in approximating 
the Pareto front, we compare it with the most acknowledged 
multi-objective evolutionary algorithm, NSGA-II in [16]. 

NSGA-II needs a relatively large population size so that in the 
final generation we might have a reasonably large number of 
Pareto-optimal (or near Pareto-optimal) solutions to 
effectively approximate the Pareto front of continuous 
problems. In this study, we set the population size to 100 for 
NSGA-II.  

For both evolutionary algorithms used, i.e., the multi-optima 
evolutionary algorithm for RSL to start, and NSGA-II for the 
sake of comparison, the number of generations for evolving 
the population is 200, the mutation probability is set as 0.1, the 
crossover probability is set as 0.5, and the first 10 best 
solutions in a generation will be directly copied into the next 
generation. 

Fig.3 compares the results of GARSL-T1, GARSL-T2 and 
NSGA-II in a test case, where for GARSL-T1, GARSL-T2, 
the pink vertical short lines and dots indicate the assumed 
local minima generated by the multi-optima evolutionary 
algorithm for starting the search procedure in RSL, while for 
NSGA-II, the pink vertical short lines and dots are associated 
with all solutions in the last generation of NSGA-II. In Fig.3, 
one can see that, even with no guarantee of a set of all local 
minima, both GARSL-T1 and GARSL-T2 can still work out a 
complete cover of the true Pareto front. The projection of the 
final generation of NSGA-II in the objective space has a good 
distribution along the true Pareto front.  

Table 2 summarizes the results of GARSL-T1, GARSL-T2 
and NSGA-II in all 200 test cases. For any two solutions in the 
final generation of NSGA-II, say x1 and x2, whose distance is 
smaller than a threshold of 0.5, i.e., | x1 - x2|<0.5, we view it as 
if NSGA-II has explored the whole range of [x1,x2]. The 
expanding step xΔ for RSL is just 0.01, the threshold of 0.5 is 
then 50 times xΔ . Therefore, it should be fair enough to use 
the threshold of 0.5 to judge whether NSGA-II has found a 
complete cover of the true Pareto front. It should be noted that 
the REXR of NSGA-II is not based on the x value ranges where 
NSGA-II has actually explored from the first generation to the 
last generation. Instead, it is only based on the 100 solutions in 
the last generation. Therefore, the REXR of NSGA-II is not 
comparable to those of GARSL-T1 and GARSL-T2. From 
Table 2, one can see that: 

 In most test cases, GATSL-T1 and GATSL-T2 can still 
find a complete cover of the true Pareto front, but they do 
fail in a few of the 200 test cases. By checking the details 
of such failed test cases, it is found that if the multi-optima 
evolutionary algorithm fails to find some key local minima 
(e.g., the first few smallest local minima which are far 
away from the point that triggers the termination criteria), 
then it is possible that the associated x value ranges will be 
missed by GATSL-T1 and GATSL-T2. Therefore, if the 
given set of assumed local minima is reasonably close to 
those key true local minima, then the finding of the 
complete Pareto front can still be guaranteed. 

 Basically, GARSL-T1 is better than GARSL-T2, which is 
in line with the results reported in the previous subsection, 
and further demonstrates the advantage of Theorem 1 
against Theorem 2. 

 In general, NSGA-II is worse than GARSL-T1 and 
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GARSL-T2 in terms of both solution quality and 
computational efficiency. NSGA-II seems good at finding 
a large continuous piece of Pareto front. However, if there 
is a tiny fraction of Pareto front separated far away from 
other parts of Pareto front, then NSGA-II often struggles to 
find it. 

 From Table 2, one can see that a lack of the availability of 
all local minima will not jeopardize the practicability of 
the proposed method. Instead, when compared with 
NSGA-II, the new method still exhibits a satisfactory 
performance in the approximation of Pareto front. 

V. CONCLUSION 
This paper proposes an effective method that can guarantee 

finding the complete Pareto front for a special class of 
continuous multi-objective optimization problems. 
Theoretically, as long as the number of local optima in terms 
of each single objective function is finite and there exists an 
approach to find all of such local optima, the proposed method 
can work properly. Those well developed methods for 
multiple optima problems, such as multi-optima evolutionary 
algorithms, provide a concrete foundation to the practicability 
of the proposed method, the effectiveness and efficiency of 
which are demonstrated in a comparative experiment. Future 
research work may include: extending and modifying the 
theoretical conditions to suit more other kinds of continuous 
problems; investigating the possibility of developing some 
more effective search procedures which can identify the real 
Pareto front by searching as a small portion of the solution 
space as possible; testing the reported theoretical work in 
some real-world complex multi-objective problems.  
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