
Improved Differential Evolution with Adaptive
Opposition Strategy

Huichao Liu ∗†‡, Zhijian Wu ∗†, Hui Wang †, Shahryar Rahnamayan §, Changshou Deng ¶
∗Computer School of Wuhan University,Wuhan 430072, China

†State Key Lab of Software Engineering, Wuhan University, Wuhan 430072, China
‡College of Information Engineering, Huanghuai University, Zhumadian 463000, China

§Department of Electrical, Computer and Software Engineering,
University of Ontario Institute of Technology, Oshawa, ONL1H7K4, Canada

¶School of Information Science and Technology, Jiujiang University, Jiujiang 332005, China
E-mail: zhijianwu,liuhuichao,huiwang@whu.edu.cn,shahryar.rahnamayan@uoit.ca

Abstract—Generalized opposition-based differential evolution
(GODE) is an effective algorithm for global optimization over con-
tinuous search space. However, the performance of GODE highly
depends on its control parameters. To improve the performance of
GODE, this paper proposes an enhanced GODE algorithm called
AGODE, which employs an adaptive generalized opposition-based
learning (GOBL) mechanism to automatically adjust the prob-
ability of opposition during the evolution. Experimental study
is conducted on a set of 19 well-known benchmark functions.
Computational results show that the proposed approach AGODE
outperforms some state-of-the-art DE variants on the majority
of test problems.

I. INTRODUCTION

Differential evolution (DE) was proposed by Price and
Storn [1] [2]. It has attracted many researcher’s attention for
its simplicity, effectiveness and robustness in solving a broad
range of benchmark and real-world optimization problems.
In order to further improve the performance of DE and
expand its application scope, some variants of DE have been
proposed in the past decades. The opposition-based differential
evolution (ODE) and generalized opposition-based differential
evolution (GODE) algorithm are the representatives of them.
The concept of opposite-based learning (OBL) was introduced
by Tizhoosh [3]. Rahnamayan et al. [4] firstly utilized OBL to
accelerate the convergence rate of DE, and presented the ODE
algorithm. Wang et al. [5] generalized the OBL, called GOBL,
and proposed the GODE algorithm, which has achieved better
performance for solving high-dimensional optimization prob-
lems [6].

However, some previous works also found that the per-
formance of DE greatly depends on the choice of mutant
strategies and its control parameters. Different mutation strate-
gies or parameter settings may result significant differences of
performance. The classical DE algorithm has five mutation
schemes, two crossover strategies and three basic control pa-
rameters (F , Cr and NP). It is very difficult to manually select
appropriate strategies and control parameters for DE to achieve
the optimal performance in solving different problems. In
order to automatically choose the suitable mutant strategy and
control parameters, the adaptive and self-adaptive mechanisms
are the most commonly used approaches.

The above mentioned problem also exists in GODE. The
performance of GODE is sensitive to its control parameter,

probability of opposition (po), which is usually a fixed value
during the search process. In this paper, we propose an adaptive
GODE algorithm, called AGODE, which employs adaptive
opposition mechanism to automatically adjust the probability
of opposition po during the search process. The proposed
AGODE algorithm is tested on a suite of 19 global opti-
mization problems with D=60. Experimental results confirm
the effectiveness of the adaptive mechanism, and show faster
convergence speed and better performance of AGODE than
other five DE algorithms on the majority of test problems.

The rest paper is organized as follows. The DE algorithm
is briefly reviewed in Section II. In Section III, the ODE
algorithm, GODE algorithm, the proposed adaptive opposition
mechanism and AGODE algorithm are explained in detail.
Then, a comprehensive set of experiment results is given in
Section IV. Finally, the work is concluded in Section V.

II. A BRIEF REVIEW OF DIFFERENTIAL EVOLUTION

A. Differential Evolution (DE)

As a population-based search method, DE starts with an
initial vector population, which is often randomly generated
within the search space, and the values of each dimension
for all individuals conform to the uniform distribution. Let’s
assume that XG

i (i = 1, 2, . . . , NP) is the ith individual
in population P (G) (NP is the population size, G is the
generation index). For DE algorithm, its mutation, crossover,
and selection operators are defined as follows.

Mutation–For each vector XG
i in generation G, a mutant

(or donor) vector V G
i is defined by:

V G
i = XG

r1 + F · (XG
r2 −X

G
r3) (1)

where i ∈ [1, NP], r1, r2 and r3 are three random integer
indices selected from {1, 2, . . . , NP}. Furthermore, i, r1,
r2 and r3 are different from each other so that NP ≥ 4.
F ∈ (0, 2] is a real constant which determines the amplification
of the added differential variation of (XG

r1 −X
G
r2).

Crossover–DE utilizes the crossover operation to generate
new trial vector UG

i = (UG
1i , U

G
2i , . . . , U

G
Di) (D indicates

problem dimension) by exchanging the components of donor
vector V G

i and target vector XG
i . In exponential crossover,

we should choose two integers n and L randomly among

1776

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

[1, D]. The integer n acts as a starting point in the target
vector, from where the exchange of components with the donor
vector starts. And L, which is determined by crossover rate
(Cr), denotes the number of components that the donor vector
actually contributes to the target vector. Then the trial vector
is obtained as:

UG
ji =

{

V G
ji if j=⟨n⟩D, ⟨n+1⟩D, . . . , ⟨n+L−1⟩D
XG

ji otherwise (2)

where the angular brackets ⟨⟩D denote a modulo function with
modulus D.

Selection–It is an approach which decides which vector
(UG

i or XG
i) should be a member of next generation G+1.

The survival mechanism is defined by:

XG+1
i =

{

UG
i if f(UG

i) ≤ f(XG
i)

XG
i otherwise (3)

Without loss of generality, this paper only considers min-
imization problems. If the function value of trial vector is
smaller than target vector’s, then the target vector will be
replaced by the trial vector.

B. A Brief Review of the Related Works

1) Opposition-based Learning Mechanism: The opposite-
based learning (OBL) mechanism has been widely studied
and extensively used in the past decade. OBL mechanism
was introduced by Tizhoosh [3], and then used to enhance
the performance of reinforcement learning [7] in machine
intelligence. Rahnamayan et al. [4] firstly utilized OBL to ac-
celerate the convergence rate of DE. In [8], Rahnamayan et al.
take a comprehensive experiments on 58 complex benchmark
functions to investigate the performance of OBL. Experimental
results confirm that ODE outperforms the original DE and
FADE in terms of convergence speed and solution accuracy.
Meanwhile, the mathematical proofs [9] shown that, opposite
numbers are more likely to be closer to the optimal solution
than purely randomly generated ones. In [10], Rahnamayan et
al. proposed an Euclidean distance-to-optimal solution proof
that shows intuitively why considering the opposite of a
candidate solution is more beneficial than another random
solution. Wang et al. [5] generalized the OBL, called GOBL,
which transforms candidate solution in current search space to
a new search space. The proposed algorithm, named GODE,
has achieved better performance for solving high-dimensional
optimization problems [6]. Moreover, The GODE algorithm
has also been implemented on GPU platform to obtain the
more computational power in parallel [11].

In addition, the OBL mechanism has been used in other
optimization algorithms. Malisia et al. [12] proposed the
opposition-based ant colony optimization (OACO) algorithm.
Ergezer et al. [13] presented the oppositional biogeography-
based optimization algorithm. El-Abd [14] introduced the
opposition-based artificial bee colony algorithm. Zhou et al.
[15] presented the elite opposition-based particle swarm op-
timization (EOPSO). At the same time, the opposition-based
algorithms are also used to solve some real-world problems.
Dhahri et al. [16] uses the opposition-based differential evo-
lution for beta basis function neural network. Shaw et al. [17]
applies the opposition-based gravitational search algorithm for

combined economic and emission dispatch problems of power
systems.

2) Adaptive and Self-adaptive Mechanism: Adaptive mech-
anism is an important method for selecting control parameters
and mutant strategy automatically in DE. Some excellent
works have been proposed in the past decade. Liu and
Lampinen [18] proposed an FADE algorithm which uses fuzzy
logic controllers to adapt the parameters in their mutation and
crossover operations. Zhang and Sanderson [19] [20] proposed
a JADE algorithm, which applies normal distribution N (�,0.1)
to determine the parameters F and Cr, and � is the weighted
average of the recorded F and Cr values which have produced
better individuals during the last generation. Qin et al. [21]
[22] introduced a SaDE algorithm which selects the mutant
strategy from the strategy pool according to its success rate
for producing promising solutions in the past evolution phase.

Random selection is a simple and effective self-adaptive
mechanism to determine the control parameters and mutant
strategy of DE. In jDE [23] [24], the control parameters F
and Cr are encoded into each individual and adjusted by two
new parameters τ1 and τ2. In SaDE [21] [22], the parameter F
is selected randomly which obeys the normal distribution with
mean value 0.5 and standard deviation 0.3. Yang et al. [25]
introduced a neighborhood search (NS) mechanism to replace
the fix parameter F , and the parameter Cr is also generated
by uniform distribution within (0, 1). In [26], Mallipeddi and
Suganthan introduced an ensemble of mutation strategies and
control parameters with DE (EPSDE). In CoDE [27], parame-
ters F and Cr for each mutant strategy are randomly selected
from the parameter candidates pool that obey the uniform
distribution. Wang et al. [28] proposed a gaussian bare-bones
differential evolution, namely GBDE, in which the mutant
operator is simplified into a Gaussian distribution N(�, �),
where � = (Xbest,G +Xi,G/2) and � = ∥Xbest,G −Xi,G∥.

The population size NP also play an important role among
the control parameters [29]. Teo in [30] made a first attempt
at self-adapting the parameter of population size. Brest et al.
[31] presented a population size reduction mechanism, which
gradually reduce the population size during the evolution
process. Wang et al. [32] proposed a variable population size
mechanism which adjusts the population size dynamically by
counting the improvement of best fitness value in a specified
learning period. Sarker et al. [33] proposed a new mechanism
to dynamically select the best performing combinations of
parameters F , Cr and NP for a problem during the course
of a single run. The proposed algorithm, called DE-DPS,
not only saves the computational time, but also shows better
performance over some state-of-the-art algorithms.

In this section, we have only presented a brief overview of
some recently proposed DE variants which using opposition-
based learning mechanism and adaptive (and/or) self-adaptive
mechanism, respectively, to select its mutant/crossover strate-
gies and control parameters; some comprehensive surveys can
be found in [34], [35] and [36].

III. THE ADAPTIVE GODE ALGORITHM (AGODE)

A. Opposition-based Differential Evolution (ODE)

The ODE algorithm [4][8], proposed by Rahnamayan et
al., first utilizes the OBL to enhance the performance of an

1777

Fig. 1. Opposite number, x, for OBL can be seen as a mirror to x

optimization process, DE as a case study. The main idea behind
OBL is the simultaneous consideration of an estimate and its
opposite estimation in order to achieve a better approximation
for the current candidate solution. In fact, mathematical proofs
[9] have shown that, opposite numbers are more likely to be
closer to the optimal solution than purely randomly generated
ones. In order to understand OBL well, we need to explain
some concepts first.

Opposite number: Let x ∈ [a, b] be a real number. The
opposite number x is defined as follow:

x = a+ b− x (4)

From Figure 1, the opposite number x can be seen as
a mirror to x centered by the middle point of the defined
boundary [a, b]. Similarly, the definition can be generalized
to higher dimensions as follows.

Opposite point: Let X = (x1, x2, . . . , xD) be a point in
a D-dimensional search space, where (x1, x2, . . . , xD) ∈ RD

and xj ∈ [aj , bj], j ∈ [1, 2, . . . , D]. The opposite point X =
(x1, x2, . . . , xD) is defined by:

xj = aj + bj − xj (5)

Obviously, an opposite point shouldn’t jump out of the
original space RD during the search process. When evaluating
a solution X to a given problem, its opposite solution, X ,
will be simultaneously computed to provide another chance
to find a candidate solution closer to the global optimum. In
ODE, OBL operation is conducted by the specified probability,
known as jumping rate (Jr), which is a constant number in
(0,1) and often is determined by empirical experiences.

B. Generalized opposition-based DE(GODE)

The GODE algorithm [6] [37] employs the GOBL mech-
anism to enhance the performance of DE for solving some
complex problems. GOBL is the generalized version of OBL.
Compared to the OBL, GOBL redefines the concept of oppo-
site number by introducing the new space transfer factor k.

Let X = (x1, x2, . . . , xD) be a solution in the current
generation. Where D indicates the dimension number, and xj
represents each dimension in an individual, and xj ∈ [aj , bj],
j ∈ [1, 2, . . . , D]. aj and bj are the boundaries of the jth
dimensional element in current population. Being similar to
the OBL, each dimension of the opposite solution X can be
defined as:

xj = k(aj + bj)− xj (6)

where k is a random number within [0,1), and used for
an entire generation. Obviously, each dimension xj of the
opposite solution belongs to [k(aj + bj)− bj , k(aj + bj)−aj].

Fig. 2. Opposite number, x, for GOBL can be seen as a mirror to x

As shown in Figure 2, we can find that the difference
between the current search space S and the opposite search
space S is the center position of search space. The center of
current search space is a fixed point a+b

2 , while the center of
opposite space is a random value between 0 and a+b

2 . The
opposite search space is not always the same as the search
space S, Therefore, an opposite solution may jump out of the
predefined domains in some situations. If the opposite solution
jumps beyond the bounds of the variable, it should be set to a
random number within (a, b). The opposite solution x can also
be seen as a mirror to x based on the new center point k(a+b

2).
Similar to ODE, the GOBL is conducted by the jumping
rate parameter, but its name in GODE is called probability
of opposition (po), which is also a predefined number before
evolution.

C. Adaptive opposition mechanism

The effectiveness of OBL and GOBL mechanisms has
been validated in [8] [5]. But unlike the mutation strategy,
opposite operation is not used in every generation during the
search process. In fact, some individuals in current population
may have not changed over the past few generations. So, too
frequent opposite operation cannot achieve any benefit but
wastes the evolutionary opportunities. Therefore, in ODE or
GODE, the opposite operation is conducted by the probability
of opposition (po), which is often a fixed small number (ODE
use 0.3, and GODE use 0.05).

However, this probability-driven mechanism could result
in a problem, that is, opposite operation appears randomly
in the whole evolution process, which does not follow the
needs of different evolution stages. When DE can find better
solution quickly, the appeared opposite operation may be
useless. Otherwise, when DE cannot find better solution any
more, the opposite operation may be needed, but it will be
absent due to the probability-driven mechanism. Therefore, it
is the best situation that opposite operation could appear when
needed, and be absent when undesired.

This section introduces an adaptive opposition (AO) mech-
anism which can adjust the parameter po dynamically. The
main idea behind this mechanism is that if the appeared
opposite operation can produce more promising solutions, this
may imply that the current population needs more opposite
operation, which should be increased in the following evolution
process by enlarging the value of po. On the contrary, if
the current opposite operation cannot provide enough better
solution, the value of po should be decreased in order to reduce
the opposite operation.

Therefore, we use Nbetter to count the better offspring
produced by opposite operation in current generation when
GOBL is carried out. Then the success rate of opposite
operation can be indicated by a variable sr, which is defined

1778

by:

sr =
Nbetter

NP
(7)

where NP is the population size of current generation. A
memory buffer, called srm, also be defined to record the
value of sr. After each opposition generation, the sr value
will be calculated and recorded into the buffer. After LP (LP
is a predefined learning period) such generations, the average
value srave of the recorded sr value in memory srm can be
calculated as:

srave =

LP
∑

i=1

sri

LP
(8)

where sri is the ith sr value in srm. If sr is not equal to
sravr, the value of po should be adjusted by:

po = po × (1 + sr − srave) (9)

According to the Eq. (9), if sr is larger than srave, then the
value of (1+ sr− srave) will be greater than 1, and the value
of po will be enlarged, thus, the opposite operation will be
increased in the following generations. Otherwise, when sr is
less than srave, a smaller value of po will be given.

In addition to parameter po, the proposed AO mechanism
also introduces another parameter LP . However, It can be seen
that the influence of these two parameters on the performance
of the algorithm has been weakened. That is because the
parameter po only needs an initial value, and its appropriate
value can be found during the search process. Moreover,
as a denominator, the value of LP belongs to [5, 10] has
no significant affect on the algorithm performance due to
the recorded values of po themselves are some very small
number. Therefore, the two parameters can be specified by
some empirical values. As the recommendation in [8], the
jumping rate should belong to (0, 0.4) for ODE. But the
smaller value of po = 0.05 is used in literature [37] for GODE.
Therefore, we use the intersection [0.05, 0.4] as the bounds of
the parameter. Moreover, we choose the median value 0.2 as
the initial value of po, and LP is set to 7 for the following
experiments.

D. The AGODE algorithm

The AGODE algorithm chooses GODE as its parent al-
gorithm, as well as uses GOBL mechanism to initialize pop-
ulation and produce new candidates in evolutionary genera-
tions. The AGODE and GODE have the similar algorithmic
framework, and the main difference between the two is that
AGODE has AO mechanism to automatically change the
control parameters po, while which is predefined in the GODE
algorithm. The pseudocode of AGODE is given in Algorithm
1, where P is the current population, GOP is the transformed
population after using GOBL, FEs is the current fitness
evaluations number, and MAX FEs is the maximum fitness
evaluations number.

E. Computational time complexity

Assume that O(F (D)) is the computational time complex-
ity of a fitness evaluation function F (D) on dimension D.
The computational time complexity of GODE algorithm [37]
is O(D2)+O(D) ·O(F (D)). Compared to GODE algorithm,

Algorithm 1 The AGODE Algorithm
1: Randomly initialize each individual in population P (0) ;
2: Conduct the GOBL operation and produce the population
GOP (0);

3: Select Np fittest individuals from {P,GOP} as the initial
population P ;

4: Record the sr into srm for the first generation;
5: while FEs ≤MAX FEs do
6: if rand(0, 1) ≤ po then
7: Conduct GOBL operation and produce the population

GOP ;
8: Select Np fittest individuals from {P,GOP} as the

new population P ;
9: if GOBL is conducted more than LP generations

then
10: Calculate sr, srave and adjust po by Eq. (7) - (9),
11: end if
12: Record sr into srm;
13: else
14: Execute the classical DE, using rand/1/exp mutant

strategy;
15: end if
16: end while

the additional steps of AGODE algorithm shown in Algorithm
1 are step 4, 10 and 12. It can be seen easily that the computa-
tional time complexities of these steps are O(1), O(LP) and
O(1), respectively. Therefore, the new AO mechanism does not
increase the computational time complexity of GODE asymp-
totically. It means that the computational time complexity of
AGODE algorithm is also O(D2)+O(D)·O(F (D)), which is
O(D2) or O(D3) when O(F (D)) is equal to O(D) or O(D2),
respectively.

IV. EXPERIMENTAL VERIFICATIONS

A. Benchmark function

In the following experiments, we have chosen 19 global
optimization functions which were proposed by the Special
Issue of Soft Computing on Scalability of Evolutionary Algo-
rithms and other Meta-heuristics for Large Scale Continuous
Optimization Problems [38]. Functions F1 − F6 are provided
by [39] and widely tested in CEC–2008. Functions F7 − F11

are proposed in [40] and used for the ISDA-2009. Functions
F12−F19 are built by combining two functions belongs to the
set of functions F1−F11. The detailed descriptions of F1−F19

can be found in [38].

B. Algorithms and settings

Experiments have been conducted to compare six algo-
rithms including ODE, GODE, jDE, SaDE, JADE and the pro-
posed AGODE algorithm on the mentioned test suite. Similar
to AGODE, ODE and GODE also use the OBL and GOBL,
respectively, as the main optimizing operator to DE. There-
fore, taking a comprehensive comparison between the three
algorithms is very meaningful. The other three algorithms:
jDE, SaDE and JADE are the representatives of adaptive DE
variants. They use different adaptive mechanisms to produce
the parameters F and Cr. Moreover, SaDE also adaptively
select different mutant strategy in the evolution process. By

1779

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−1

10
0

10
1

10
2

10
3

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(a) F2

0 0.5 1 1.5 2 2.5 3

x 10
5

10
0

10
2

10
4

10
6

10
8

10
10

10
12

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(b) F3

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−20

10
−15

10
−10

10
−5

10
0

10
5

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(c) F5

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(d) F6

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−20

10
−10

10
0

10
10

10
20

10
30

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(e) F7

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−6

10
−4

10
−2

10
0

10
2

10
4

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(f) F9

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−40

10
−30

10
−20

10
−10

10
0

10
10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(g) F10

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(h) F11

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

10
10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(i) F12

0 0.5 1 1.5 2 2.5 3

x 10
5

10
0

10
2

10
4

10
6

10
8

10
10

10
12

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(j) F13

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(k) F14

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−30

10
−20

10
−10

10
0

10
10

10
20

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(l) F15

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−10

10
−5

10
0

10
5

10
10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(m) F16

0 0.5 1 1.5 2 2.5 3

x 10
5

10
0

10
2

10
4

10
6

10
8

10
10

10
12

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(n) F17

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−40

10
−30

10
−20

10
−10

10
0

10
10

FES

A
v
e

ra
g

e
 F

u
n

c
ti
o

n
 E

rr
o

r
V

a
lu

e

JADE

jDE

SaDE

ODE

GODE

AGODE

(o) F19

Fig. 3. The average convergence curves of ODE, GODE, jDE, SaDE, JADE and AGODE on F2, F3, F5–F7, F9–F17 and F19 with D = 60.

1780

TABLE I. COMPUTATIONAL RESULTS ARCHIVED BY ODE, GODE, JDE, SADE, JADE AND AGODE ON D=60

ODE GODE jDE SaDE JADE AGODE
Functions Mean Error±Std Dev1 Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 4.04E-29±1.98E-29 9.24E-27±9.45E-28 8.36E-19±1.15E-19 2.42E-29±1.15E-29 4.04E-30±2.74E-30 7.75E-28±2.08E-28
F2 3.78E+01±1.74E+00 1.07E+00±3.43E-02 2.33E+00±2.19E-01 5.57E+01±9.10E-01 3.56E+01±7.45E-01 9.43E-01±1.75E-02
F3 1.94E+02±3.80E+01 4.19E+01±1.86E+00 6.52E+01±5.84E+00 4.93E+01±6.22E+00 1.41E+02±1.99E+01 4.15E+01±1.51E+00
F4 1.06E-01±7.43E-02 1.35E-11±2.19E-12 8.57E+01±1.60E+00 7.56E-01±3.66E-01 3.43E-09±6.76E-10 6.63E-02±4.53E-02
F5 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 1.61E-02±4.53E-03 6.20E-03±1.99E-03 0.00E+00±0.00E+00
F6 1.47E-14±4.49E-16 4.68E-14±1.26E-15 2.03E-10±1.28E-11 1.51E+00±7.00E-02 1.70E+00±1.55E-01 3.57E-14±6.47E-16
F7 1.00E-13±8.76E-15 5.58E-15±3.77E-16 2.85E-11±2.43E-12 0.00E+00±0.00E+00 0.00E+00±0.00E+00 1.16E-15±1.40E-16
F8 7.98E+01±4.14E+00 2.60E+01±1.22E+00 2.62E+03±1.19E+02 9.99E-02±9.52E-02 5.23E+02±3.46E+01 1.71E+01±8.86E-01
F9 5.85E-03±4.09E-04 2.07E-04±9.69E-06 6.23E-02±3.22E-03 5.67E+00±1.52E+00 3.11E+00±5.38E-01 9.64E-05±5.96E-06
F10 5.27E-31±2.32E-31 2.36E-27±2.19E-28 2.21E-19±2.89E-20 1.27E+01±5.22E-01 1.30E+01±9.98E-01 3.18E-28±5.14E-29
F11 7.35E-03±5.44E-04 2.26E-04±1.10E-05 6.24E-02±3.21E-03 4.37E+00±8.36E-01 3.50E+00±7.48E-01 1.13E-04±5.40E-06
F12 5.31E-12±5.71E-13 1.74E-11±9.34E-13 1.13E-08±9.07E-10 4.47E+00±1.43E+00 2.19E+01±3.98E+00 4.75E-12±3.98E-13
F13 2.29E+02±1.77E+02 3.28E+01±2.21E-01 5.06E+01±5.14E+00 4.40E+01±7.71E+00 1.31E+02±1.21E+01 3.21E+01±1.52E-01
F14 8.10E-03±7.92E-03 3.98E-02±3.90E-02 6.19E+01±1.09E+00 3.58E-01±1.11E-01 2.92E-01±8.09E-03 6.73E-03±6.62E-03
F15 2.05E-16±4.61E-17 4.66E-20±1.08E-20 5.17E-12±5.19E-13 6.94E-01±1.26E-01 3.23E-01±1.03E-01 2.54E-21±1.87E-21
F16 7.89E-08±4.43E-09 7.91E-09±3.10E-10 3.52E-05±2.47E-06 6.60E+00±1.60E+00 2.34E+01±4.46E+00 3.33E-09±2.04E-10
F17 3.05E+00±5.28E-01 3.83E+00±2.52E-01 1.92E+01±4.60E+00 1.25E+01±2.33E+00 5.37E+01±9.34E+00 2.76E+00±1.78E-01
F18 1.16E-01±6.29E-02 3.98E-02±3.90E-02 3.75E-01±7.99E-02 4.29E-04±4.20E-04 1.00E+00±3.01E-02 3.32E-02±3.26E-02
F19 4.02E-31±1.73E-31 2.64E-25±3.51E-26 6.45E-16±2.23E-16 7.32E+00±4.88E-01 6.04E+00±5.32E-01 1.16E-26±2.28E-27

w/t/l2 14/1/4 17/1/1 18/1/0 15/0/4 17/0/2 —-
1 ”Mean Error” and ”Std Dev” indicate the average and standard deviation of the error values obtained in 25 runs.
2 ”w/t/l” means that the AGODE algorithm wins in w functions, ties in t functions, and loses in l functions.

contrast, the AGODE utilizes AO mechanism to optimize the
parameter po during the evolution. It is interesting to compare
the performance of the four algorithms. For convenience, we
put all comparisons together and analyze the experiment results
simultaneously, which does not affect the final conclusion.

In AGODE, the parameter LP and initial value of po are
set to 7 and 0.2 (see explanation in Section III-C). The rest
parameters F and Cr are fixed to 0.5 and 0.9, respectively, and
the rand/1/exp strategy is also employed, which are same
as the settings in the parent algorithm GODE [37]. For a fair
comparison, the control parameters and mutant strategy of rest
five algorithms are according to the settings in the original
papers of ODE [8], GODE [37], jDE [24], SaDE [22] and
JADE [19], respectively.

In this paper, we focus on investigating the optimization
performance of each algorithm on the test functions with
D=60. The maximum fitness evaluation number, MAX FEs,
is set to 5000 · D. Each run stops when the MAX FEs is
meet. In the following experiments, each algorithm is run 25
times for each test function. The average errors and standard
deviation of the best individual found in 25 runs has been
recorded for measuring the performance of each algorithm.

C. Results analysis and discussion

The comparison results among ODE, GODE, jDE, SaDE,
JADE and AGODE on problems with D = 60 are presented in
Table I. The best results among the six algorithms are shown
in boldface. It can be seen that AGODE algorithm obtains
the best solutions on 11 functions F2, F3, F5, F9 and F11–
F17, while ODE, SaDE, GODE, JADE and jDE only get 4, 3,
2, 2 and 1 best values, respectively. All algorithms, including
AGODE, converge to the global optimum on only one function.
The bottom of Table I summarizes the comparison results
between AGODE and other algorithms. As seen, AGODE
outperforms ODE, GODE, jDE, SaDE and JADE on 14, 17,
18, 15 and 17 functions, respectively. AGODE only loses to
other algorithms on 4, 1, 0, 4, and 2 functions out of the 19
test functions.

Figure 3 shows the average convergence graphs for F2, F3,
F5–F7, F9–F17 and F19 in detail. We can see that AGODE
gets the fastest convergence speed and best values on F2, F9,
F11, F14, F15 and F16, and achieves faster convergence speed
on other functions. The ODE algorithm obtains the fastest
convergence speed on 4 functions of F5, F6, F10 and F19, but
its performance is always worse than AGODE on the other
functions. Although GODE algorithm does not achieve any
fastest convergence speed, but its performance is only slightly
worse than AGODE. In addition, the convergence performance
of jDE algorithm is often in the middle of the six algorithms.
But, JADE and SaDE often get the slowest convergence speed
except on F7 and F14, and show the worst performance. In a
whole, the AGODE algorithm achieves the best comprehensive
performance among the six algorithms. Moreover, it also gets
better stability, as well as its parent algorithm GODE.

By the suggestion of [41], we use non-parametric tests to
compare the performance of the algorithms SaDE, jDE, JADE,
ODE, GODE and AGODE on the test suite. The results of
Friedman average ranking test are shown in Table II. These
results are calculated by the SPSS statistical software. We
can see that the AGODE algorithm gets the lowest score in
the comparisons for all algorithms. It means that AGODE
algorithm has the best performance among the six algorithms.
Table III shows the p-values of applying Wilcoxon’s test
between AGODE and the other five algorithms. The p-values
below 0.05 (the significant level) are shown in boldface. As
seen, AGODE is significantly better than ODE, GODE, SaDE,
jDE and JADE on the test bed when D=60.

TABLE II. AVERAGE RANKINGS ACHIEVED BY AGODE AND OTHER
ALGORITHMS WHEN D = 60

Algorithms Ranking
AGODE 1.71
GODE 2.66
ODE 3.18
SaDE 4.29
jDE 4.50

JADE 4.66

1781

TABLE III. WILCOXON’S TEST BETWEEN AGODE AND OTHER
ALGORITHMS WHEN D = 60

Algorithms p-values of
AGODE vs. other algorithms

GODE 1.59E-03
ODE 1.18E-03
SaDE 4.85E-03
jDE 1.96E-04

JADE 3.98E-04

V. CONCLUSION

In this paper, we propose a new adaptive DE algorithm,
called AGODE, which employs an adaptive GOBL mechanism
to dynamically adjust the probability of opposition (po) accord-
ing to the success rate of the current opposition operations.
When the opposition achieves better candidate solutions, po
will be increased to provide more opposition; otherwise, po
will be decreased in order to reduce the opposition. Experi-
mental verifications on 19 test functions with D=60 show that
the proposed AGODE outperforms ODE, GODE, jDE, JADE
and SaDE on the majority of the test functions.

However, the AO mechanisms is not always effective.
For example, AGODE achieve worse results than GODE on
F4. Moreover, the effectiveness of AO mechanism for other
problems will be investigated in the future work.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science
Foundation of China (No.61070008, No. 61364025 and No.
61305150), the Humanity and Social Science Foundation of
Ministry of Education of China (No. 13YJCZH174), the
Science and Technology Plan Projects of Jiangxi Provincial
Education Department (No.GJJ13744), the Foundation of State
Key Laboratory of Software Engineering (No.SKLSE2012-
09-19), the Henan Province Science and Technology R&D
Program (No. 122102310474), and the Fundamental Research
Funds for the Central Universities (No. 2012211020205).

REFERENCES

[1] R. Storn and K. Price, “Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces,” In-
ternational Computer Science Institute, Berkeley, CA, Tech. Rep. TR-
95-012, March 1995.

[2] ——, “Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces,” Journal of Global Optimization,
vol. 11, no. 4, pp. 341–359, Dec. 1997.

[3] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine
intelligence,” in Inter. Conf. Comput. Intell. for Model., Control and
Auto., and Inter. Conf. Intell. Agents, Web Tech. and Inter. Commerce,
2005, vol. 1. IEEE, 2005, pp. 695–701.

[4] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based
differential evolution algorithms,” in Evolutionary Computation (CEC),
2006 IEEE Congress on. IEEE, July 2006, pp. 2010–2017.

[5] H. Wang, Z. Wu, Y. Liu, J. Wang, D. Jiang, and L. Chen, “Space
transformation search: a new evolutionary technique,” in Proc. of the
first ACM/SIGEVO Summit on Genetic and Evol. Comput., GEC’09.
ACM, 2009, pp. 537–544.

[6] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based
differential evolution for solving high-dimensional continuous optimiza-
tion problems,” Soft Computing, vol. 15, no. 11, pp. 2127–2140, Nov.
2011.

[7] H. R. Tizhoosh, “Opposition-based reinforcement learning,” J. of Ad-
vanced Comput. Intelligences and Intelligent Inform., vol. 10, no. 4, pp.
578–585, 2006.

[8] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based
differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp.
64–79, Feb. 2008.

[9] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition versus
randomness in soft computing techniques,” Applied Soft Computing,
vol. 8, no. 2, pp. 906–918, March 2008.

[10] S. Rahnamayan, G. G. Wang, and M. Ventresca, “An intuitive distance-
based explanation of opposition-based sampling,” Applied Soft Comput-
ing, vol. 12, no. 9, pp. 2828–2839, Sept. 2012.

[11] H. Wang, S. Rahnamayan, and Z. Wu, “Parallel differential evolution
with self-adapting control parameters and generalized opposition-based
learning for solving high-dimensional optimization problems,” Journal
of Parallel and Distributed Computing, vol. 73, no. 1, pp. 62–73, Jan.
2013.

[12] A. R. Malisia and H. R. Tizhoosh, “Applying opposition-based ideas to
the ant colony system,” in Swarm Intell. Symp., SIS’07. IEEE, April
2007, pp. 182–189.

[13] M. Ergezer, D. Simon, and D. Du, “Oppositional biogeography-based
optimization,” in IEEE Inter. Conf. Systems, Man and Cybernetics,
SMC’09. IEEE, Oct. 2009, pp. 1009–1014.

[14] M. El-Abd, “Opposition-based artificial bee colony algorithm,” in Proc.
of the 13th Annual Conf. on Genetic and Evol. Comput., GECCO’11.
ACM, July 2011, pp. 109–116.

[15] X. Zhou, Z. Wu, H. Wang, and K. Li, “Elite opposition-based particle
swarm optimization,” Acta Electronica Sinica, vol. 41, no. 8, pp. 1647–
1652, March 2013.

[16] H. Dhahri and A. M. Alimi, “Opposition-based differential evolution
for beta basis function neural network,” in Evolutionary Computation
(CEC), 2010 IEEE Congress on. IEEE, July 2010, pp. 1–8.

[17] B. Shaw, V. Mukherjee, and S. Ghoshal, “A novel opposition-based
gravitational search algorithm for combined economic and emission
dispatch problems of power systems,” Inter. Journal of Electrical Power
& Energy Systems, vol. 35, no. 1, pp. 21–33, Feb. 2012.

[18] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution
algorithm,” Soft Computing, vol. 9, no. 6, pp. 448–462, June 2005.

[19] J. Zhang and A. C. Sanderson, “JADE: Self-adaptive differential evolu-
tion with fast and reliable convergence performance,” in Evolutionary
Computation (CEC), 2007 IEEE Congress on. IEEE, Sept. 2007, pp.
2251–2258.

[20] ——, “JADE: adaptive differential evolution with optional external
archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, Oct.
2009.

[21] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Evolutionary Computation
(CEC), 2005 IEEE Congress on, vol. 2. IEEE, Sept. 2005, pp. 1785–
1791.

[22] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, April 2009.

[23] J. Brest, V. Zumer, and M. S. Maucec, “Self-adaptive differential
evolution algorithm in constrained real-parameter optimization,” in
Evolutionary Computation (CEC), 2006 IEEE Congress on. IEEE,
July 2006, pp. 215–222.

[24] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[25] Z. Yang, X. Yao, and J. He, “Making a difference to differential evolu-
tion,” in Advances in Metaheuristics for Hard Optimization. Springer,
2008, pp. 397–414.

[26] R. Mallipeddi and P. N. Suganthan, “Differential evolution algorithm
with ensemble of parameters and mutation and crossover strategies,” in
Swarm, Evolutionary, and Memetic Computing. Springer, Dec. 2010,
vol. LNCS 6466, pp. 71–78.

[27] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans.
Evol. Comput., vol. 15, no. 1, pp. 55–66, Feb. 2011.

[28] H. Wang, S. Rahnamayan, H. Sun, and M. G. Omran, “Gaussian
bare-bones differential evolution,” Cybernetics, IEEE Transactions on,
vol. 43, no. 2, pp. 634–647, April 2013.

1782

[29] J. Brest, B. Boskovic, A. Zamuda, I. Fister, and M. S. Maucec, “Self-
adaptive differential evolution algorithm with a small and varying
population size,” in Evolutionary Computation (CEC), 2012 IEEE
Congress on. IEEE, June 2012, pp. 1–8.

[30] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Computing, vol. 10, no. 8, pp. 673–686, June 2006.

[31] J. Brest and M. S. Maučec, “Population size reduction for the differ-
ential evolution algorithm,” Applied Intelligence, vol. 29, no. 3, pp.
228–247, Dec. 2008.

[32] H. Wang, S. Rahnamayan, and Z. Wu, “Adaptive differential evolution
with variable population size for solving high-dimensional problems,”
in Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE,
June 2011, pp. 2626–2632.

[33] R. Sarker, S. Elsayed, and T. Ray, “Differential evolution with
dynamic parameters selection for optimization problems,” IEEE
Trans. Evol. Comput., 2013, Available on-line (Open access), DOI:
10.1109/TEVC.2013.2281528.

[34] F. S. Al-Qunaieer, H. R. Tizhoosh, and S. Rahnamayan, “Opposition
based computing–a survey,” in Inter. Joint Conf. Neural Networks,
IJCNN’10. IEEE, July 2010, pp. 1–7.

[35] F. Neri and V. Tirronen, “Recent advances in differential evolution:
a survey and experimental analysis,” Artificial Intelligence Review,
vol. 33, no. 1-2, pp. 61–106, 2010.

[36] S. Das and P. N. Suganthan, “Differential evolution: a survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[37] H. Wang, Z. Wu, S. Rahnamayan, and L. Kang, “A scalability test for
accelerated de using generalized opposition-based learning,” in Inter.
Conf. Intell. Systems Design and Applic., ISDA’09. IEEE, Nov. 2009,
pp. 1090–1095.

[38] F. Herrera, M. Lozano, and D. Molina, “Test suite for the special
issue of soft computing on scalability of evolutionary algorithms and
other metaheuristics for large scale continuous optimization problems,”
University of Granada, Spain, Tech. Rep., 2010.

[39] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen,
and Z. Yang, “Benchmark functions for the cec2008 special session
and competition on large scale global optimization,” Nature Inspired
Computation and Applications Laboratory, USTC, China, 2007.

[40] F. Herrera and M. Lozano, “Workshop for evolutionary algorithms and
other metaheuristics for continuous optimization problemsca scalability
test,” in Inter. Conf. on Intelligent System Design and Applications, Pisa,
Italy, 2009.

[41] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 3–18, March 2011.

1783

