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Abstract—The many-objective optimization performance of  

using expected hypervolume improvement (EHVI) as the 

updating criterion of the Kriging surrogate model is 

investigated, and compared with those of using expected 

improvement (EI) and estimation (EST) updating criteria in 

this paper. An exact algorithm to calculate hypervolume is used 

for the problems with less than six objectives. On the other 

hand, in order to improve the efficiency of hypervolume 

calculation, an approximate algorithm to calculate 

hypervolume based on Monte Carlo sampling is adopted for 

the problems with more objectives. Numerical experiments are 

conducted in 3 to 12-objective DTLZ1, DTLZ2, DTLZ3 and 

DTLZ4 problems. The results show that, in DTLZ3 problem, 

EHVI always obtains better convergence and diversity 

performances than EI and EST for any number of objectives. 

In DTLZ2 and DTLZ4 problems, the advantage of EHVI is 

shown gradually as the number of objectives increases. The 

present results suggest that EHVI will be a highly competitive 

updating criterion for the many-objective optimization with 

the Kriging model. 

I. INTRODUCTION 

In recent years, solving many-objective optimization 
problems that involve four or more objectives [1-5] has been 
one of the main research fields in the evolutionary 
multi-objective optimization (EMO). However, the 
applications of evolutionary algorithm based optimization 
methods to practical engineering designs need high 
computational cost due to a large number of expensive 
performance analyses such as three-dimensional 
computational fluid dynamics for complex geometries. A 
common strategy to reduce the computational effort is to use 
surrogate models. A number of surrogate models such as 

response surface model (RSM) [6], radial basis function 
(RBF) [7], Kriging model [8], and neural network (NN) [9] 
have been applied to practical engineering designs. Among 
these surrogate models, the Kriging model can estimate the 
deviation between the response model and sample points, 
and automatically adapt to the sample points. Additionally, 
the Kriging model has a characteristic that an assumption of 
order of the approximate function is not needed, so it is 
superior to general RSM. In this study, the Kriging model is 
adopted as the surrogate model. 

With regard to the updating criterion of the Kriging 
model, Jones et al. [10] suggested that the expected 
improvement (EI) of an original objective function was 
maximized to determine the location of a new additional 
sample point, and designated the efficient global 
optimization algorithm (EGO). Jeong et al. [11] extended 
EGO for multi-objective problems, in which the EIs in 
terms of all objective functions were maximized and some 
of the non-dominated solutions in the EIs space were 
selected as the additional sample points. Emmerich et al. [12] 
proposed the expected hypervolume improvement (EHVI) 
as the updating criterion of the Gaussian random field 
metamodels, and evaluated EHVI using the Monte Carlo 
integration method. Shimoyama et al. [13] compared the 
optimization performance of the EHVI, EI and estimation 
(EST) updating criteria in the multi-objective optimization. 
The results indicated EHVI kept a good balance between 
accurate and wide search for non-dominated solutions. 
Subsequently, EHVI updating criterion was applied to the 
many-objective optimizations of the 2 to 8-objective DTLZ1 
and DTLZ2 problems [14]. 

This paper continues to investigate the many-objective 
optimization performance of using EHVI as the updating 
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criterion in other test problems with more objectives, for 
comparison with EI and EST. In order to improve the 
efficiency of many-objective optimization, faster algorithms 
to calculate hypervolume are adopted.  

II. BACKGROUND 

A many-objective problem with M objectives is defined 
as follows: 

 minimize  1 2( ) ( ( ), ( ), , ( ))Mf f f=F x x x x             
 subject to  X∈x                           (1) 

where x is a vector of n decision variables, F(x) is a vector 
of M objective functions, ( )if x  denotes the i-th objective 
to be minimized, and X is the feasible region delimited by 
the problem’s constraints.  

A. Kriging Model 

The Kriging model has its original applications in mining 
and geostatistical fields referring to spatially and temporally 
correlated data [15]. The Kriging model is a combination of 
global model and localized departures as follows: 

              ( ) ( )f x Z xμ= +                 (2) 

where ( )f x  denotes an unknown function of interest, and 
μ  denotes a known global approximation model. Z(x) is a 
realization of a stochastic process with mean zero and 
variance 2σ , and the covariance matrix of Z(x) is given by 

    ( ) ( ) 2Z , Z = ( , )i j i jCov x x R x xσ⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ R R      (3)          

In Eq. (3), R is an ( )n ns s×  correlation matrix symmetric 
with ones along the diagonal, ( , )i jR x x  is the correlation 
function between any two points ix  and jx  among sn  
sample points. The correlation function needs to be selected 
by users. This paper employs the following Gaussian 
correlation function: 

        ( ) 2

1
, exp

ni j i j
k k k

k
R x x x xθ

=

⎡ ⎤= − −∑⎢ ⎥⎣ ⎦
          (4) 

where n denotes the number of design variables. kθ  is the 
weight of the distance along the k-th design variable. 

In the Kriging model, the values of μ , 2σ  and  

1 2=[ ]nθ θ θ， ， ，θ  are determined by maximizing the 
likelihood function. First, θ  is obtained by maximizing 
the concentrated log-likelihood function as 

      ( ) ( )2

0
1, 2, ,

1
max ln ln

2 2k

s k n
n

θ
σ

>
=− −⎛ ⎞

⎜ ⎟
⎝ ⎠

，R    (5) 

μ  and 2σ  that maximize the likelihood function are 
represented in closed form as  

                 
1

1=
T

Tμ
−

−

1
1 1

R f
R

                   (6) 

           ( ) ( )1
2 =

T

sn
μ μ

σ
−− −1 1f R f             (7) 

where 1 2[ ( ), ( ), , ( )]n Tsf x f x f xf = , and 1 is an 

sn -dimensional unit vector. After θ  is obtained, μ  and  
2σ are obtained by Eqs. (6) and (7), respectively. Thereinto, 

R is calculated by Eq. (4). Now, Eq. (2) can be written to be 
the Kriging model predictor as 

          ( ) ( )1ˆ Tf x μ μ−= + 1r R f -           (8) 

where r is an sn -dimensional vector whose i-th element is 
[Z( ), Z( )]iCov x x . 

The accuracy of the predicted value ˆ ( )f x  depends 
greatly on the distances between predicted point x and the 
sample points. The mean squared error 2ˆ ( )s x  for a 
predicted point x using the Kriging model predictor is 
defined by 

       
( )2

1
2 2 1

1
ˆ ( )=

T

T
T

s x σ
−

−
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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−
− +

1 1
1

1 1

R r
r R r

R
         (9) 

B. Expected Hypervolume Improvement 

EHVI is based on the theory of the hypervolume indicator 
[16], and now we first introduce the hypervolume indicator. 
Hypervolume indicator is a popular metric which is used for 
comparing performance between different multi-objective 
optimizers. The hypervolume of a set of solutions S 
measures the size of the portion of objective space that is 
dominated by the set S collectively. In the field of EMO, the 
hypervolume indicator is the only unary indicator that is 
known to be strictly monotonic with regard to Pareto 
dominance. This characteristic is of high interest and 
relevance for the problems with a large number of 
objectives.  

Hypervolume calculation requires high computational 
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effort. Several algorithms have been proposed for 
calculating hypervolume exactly. Wu et al. [17] proposed 
the inclusion-exclusion algorithm (IEA) for hypervolume 
calculation, and the complexity of this algorithm is 

( 2 )NO M  for N solutions and M objectives. Fleischer [18] 
introduced the algorithm based on the Lebesgue measure, 
and its complexity is ( )MO N . While et al. [19] suggested a 
fast hypervolume by slicing objective (HSO) algorithm, and 
the complexity is 1( )MO N − . Based on HSO, Fonseca et al. 
[20] proposed an improved dimension-sweep algorithm for 
calculating hypervolume. The proposed algorithm achieved 

2( log )MO N N−  complexity in the worst case. The fastest 
algorithm yet known for exact hypervolume calculation is 
the Waking Fish Group (WFG) algorithm, proposed by 
While et al. [21].   

Because of the high computation cost especially in the 
problems with more than five objectives, some approximate 
algorithms to calculate hypervolume have also been 
developed in recent years. Bader et al. [1] proposed the 
approximate algorithm based on Monte Carlo sampling. 
Bringmann et al. [22] presented a fast approximation 
algorithm, and proved that it calculates a solution with 
contribution at most (1+ )ε  times the minimal contribution 
with probability at least (1 )δ−  for arbitrarily given 

, 0ε δ > . Ishibuchi et al. [23] proposed the approximation 
algorithm using achievement scalarizing functions with 
uniformly distributed weight vectors. 

EHVI is the expected value of hypervolume improvement 
in the Kriging model. The hypervolume improvement 

1 2[ ( ), ( ), ( )]MHVI f x f x f x  is defined as the difference of 
hypervolume between the current sample set and the next 
sample set, as illustrated in Fig. 1, and its expected value 

1 2[ ( ), ( ), ( )]MEHVI f x f x f x  is expressed as 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

1 1 2 2 1 2

, , ,

= , , ,ref ref Mref

M

f f f

M

M M M

EHVI f x f x f x

HVI f x f x f x

F F F dF dF dFφ φ φ
−∞ −∞ −∞

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

×
∫ ∫ ∫   (10) 

where iF  denotes the Gaussian random variable 
2ˆ ˆ[ ( ), ( )]i iN f x s x . ( )i iFφ  is the probability density function, 

and ireff  is the reference value used for calculating 
hypervolume. The maximization of EHVI is considered as 
the updating criterion to determine the location of an 

additional sample point. 

 

Fig. 1.  EHVI updating criterion of the Kriging model [14] 

In the present optimizations, objective function values are 
normalized between 0 and 1 for all given sample points. 
When the number of objectives is small ( 5≤ ), hypervolume 
is calculated using the fastest exact algorithm WFG [21], 
and the reference values are set to be 1.1 for all objective 
functions. When the number of objectives is large ( 5> ), 
hypervolume is estimated based on the approximate 
algorithm as described in [1], and the number of samples 
used in this approximate algorithm is set to be 300 for 8 and 
10-objective problems, and 500 for 12-objective problems. 

III. NUMERICAL EXPERIMENTS 

A. Problem Definition 

Three to twelve-objective DTLZ1, DTLZ2, DTLZ3 and 
DTLZ4 problems [24] are considered in the present 
numerical experiments. All these problems are 
non-constrained, and the corresponding Pareto-optimal 
fronts lie in [0, 0.5] for DTLZ1 or [0, 1] for other DTLZ 
problems. Table 1 lists these test problems and their key 
properties.  

Table 1.  The test problems and key properties 
(M is the number of objectives, and n is the number of variables)    

Problems M n Properties 

DTLZ1 

DTLZ2 

DTLZ3 

DTLZ4 

3, 5, 8, 10, 12 

3, 5, 8, 10, 12 

3, 5, 8, 10, 12 

3, 5, 8, 10, 12 

M+4 

M+9 

M+9 

M+9 

Multimodal, separable 

Concave, separable 

Multimodal, concave, separable 

Concave, separable 

B. Computational Procedure 

In order to investigate the performance of EHVI, two 
other updating criteria EI and EST [14] are adopted for 
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comparing with EHVI. Figure 2 gives the flowchart of 
many-objective optimization with the Kriging model. 

    

Fig. 2.  Flowchart of many-objective optimization [14] 

For each test problem, 20 runs are carried out with a 
different initial datasets of ten sample points. The initial 
sample points are generated using Latin hypercube sampling 
method [25], and distribute uniformly in the design space. 
The optimization of determining the locations of additional 
sample points are performed using NSGA-II [26]. The 
parameter values used in NSGA-II are given in Table 2.  

Table 2.  Parameter values used in NSGA-II 

Parameters NSGA-II 

Population size 

Number of generations 

Simulated binary crossover probability 

Polynomial mutation probability 

cη  [27] 

mη  [27] 

100 

200 

1 

1/n 

30 

20 

In the optimization based on EHVI, a single solution with 
the maximum EHVI is obtained, and employed as the 
additional sample point. This indicates that the sample 

points are added one by one. On the other hand, a set of 
multiple non-dominated solutions is obtained in the 
optimization based on EI or EST. For a fair comparison, 
only the solution closest to the centroid of the obtained 
non-dominated solutions is chosen as the additional sample 
point. The termination condition of updating the Kriging 
model is that the total number of the initial sample points 
plus the additional sample points reaches 70. 

C. Performance metric 

The inverted generational distance (IGD) [28] is 
considered as the performance metric in the present 
numerical experiments. IGD can provide the combined 
information about the convergence and diversity of the 
obtained solutions. IGD is defined as follows:             

         ( ) 1, min
f D

f T

IGD T A f f
T ′∈

∈

′= −∑           (11) 

where T denotes the set of the points located on the true 
Pareto-optimal front. D is the non-dominated solution set 
obtained by the optimization. Smaller IGD indicates better 
performance in multi-objective optimization. The solutions 
in T distribute uniformly on the true Pareto-optimal front. 
The size of T varies with the number of objectives, and is 
shown in Table 3. 

Table 3.  The size of T with the number of objectives 

M 3 5 8 10 12 

T  
121M −  

441 

111M −  

14641 

14M −  

16384 

13M −  

19683 

13M −  

177147 

D. Results and Discussion 

Figure 3 gives the IGD histories during the Kriging model 
update based on EHVI, EI and EST criteria in 3 to 
12-objective DTLZ1 problems. The IGD values are 
averaged on 20 trials with different initial sample points. 
EST achieves faster reduction of IGD than EHVI and EI 
except for the case of M = 5, EHVI achieves the fastest IGD 
reduction. EST always obtains faster reduction of IGD than 
EI for any number of objectives. It indicates that the 
updating criterion EST without considering estimation 
errors works better than the updating criterion EI 
considering estimation error. 

     Real values 

 Predicted values by Kriging model 

Ten initial sample points 

End 
YesTotal number of 

sample points reaches 
70 ? 

Start 

Optimization based on different updating criteria  
(EST, EI, or EHVI)  

performed by NSGA-II 

Kriging model is (re)constructed  
No 

EHVI EST  EI 

The solution closest to 
centroid of obtained 

non-dominated solutions 
is selected 

An optimal solution 
obtained 

One new sample point generated 
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(a) M = 3 

 
(b) M = 5 

 
(c) M = 8 

 
(d) M = 10 

 
(e) M = 12 

Fig. 3.  IGD history during the Kriging model update in the DTLZ1 

 
(a) M = 3 

 
(b) M = 5 

 
(c) M = 8 

 
(d) M = 10 

 
(e) M = 12 

Fig. 4.  IGD history during the Kriging model update in the DTLZ2 
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(a) M = 3 

 
(b) M = 5 

 
(c) M = 8 

 
(d) M = 10 

 
(e) M = 12 

Fig. 5.  IGD history during the Kriging model update in the DTLZ3 

 
(a) M = 3 

 
(b) M = 5 

 
(c) M = 8 

 
(d) M = 10 

 
(e) M = 12 

Fig. 6.  IGD history during the Kriging model update in the DTLZ4 
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The IGD histories during the Kriging model update based 
on EHVI, EI and EST criteria in DTLZ2 are shown in Fig. 
4. When M = 3 and 5, the optimization performance of using 
EHVI as the updating criterion is poor. This is because the 
updating strategy based on EHVI may result in additional 
sample points falling into a local optimal region. As M 
increases larger than 5, the optimization performance based 
on EHVI is gradually improved. It is noted that EI suddenly 
obtains much faster reduction of IGD than EHVI and EST 
when M = 12.   

The IGD histories during the Kriging model update based 
on EHVI, EI and EST criteria in DTLZ3 are presented in 
Fig. 5. EHVI always achieves better convergence and 
diversity performances than EI and EST for any number of 
objectives. When M = 3, EI obtains faster IGD reduction 
than EST. When M is larger than 3, on the other hand, EST 
shows a little better optimization performance than EI.   

Figure 6 shows the IGD histories during the Kriging 
model update based on EHVI, EI and EST criteria in 3 to 
12-objective DTLZ4 problems. EST obtains faster IGD 
reduction than EI for any number of objectives. As M 
increases, convergence and diversity performances of using 
EHVI as updating criterion become better. In addition, when 
M = 10 and 12, EHVI outperforms EI and EST. 

IV. CONCLUSION 

Many-objective optimizations with the Kriging model 
based on EHVI, EI and EST updating criteria were 
conducted in 3 to 12-objective DTLZ1, DTLZ2, DTLZ3 and 
DTLZ4 test problems, and those performances are 
compared in this study. Thereinto, the fastest WFG exact 
algorithm and the approximate algorithm based on Monte 
Carlo sampling were adopted for hypervolume calculation.  

In DTLZ1 problem, EHVI had faster IGD reduction than 
EI and EST when M = 5, but EHVI did not keep the 
advantage when M was larger than 5. On the other hand, 
EST always obtains faster reduction of IGD than EI for any 
number of objectives. In DTLZ2 and DTLZ4 problems, the 
advantage of EHVI was shown gradually as M increased, 
and EHVI obtained faster reduction of IGD than EST when 
M is larger than 8. In DTLZ3 problem, EHVI always 
obtained better convergence and diversity performances 
than EI and EST for any number of objectives. As a whole, 

EHVI is a highly competitive updating criterion of the 
Kriging model for many-objective optimization. 
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