
Application of Computational Intelligence for
Source Code Classification

Marcos Alvares and Tshilidzi Marwala
Faculty of Engineering and the Built Environment

University of Johannesburg
Gauteng, South Africa

Email: marcosj@student.uj.ac.za, tmarwala@uj.ac.za

Fernando Buarque de Lima Neto
Polytechnic School of Pernambuco

University of Pernambuco
Pernambuco, Brazil

Email: fbln@ecomp.poli.br

Abstract—Multi-language Source Code Management systems
have been largely used to collaboratively manage software de-
velopment projects. These systems represent a fundamental step
in order to fully use communication enhancements by producing
concrete value on the way people collaborate to produce more
reliable computational systems. These systems evaluate results
of analyses in order to organise and optimise source code.
These analyses are strongly dependent on technologies (i.e.
framework, programming language, libraries) each of them with
their own characteristics and syntactic structure. To overcome
such limitation, source code classification is an essential pre-
processing step to identify which analyses should be evaluated.
This paper introduces a new approach for generating content-
based classifiers by using Evolutionary Algorithms. Experiments
were performed on real world source code collected from more
than 200 different open source projects. Results show us that our
approach can be successfully used for creating more accurate
source code classifiers. The resulting classifier is also expansible
and flexible to new classification scenarios (opening perspectives
for new technologies).

I. INTRODUCTION

Internet has been helping speed up communication and
connect people around the world. Distance is not an issue
anymore for certain categories of business and technology is
quickly changing the traditional model for assembling work
teams. New possibilities of collaborative work raised and
companies are hiring high skilled professionals for composing
geographically distributed teams. These globalised and highly
distributed work environment is a trend and companies are
gradually adapting themselves to this new and more effective
modus operandi.

Intuitively, one of the firsts areas to break through to the
new paradigm of distributed work was Information Technology
(especially Software Development). Developers around the
world can collaboratively work to produce better computa-
tional systems by using online support systems through the
global network. Web based Source Code Management (SCM)
systems have been used as an essential resource for software
development projects during the past 15 years 1 [1]–[3]. These
systems have been used by thousand companies around the
world for collaboratively organise software projects. Modern
Source Code Management systems (like Github) have drawn

1e.g. GitHub, SourceForge, Launchpad and Gitorious

attention due to their integration with Social Networking
features, stimulating collaborative and highly distributed work
scenarios [4].

An important feature of web based SCM systems is source
code classification. This classification step is used for helping
SCMs to organise source code and perform more specific anal-
yses according to detected technologies [5]. The most popular
SCM systems use file extension to determine programming
language and a Bayesian classifier to solve ambiguities situa-
tions like “.h” files (header files from C, CPP or Objective C
programming language). Two main libraries have been used by
SCMs to classify source code: (i) Linguist and (ii) Pygments2

[6], [7]. Both libraries use the same above mentioned approach
to classify source code.

A big limitation of this extension based approach is the
absence of lexical analysis for all classification situations. This
approach supposes that all input files will always have an
extension. This limitation restricts the classification process
specially in case of code snips and in-memory code.

In fact, as showed in Code 1, the above mentioned library
raises a Software Exception in this case and no classification
is performed. Line 1 to line 5 prints the first 5 lines of a Ruby
source code, on line 7 a file called ga.rb is copied to a new file
called ga (no extension this time), lines 10 to 12 the file with
extension is successfully classified and finally lines 13 to 17
the classification failed to analyse the file without extension.

Code 1. Linguist Library Raises an Exception
1 mabj@Bazooka $ head −n5 ga.rb
2 require ’./individual.rb’
3 require ’./macros.rb’
4
5 if !File.exists?(’config.yml’)
6
7 mabj@Bazooka $ cp −af ga.rb ga
8 mabj@Bazooka $ irb
9 > require ’linguist’

10 > p = Linguist::FileBlob.new(”ga.rb”)
11 > p.language.name
12 => ”Ruby”
13 > p = Linguist::FileBlob.new(”ga”)

2Pygments is a Syntax Highlight library. Once each programming language
has a different set of keywords, this library classify the input source code
before start the highlighting process.

895

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

14 > p.language.name
15 NoMethodError: undefined method ’name’ for nil:NilClass
16 from (irb):3
17 from ruby−2.0.0/bin/irb:13:in ’<main>’

A more recent application for source code classifiers is
multi-language static analysers3. In this case, in order to
perform technology specific analyses a classification process
should be performed. Multi-purpose code analysers can be
combined with SCM systems and Integrated Development
Environments (IDEs) to automatically identify performance
and security issues. This specific topic has earned attention
and investment from all big software development companies
around the world such as: Microsoft, Google, HP, and IBM.
However public technologies show that a manual approach is
still used for the initial classification process.

This paper presents an approach for automatically classify-
ing source code by using Lexical Analysis, Scoring Strategies
and Evolutionary Algorithm. The proposed strategy uses a
Multi-Objective Genetic Algorithm to find most representative
tokens4 for each programming language in order to perform a
more accurate lexical based classification analysis.

Results showed us that the proposed approach can overcome
limitations of currently using technologies and effectively gen-
erating a low-error classifier for 8 different types of program-
ming languages. The resulting classifier is also expansible and
flexible to new classification scenarios (opening perspectives
for new technologies).

This paper is divided into 4 more sections. Section II is an
overview on the necessary background theory to fully under-
standing this paper. Section III describes the proposed method.
Section IV presents experiment results. Finally, Section V
summarises conclusions and discourse possible future work.

II. THEORETICAL BACKGROUND

This section provides the necessary theoretical background
and references for fully understanding the contribution pre-
sented in the next section. The next sub-sections covers the
following topics:

1) Lexical analysis and keywords;
2) Scoring method;
3) Non-dominated Sorting Genetic Algorithm-II.
Next sub-sections can be read in any order. Readers already

familiar with the above mentioned subjects are encouraged to
skip or partially skip this session.

A. Lexical analysis and keywords

Lexical analyses is normally used as the first processing
phase in a compiler [8]. Basically, this phase receives a stream
of characters and returns a sequence of tokens of the form:

3Examples private solutions of multi-language static analysers for identi-
fying security issues are: HP Fortify Static Code Analyzer, Coverity SAVE,
Veracode

4“The lexical analyzer reads the stream of characters making up the source
program and groups the characters into meaningful sequences called lexemes.
For each lexeme, the lexical analyzer produces as output a token” (Section
1.2.1 Compilers: Principle, Techniques and Tools [8])

〈token name, attribute value〉 (1)

Each identified token has its own specific meaning accord-
ing to the programming language specification. Programming
language tokens are composed by two main components: (i)
“token-name” which is an abstract symbol and (ii) “attribute-
value” which points to an entry in the symbol table5.

For example, suppose a source program is composed of an
assignment statement:

a = b+ 20 (2)

This should be mapped for a sequence of tokens similar to:

〈id, 1〉〈OpAssignStm〉〈id, 2〉〈OpPlusStm〉〈20〉 (3)

Each different language is defined by a lexical (e.g. set of
tokens), syntactical (e.g. structural information) and semantical
(e.g. meaning information) rules. For this research, we are
interested in specific kind of tokens: Keywords. Keywords are
reserved symbols which can not be used by the programmer
as label for identifiers. For instance, Table I presents Keywords
for the C programming language.

TABLE I
ANSI C PROGRAMMING LANGUAGE KEYWORDS

union unsigned void volatile while
typedef switch struct sizeof static
signed short return register long

int if goto for float
do extern enum else double

default continue const char case

Lexical Analysis comprises the method proposed in this
paper by extracting Keywords and using them as evidences
to automatically determine which programming language is
being used by a given source code.

B. Scoring method

Scoring strategies are mainly used for classification prob-
lems. It determines the probability of a given entity to belong
to a previously specified class based on characteristics used as
evidences. Scoring strategy, is used for composing the output
classifier generated by the method proposed in this paper. This
classifier calculates the probability of a given source code file
belongs to a certain programming language by analysing the
occurrence of Keywords.

Formally this is an application of comparisons between
standard scores (one for each class of programming language).
In statistics, the standard score is the number of standard
deviations an datum is above the mean [9]. In our case
the mean should be the average number of occurrences of
keywords calculated from a set of samples for a certain class

5The symbol table entry for an identifier holds information about the
identifier, such as its name and type.

896

of programming language. The standard deviation is how far
an analysed file is from this mean.

This method simplifies comparisons among standard devia-
tions (of an analysed file) from means of different classes. By
using the above mentioned scoring strategy, the method de-
scribed in the next section can determine which programming
language the analysed file has higher probability of belonging
to.

C. Non-dominated Sorting Genetic Algorithm-II
NSGA-II is a fast and elitist multi-objective evolutionary

algorithm developed in 2000 by Deb et al. at Kampur Ge-
netic Algorithms Laboratory [10], [11]. After ten years, this
algorithm remains the state-of-art for finding solutions to
combinatorial and multi-objective problems. Over the years,
NSGA-II has been used for finding solutions to problems in
a large range of areas, such as: Economics and Engineering
[12]–[15].

NSGA-II has features that set it apart from other techniques,
like:
• the fast non-dominated sorting procedure is imple-

mented6;
• implements elitism for multi-objective search, using an

elitism-preserving approach;
• a parameter-less diversity preservation mechanism is

adopted;
• the constraint handling method does not make use of

penalty parameters; and
• allows both continuous (“real-coded”) and discrete

(“binary-coded”) design variables.
NSGA-II is shown in Algorithm 1 and is composed of three

sub-algorithms: (i) fast non-dominated sorting algorithm, (ii)
crowded distance assignment algorithm and the (iii) crowded
comparison operator (see [11] for more details).

Algorithm 1 NSGA-II Algorithm.
Initialize randomly a population P with N individuals
Evaluate all the individuals of the population
Separate individuals in Pareto Fronts using dominance
repeat

repeat
Select parents using binary tournament
Create a new individual using crossover and mutation
Evaluate the fitness of the individual
Add solution to the population

until N new individuals are created
Separate individuals in Pareto Fronts using dominance
Evaluate the crowding distance of each individual
Discard worse individuals

until the maximum number of iterations is reached

Like any other genetic algorithm, NSGA-II has mutation
and crossover parameters, however its fitness evaluation pro-
cess is a composition of evaluations of target objectives. The

6this algorithm sorts the individuals of a given population according to the
level of non-domination.

fast non-dominated sort algorithm sorts the solution according
to the level of non-domination.

The concept of Dominance is fundamental for the NSGA-
II algorithm (represented by the symbol �). A solution x1 is
said to dominate another solution x2, and we write x1 � x2,
if both the following conditions are true:
• solution x1 is no worse than x2 in all objectives; and
• solution x1 is strictly better than x2 in at least one

objective.

III. CONTRIBUTION

This research presents an evolutionary approach to auto-
matically generate more accurate source code classifiers. The
generated classifiers are composed of a score mechanism
and a list of keywords sets (one set for each programming
language). These keywords sets are filtered by the evolutionary
processes to keep only the most representative keywords for
each programming language. The resulting list is used to
compose the final classifier.

This section is composed by two sub-sections: the first
one explains the used classifier and the second one explains
how we generate a better classifier by using the evolutionary
process.

A. Classifier

The proposed method aims to automatically generate a
score-based source code classifier. Figure 1 presents the high
level architecture for the proposed classifier.

Fig. 1. Score-based source code classifier architecture

This architecture is composed of four main components:
• Keywords database: first input parameter, is composed by

a set of keywords for each programming language;

897

• Score weight vector: second input parameter, is composed
by weight values for each type of keyword;

• General lexical analyser: splits a given source code in
lexical tokens. called “general” because it is not used
specifically for only one programming language as a
regular lexical analyser;

• Score engine: compares found tokens with the keyword
database and gives scores to types of programming
languages according the score weight vector.

For experiments performed at this article, in order to
improve the generated classifier accuracy, we defined two
different classes of keywords: (i) simple and (ii) unique. The
score weight vector should have different weights for each
class of keywords7 once unique keywords intuitively is a
stronger evidence for decide which programming language a
source code belongs. We also give 10 points for the file exten-
sion. The value of these weight were determined empirically,
however it can be included into the evolutionary process for an
automatically setup approach (this approach directly impacts
the size of the search space).

For accessing efficacy of a classifier (with a specific setup
of keyword database and score weight vector), we used a
set of test real world source code samples collected from
open source projects. Samples used for composing the test set
should be chosen carefully to really represent the programming
languages. Two characteristics are very important for source
files inside the test set:
• Coverage: data set for a specific programming language

should have to cover all expected keywords;
• File size: source code files should have different sizes.

From tiny source code with few lines to big ones with
huge amount of code inside only one file.

The efficacy of the classifier is linked to the average
classification error of source code files at the test set. For
instance, if a hypothetic classifier supports 2 programming
languages and it has 6% error for language “A” and 10% for
language “B” the total error for this classifier will be 8%. By
using this rule we can compare different setups of classifiers
and decide which one is more accurate (according the used
test set).

B. Evolutionary Process

So far the put forward classifier receives as input parameter
a keyword database which contains a set of keywords for
each class of programming language. The challenge tackled
in this section is how to solve the best setup for the keyword
database in order to achieve an error as small as possible.
We have then to evaluate the average classification error for
different setups of classifiers seeking for the one which returns
the smallest error. This scenario characterises a multi-objective
combinatorial problem.

NSGA-II Algorithm is well known of being suitable for
such category of multi-objective problems (see section II).

7After tedious ad doc testes, we used 1 for simple keywords and 5 for each
unique keyword

In line with that we applied this algorithm to automatically
select subsets of the keyword database which better represents
the classes of programming languages (again, according the
used test set). This step is concerned with selecting the most
relevant and representative keywords for each programming
language.

The remainder of this section describes relevant aspects to
the Evolutionary process such as:

1) search space;
2) individual;
3) fitness function; and
4) evolutionary operators.
In order to reduce the complexity and size of search space,

once we have sets of raw keywords extracted from the docu-
mentation of each programming language, common keywords
(keywords which appears in all sets) should be deleted. These
keywords do not make any difference during the score-based
classification process once every programming language score
are equally incremented.

The search space is composed of combinations of all
different setups of keywords inside each set (one set for each
programming language). It increases exponentially every time
a new programming language is added to the algorithm. For
instance if our approach is searching for a solution (sets of
keywords) for 5 programming languages with 10 keywords
each our search space has 100.000 possible combinations. The
size of the search space can be calculated as follows:

L = {l|l is an analysed language} (4)

K(l) = {k|k is a keyword of language l} (5)

S = {K(l)|l ∈ L} (6)

f(S) =

|S|∏
i=1

(2|K(Li)| − 1) (7)

Where “L” represents the set of classes for the generated
classifier (possibilities of programming languages). K(i) re-
turns a set of keywords for a language “l”. “S” represents the
set of sets of keywords, one for each programming language
inside “L”. “f(n)” returns the size of our search space for a
given “S”.

Each combination of sets represents an individual. For
example, for a search space composed by:

S = [[k11, k12, k13], [k21, k22, k23], [k31, k32]] (8)

each element of this set represents a set of keywords for
a programming language (indexes 1, 2 and 3). From this
scenario, 147 different individuals can be generated, such as:

i1 = [[k11], [k21], [k31, k32]]
i2 = [[k11, k12], [k21], [k31, k32]]
i3 = [[k11, k12], [k23], [k31, k32]]
...

(9)

898

Each individual represents a different setup for a classifier.
The classifier uses the scoring approach described on Section
II to decide which programming language the analysed file
belongs to.

Each individual evaluate a classification over the test
database (composed by samples of source code). Then, errors
for each programming language and an average error should
be calculated. The classification error for each programming
language represents a component of the objective space. The
evolutionary process aims to minimise classification errors and
return a set of possible solutions (sets of keywords). In line
with that, the fitness function used to evaluate each individual
is represented by the composition of the classification error of
the programming language. The multi-objective optimisation
process can be represented by:

min(l1(i), l2(i), l3(i)...lk(i))
i ∈ Population

(10)

Where lk represents the error function for the language with
index k and i is an individual from population.

The NSGA-II algorithm is an elitist algorithm and preserves
the best individuals of each generation. The crowding distance
is also evaluated for each individual ensuring the diversity
of non-dominated solutions and the generation of more uni-
form paretos along the evolutionary process. In spite of that,
once we need only one classifier which gives us an equally
distributed as good as possible classification accuracy for all
programming language, only one solution from the final pareto
should be selected. This solution should dominate others in
more objectives as possible. 8

As crossover operator we cross a random individual from
the elitist group with each individual inside the population.
For each crossover operation a proportion of “60%” of the
characteristics from the fittest individual was used for compose
the new individual. Intuitively, after every crossover operation,
the proposed algorithm has to remove duplicated keywords
inside each programming language keyword set.

As a mutation strategy we decided to add or retrieve
keywords from each programming language keyword set ac-
cording to its error. The number of new keywords added or
removed (selected randomly from the initial set of keywords)
is proportional to the accuracy of this objective. For instance
if the error is “15%” the algorithm will add or remove this
rate from the respective set of keywords.

We also use a strategy to avoid the algorithm to get
stuck on local non-dominant paretos by randomising half
of the population again if the algorithm do not present any
improvement on the total error for certain amount of time
(generations).

Figure 2 presents the final proposed process for obtaining
the classifier. First step is to collect keyword lists for each

8The heuristic to select the fittest solution inside the final pareto was: the
fittest individual inside each pareto returned along the evolutionary process
is the one who presents the smallest average classification error (arithmetic
mean of all objectives).

programming language. Then use a database of training sam-
ples guide the Genetic Algorithm. The Genetic algorithm au-
tomatically provides a new filtered keyword database with the
most relevant keywords sets according the provided training
samples. Then a new keyword database is used to classify for
testing the generated classifier.

Fig. 2. Proposed algorithm flow for this step

The process have to be repeated for each new programming
language appended to the classifier. Once the classifier does
not have any information about this new programming lan-
guage, the designer has to provide the correspondent keyword
set and source code samples to the genetic algorithm and
obtain a new optimised keyword database (which includes the
new programming language).

IV. EXPERIMENT

This section exemplifies the proposed method for generating
a classifier for 8 different programming languages: C, CPP,
Visual Basic, C Sharp, PHP, Ruby, Python and Java. The
generated classifier is used to classify a validation database
containing inedited samples (not used during the generation
phase).

Experiments were carried out on two machines: (i) Intel
I7 3.4 GHz, 4 GB RAM and (ii) Intel I3 3.07 GHz, 2 GB
RAM. Both machines use Linux Operating system Ubuntu
12.04. The prototype was implemented in Ruby programming
language version 1.9.3p125.

Table II shows the size for each set of keywords within
the keywords database. These keywords sets were extracted
from the official online documentation of each supported
programming language [16]–[23].

Section III presents a mathematical tool for calculating the
size of the search space according the keyword database.
For these 8 programming languages a search space of 10142

different combinations can be generated (after removing the
common keywords). 9 A search process in such big space

9Just for a perspective, this number is bigger than the estimated number of
stars in our galaxy (300 billions).

899

TABLE II
NUMBER OF KEYWORD BY PROGRAMMING LANGUAGE

Language (#)
C 32

CPP 84
Visual Basic 157

C Sharp 77
Java 50

Python 32
Ruby 35
PHP 65

should be guided by feedback information like the average
classification error. A multi-objective Genetic Algorithm was
applied to seek a combination of keywords which represents
a small classification error.

Each individual in the GA population represents one possi-
bility inside the search space composed by 10142 possibilities.
We used 12 individuals for composing the GA population
and as training and test datasets we used 3400 files from 50
different open source projects from Github. 1700 samples to
evaluate the fitness of each individual (guided the evolutionary
process) and 1700 different ones for testing the generated
classifier.

Each fitness evaluation for each individual takes something
around 30 minutes (approximately 1 second per file classifica-
tion). This means that for evaluate the entire population takes
6 hours. We used concurrent computing techniques to try to
reduce this evaluation time. The population was evaluated in 1
hour and 2 hours for the I7 and I3 configuration respectively.
The stop condition is 500 iterations (500 generations). This
means that the genetic algorithm will take at least 20 days
(using the above mentioned hardware specification).

Table III shows scores used for each class of event found
during the scoring process. Each simple keyword found scores
1 point for the respective programming language. Each unique
keyword found registers 5 points and file extension registers
10 points for the respective programming language. Each
programming language gets a probability and the one with
the higher probability is returned as a class for the analysed
source code.

TABLE III
SCORE TABLE

Event Score
Simple Keyword 1
Unique Keyword 5

Extension 10

Figure 3 shows the evolution of the total error along Ge-
netic Algorithm iterations. The average error decreases from
49.13% to 3.53% along 500 iterations. As explained at Section
III The chart shows the fittest individual inside each pareto
returned after each iteration. We need to select an individual
inside the returned pareto which presents the smallest average
classification error as possible.

0	

10	

20	

30	

40	

50	

60	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	 500	

Av
er
ag
e	
Er
ro
r	 (
%
)	

Itera/on	 (#)	

Fig. 3. Average error along Genetic Algorithm iterations

Table IV shows us the total amount of time for all 500
iterations on each environment. The first environment gave us
a better classifier with 3.5% of total error. The setup used
for this first experiment does not consider file extension. This
scenario shows the accuracy for a classification strictly based
on the content of the source code.

TABLE IV
TIME ANALYSIS (WITHOUT EXTENSION)

Configuration Total Error Total Time
I7 3.5% 21 days
I3 4.1% 33 days

As a second scenario the file extension was considered as
evidence to determine the type of programming language of a
given source code. According the file extension a programming
language can score 10 points.

Table V shows the total error for the second scenario. The
influence of file extension solved ambiguities problems and
reduces the total error. In spite of using the file extension, the
proposed approach remains most influenced by the content.
This file extension information is especially useful for small
source files with few content information (keywords).

TABLE V
TIME ANALYSIS (WITH EXTENSION)

Configuration Total Error Total Time
I7 1.1% 21 days
I3 1.3% 33 days

Code 2 presents a example of C source code classified as
CCP by the setup shown at the first scenario. The classification
error is solved at the second scenario by considering a weight
for the file extension.

Code 2. Ambiguities during classification process
1 #include <stdlib.h>
2
3 #define RANDSRC ”/dev/urandom”
4
5 int random bytes(void ∗dst, size t n) {
6 FILE ∗f = fopen(RANDSRC, ”rb”);
7 assert(f);

900

8 size t r = fread(dst, n, 1, f);
9 fclose(f);

10 if (r < 1) { return 0;}
11 return 1;
12 }

Table VI shows the size of each keyword set for each
programming language. This keyword database is used for
composing the final classifier. We can observe that the new
keyword list is around 40% smaller than the original one.
Not relevant keywords were automatically pruned from the
original keyword database by the evolutionary process without
any human specialist assistance.

TABLE VI
NUMBER OF KEYWORD BY PROGRAMMING LANGUAGE

Language (#)
C 31

CPP 56
Visual Basic 79

C Sharp 34
Java 34

Python 16
Ruby 23
PHP 51

Appendix A presents the generated keyword database. As
commented in the last sections, every time a new programming
language is added to the classifier the evolutionary process has
to be executed again receiving a keyword set and source code
samples for the new language.

V. CONCLUSION AND FUTURE WORK

This paper presents a systematic approach to generate
source code classifiers by using evolutionary algorithms, lex-
ical analysis and score strategies. The proposed approach is
parameter-less once it requires only lists of keywords (one
list for each programming language) to automatically generate
classifiers. The generated classifier can be used for supporting
Source Code Management, Multi-Language Static Analysers
and Integrated Development Environments systems to become
less analyst-dependent and perform more specific tasks.

The proposed approach can also be used to classify unfin-
ished source code (once it does not require syntactic correct-
ness) and support analyses for helping software development
teams incrementally during the software development life
cycle. The presented method is also flexible and does not
require any specialised skills for adding support for a new pro-
gramming language 10. The only necessary task is to provide
new keyword sets (one for each programming language) for
the Genetic Algorithm and representative samples of source
code for composing the training database.

The proposed method was validated by automatically gener-
ating a valid classifier for 8 different classes of programming
languages. A database of 1700 samples retrieved by 200
different open source projects was used as training and testing

10Keywords are normally well documented at any programming language
specifications.

sets for Genetic Algorithm. Results show that the generated
classifier can be used to lexically classify real world source
code.

As a future work we are planning to combine more analyses
and heuristics to the proposed approach aiming to improve the
classification overall accuracy, such as:

• Project analyses: the classifier should also consider the
type of the source code files around (in the same direc-
tory) the one currently analysed in order to determine the
programming language;

• Negative score: the score approach should also penalise
the classification process, for instance: a C programming
language should not have a keyword labeled “class” then
the score algorithm should penalise the score for this
language;

• Score value: the value used as score for keywords can
also compose the evolutionary process.

• Classes of relevance: the algorithm can automatically
determine the weight for different classes of keyword
through the evolutionary process (e.g. different weights
for unique and repeated keywords).

• Principal Component Analyses: Comparing the evolution-
ary approach with a combination of Principal Component
Analyses for each keyword set (for each programming
language).

REFERENCES

[1] L. Augustin, D. Bressler, and G. Smith, “Accelerating software devel-
opment through collaboration,” International Conference on Software
Engineering, 2002.

[2] R. English and C. Schweik, “Identifying success and tragedy of FLOSS
commons: A preliminary classification of Sourceforge. net projects,”
National Center for Digital Government Working Paper Series, vol. 7,
2007.

[3] A. Begel, J. Bosch, and M. Storey, “Social Networking Meets Software
Development: Perspectives from GitHub, MSDN, Stack Exchange, and
TopCoder,” Software, IEEE, vol. 30, 2013.

[4] F. Thung and T. Bissyandé, “Network Structure of Social Coding in
GitHub,” European Conference on Software Maintenance and Reengi-
neering, 2013.

[5] P. Lerthathairat and N. Prompoon, “An approach for source code
classification to enhance maintainability,” International Joint Conference
on Computer Science and Software Engineering (JCSSE), vol. 7, no.
002, 2011.

[6] Linguist, “Linguist: source code classifier,” 2013. [Online]. Available:
https://github.com/github/linguist

[7] Pygments, “Pygments: source code classifier,” 2013. [Online]. Available:
http://pygments.org/

[8] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 1986.

[9] R. J. Larsen and M. L. Marx, Introduction to Mathematical Statistics
and Its Applications (5th Edition). Pearson, 2011.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in International Conference on Parallel Problem Solving
from Nature. Springer, 2000, pp. 849–858.

[11] K. Deb and A. Pratap, “A fast and elitist multiobjective genetic al-
gorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,
2002.

[12] R. T. F. A. King, H. C. S. Rughooputh, and K. Deb, “Solving the
multiobjective environmental/economic dispatch problem with prohib-
ited operating zones using NSGA-II,” in IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing. IEEE, Aug.
2011, pp. 298–303.

901

[13] X. Jiang, C. Yongqiang, W. Xiaoqing, Z. Minhui, and X. Liu, “Optimum
design of antenna pattern for spaceborne SAR performance using im-
proved NSGA-II,” in 2007 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2007, pp. 615–618.

[14] P. Murugan, S. Kannan, and S. Baskar, “Application of NSGA-II
Algorithm to Single-Objective Transmission Constrained Generation
Expansion Planning,” IEEE Transactions on Power Systems, vol. 24,
no. 4, pp. 1790–1797, Nov. 2009.

[15] S. Mishra, G. Panda, S. Meher, R. Majhi, and M. Singh, “Portfolio
management assessment by four multiobjective optimization algorithm,”
in IEEE Recent Advances in Intelligent Computational Systems. IEEE,
Sep. 2011, pp. 326–331.

[16] D. A. Black, “Ruby Programming Language Keywords,” 2009. [Online].
Available: http://ruby-doc.org/docs/keywords/1.9/

[17] R. Moore, “Python Programming Language Keywords,” 2005. [Online].
Available: http://docs.python.org/release/2.3.5/ref/keywords.html

[18] M. Achour, “PHP Programming Language Keywords,” 2013. [Online].
Available: http://php.net/manual/en/reserved.keywords.php

[19] V. Studio, “C# Programming Language Keywords,” 2013. [Online].
Available: http://msdn.microsoft.com/en-us/library/x53a06bb.aspx

[20] ——, “Visual Basic Programming Language Keywords,” 2008. [Online].
Available: http://msdn.microsoft.com/en-us/library/ksh7h19t(v=vs.90)
.aspx

[21] Comunity, “C Programming Language Keywords,” 2013.
[Online]. Available: http://en.wikipedia.org/wiki/C\ syntax\#Reserved\

keywords
[22] ——, “C++ Programming Language Keywords,” 2013. [Online].

Available: http://en.cppreference.com/w/cpp/keyword
[23] Oracle, “Java Programming Language Keywords,” 2013. [On-

line]. Available: http://docs.oracle.com/javase/tutorial/java/nutsandbolts/
\ keywords.html

APPENDIX A
RELEVANT KEYWORDS DATABASE

• C: enum, #else, do, restrict, float, case, #if, unsigned, while,
extern, for, sizeof, switch, if, continue, struct, char, typedef,
register, default, goto, volatile, void, const, double, signed,
inline, #elif, break, #endif, else, auto, #include;

• CPP: for, template , goto, constexpr, char16 t, case, override,
operator, float, alignas, register, dynamic cast, mutable, union,
decltype, static cast, catch, sizeof, export, xor eq, while, alig-
nof, static assert, #else, signed, struct, wchar t, not eq, virtual,
short, volatile, asm, #if, break, nullptr, if, auto, final, bitand,
double, and eq, thread local, bitor, enum, default, throw, try,
else, reinterpret cast, xor, friend, explicit, typedef, namespace,
#include;

• Visual Basic: wend, shared, narrowing, mybase, myclass, mus-
toverride, module, optional, widening, Variant, if, step, addres-
sof, interface, integer, namespace, property, trycast, overloads,
cchar, ushort, byref, clng, sbyte, catch, implements, when, alias,
notoverridable, sub, cuint, function, throw, rem, endif, culng,
cbool, synclock, handles, inherits, cushort, gosub, single, redim,
operator, imports, erase, shadows, partial, cshort, byte, nothing,
elseif, getxmlnamespace, stop, enum, withevents, andalso, del-
egate, cint, object, mod, csng, cobj, ctype, finally, raiseevent,
notinheritable, addhandler, goto, const, option, case, loop, me,
removehandler, else, try;

• C Sharp: extern, if, interface, implicit, operator, override,
goto, var, using, fixed, checked, internal, ulong, sbyte, explicit,
typeof, sizeof, for, while, else, double, enum, base, case, unsafe,
stackalloc, readonly, void, delegate, short, foreach, catch, float;

• Ruby: when, undef, break, for, elsif, else, begin, until, alias,
nil, def, case, yield, retry, then, ensure, super, do, module, end;

• Python: exec, break, for, as, global, from, nonlocal, None, def,
else, import, assert, except;

• PHP: goto, explode, enddeclare, throw, switch, final, case,
implode, use, break, include once, then, global, for, endswitch,
implements, endfor, function, instanceof, clone, try, as, include,
extends, do, const, require, halt compiler, elseif, eval, declare,

echo, catch, callable, else, die, namespace, default, insteadof,
endwhile, endif, mysql query, if, unset, continue, endforeach,
trait;

• Java: throws, assert, volatile, double, break, transient, while,
import, throw, continue, float, for, native, if, default, strictfp,
finally, char, final, enum, instanceof, else, catch, try, interface,
case, synchronized, package, super, do, byte, implements, const,
extends.

902

