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Abstract—In this paper, we propose a new selection mech-
anism based on the maximin fitness function and a technique
based on Euclidean distances between solutions to improve the
diversity of the population in objective function space. Our new
selection mechanism is incorporated into a multi-objective evolu-
tionary algorithm (MOEA) which uses the operators of NSGA-
II (crossover and mutation) to generate new individuals, giving
rise to the so-called “Maximin-Distances Multi-Objective Evolu-
tionary Algorithm (MD-MOEA)”. Our MD-MOEA is validated
using standard test functions taken from the specialized literature,
having three to six objective functions. MD-MOEA is compared
with respect to MC-MOEA (which is based on the maximin fitness
function and a clustering technique), MOEA/D using Penalty
Boundary Intersection (PBI), which is based on decomposition,
and SMS-EMOA-HYPE (a version of SMS-EMOA that uses a
fitness assignment based on the use of an approximation of the
hypervolume indicator). Our preliminary results indicate that
our MD-MOEA is a good alternative to solve multi-objective
optimization problems having both low dimensionality and high
dimensionality in objective function space because it obtains
better results than MC-MOEA and MOEA/D in most cases
and it is competitive with respect to SMS-EMOA-HYPE (in
fact, it outperforms SMS-EMOA-HYPE in problems of high
dimensionality) but at a much lower computational cost.

I. INTRODUCTION

In the real word, there are many optimization problems
which involve multiple objective functions which must be
satisfied simultaneously. They are called multiobjective opti-
mization problems (MOPs) and usually their objectives are in
conflict with each other. In MOPs, the notion of optimality
refers to the best possible trade-offs among the objectives.
Consequently, these MOPs have several solutions (the so-
called Pareto optimal set whose image is called the Pareto
front). The use of evolutionary algorithms for solving MOPs
has become very popular and they are generically called Multi-
Objective Evolutionary Algorithms (MOEAs). MOEAs have
two main goals [1]: (i) to find solutions that are, as close as
possible, to the true Pareto front and, (ii) to produce solutions
that are spread along the Pareto front as uniformly as possible.
Based on their selection mechanism, MOEAs can be classified
in two groups: (i) those that incorporate the concept of Pareto
optimality, and (ii) those that do not use Pareto dominance
to select individuals. Since Pareto-based MOEAs have several
limitations, mainly when solving MOPs with many objective

functions,1 MOEAs of type (ii) have become relatively popular
in recent years.

SMS-EMOA [3], [4] and MOEA/D [5] are two well-known
MOEAs of type (ii). However, both have some disadvantages.
SMS-EMOA uses Pareto ranking (as in NSGA-II) as well
as the contribution to the hypervolume indicator in order to
decide which individual will be removed. It is worth noticing,
however, that when we only obtain one front after performing
Pareto ranking, SMS-EMOA needs to calculate the contribu-
tion of all individuals in the population in order to decide
which will be removed. Since calculating the contribution
to the hypervolume is an NP-hard problem [6], this MOEA
is not practical when we want to solve MOPs with many
objective functions (more than six). There are several proposals
to address this problem. For example: to approximate the
hypervolume or the calculation of the contribution to the hyper-
volume [7], [8], [9], [10]. However, MOEAs that approximate
the hypervolume lose quality in their solutions in a significant
manner. Other authors have proposed an efficient algorithm
to calculate the contributions to the hypervolume but only for
low dimensionality (two and three objective functions) [11].
It is also worth mentioning the new competition scheme for
selection mechanisms based on the hypervolume indicator that
was proposed in [12]. With this scheme, the authors were
able to have a significant reduction of the running time of the
original SMS-EMOA without losing quality in the solutions
that it produces. However, this selection mechanism also needs
to calculate contributions to the hypervolume and, therefore, it
is still impractical for MOPs with many objective functions.

Regarding MOEA/D, it decomposes the MOP into N scalar
optimization subproblems and then it solves these subproblems
simultaneously using an evolutionary algorithm. At each gen-
eration, the best solution found so far for each subproblem
survives. Although this MOEA has a low computational cost
and is able to find an approximation of the Pareto front with
a good distribution (this depends of the approach used to
decompose the MOP), MOEA/D always needs to generate a set
of well-distributed convex weights and perhaps this is its most
important disadvantage because this task is difficult in several
cases. There are some proposals to generate these weights [13],
[14]. However, none of these techniques ensures obtaining a

1The number of nondominated solutions grows exponentially as we increase
the number of objective functions, and this rapidly dilutes the selection
pressure of a MOEA [2].
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uniformly distributed set of weights for high dimensionality
and they also have some disadvantages. For example, in [13],
when we increase the number of objective functions, the
number of weights grows according to

(
n+p−1

p

)
, where n is the

number of objective functions and p = 1
δ

(δ is the stepsize).
Then, if we use δ = 0.1, this technique generates 66, 286,
1001, 3003, 8008 and 19448 weights for 3, 4, 5, 6, 7 and 8
objective functions, respectively. Since using population sizes
as large as these values suggest is not practical, it is necessary
to use another technique (for example, clustering) to select a
subset of these weights for running the algorithm.

Another approach, called MC-MOEA [15], [16] which is
based on the maximin fitness function [17], [18], [19], was
recently proposed. This is clearly a MOEA of type (ii). The
maximin fitness function has interesting properties. For exam-
ple, based on the fitness value of an individual, we can know if
an individual is non-dominated or dominated. Also, its fitness
value is a metric of the distance to the non-dominated front.
Additionally, the fitness value of an individual is penalized if it
is clustered together with other individuals. Another important
thing is that the complexity of calculating the maximin fitness
function is linear with respect to the number of objective
functions, which makes this approach a good choice for
dealing with many-objective optimization problems. In [16],
the authors mention some disadvantages of the maximin fitness
function and they make some proposals to address them. One
of these disadvantages is that although the maximin fitness
function penalizes individuals that are clustered together, the
solutions generated by MOEAs based on this sort of approach
don’t have a good distribution along the Pareto front. At this
point, it is important to mention that improving the diversity
of the solutions generated by a MOEA implies not to affect its
convergence properties. In this paper, we address this issue by
proposing a technique to correct the possible errors generated
(with respect to the diversity) when we use the maximin fitness
function to select the individuals which will be part of the next
generation. The proposed technique is based only on Euclidean
distances between solutions in objective function space and it
has linear complexity with respect to the number of objective
functions. Thus, both our final selection mechanism based on
the maximin fitness function and our technique to improve
diversity are linear with respect to the number of objectives.

The remainder of this paper is organized as follows.
Section II states the problem of our interest. Section III
describes the maximin fitness function. The previous related
work is discussed in Section IV. Our proposal is discussed in
Section V. Our experimental validation and the results obtained
are shown in Section VI. Finally, we provide our conclusions
and some possible paths for future work in Section VII.

II. PROBLEM STATEMENT

We are interested in the general multiobjective optimization
problem (MOP), which is defined as follows: Find ~x∗ =
[x∗

1, x
∗
2, . . . , x

∗
n]

T which optimizes

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]
T (1)

such that ~x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region of
the problem. Assuming minimization problems, we have the
following definitions.

Definition 1: We say that a vector ~u = [u1, . . . , un]
T

dominates vector ~v = [v1, . . . , vn]
T , denoted by ~u ≤p ~v, if

and only if fi(~u) ≤ fi(~v) for all i ∈ {1, ..., k} and there exists
an i ∈ {1, . . . , k} such that fi(~u) < fi(~v).

Definition 2: A point ~x∗ ∈ Ω is Pareto optimal if there
does not exist any ~x ∈ Ω such that ~x ≤p ~x∗.

Definition 3: A point ~x ∈ Ω is weakly Pareto optimal if
there does not exist another point ~y ∈ Ω such that fi(~y) <
fi(~x) for all i ∈ {1, ..., k}.

Definition 4: For a given MOP, ~f(~x), the Pareto optimal

set is defined as: P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≤p
~f(~x)}.

Definition 5: Let ~f(~x) be a given MOP and P∗ the Pareto
optimal set. Then, the Pareto Front is defined as: PF∗ =
{~f(~x) | ~x ∈ P∗}.

III. MAXIMIN FITNESS FUNCTION

The maximin fitness function was proposed by Balling [17]
and it works as follows. Let’s consider a MOP with K objec-
tive functions and an evolutionary algorithm whose population
size is P . Let f i

k be the normalized value of the kth objective
for the ith individual in a particular generation. Assuming
minimization problems, we have that the jth individual weakly
dominates the ith individual if:

mink(f
i
k − f

j
k) ≥ 0 (2)

The ith individual, in a particular generation, will be weakly
dominated by another individual, in the generation, if:

maxj 6=i(mink(f
i
k − f

j
k)) ≥ 0 (3)

Then, the maximin fitness function of individual i is defined
as:

fitnessi = maxj 6=i(mink(f
i
k − f

j
k)) (4)

where the min is taken over all the objective functions, and
the max is taken over all the individuals in the population,
except for the same individual i. From eq. (4), we can say the
following:

1) Any individual whose maximin fitness is greater than
zero is a dominated individual,

2) Any individual whose maximin fitness is less than
zero is a non-dominated individual.

3) Finally, any individual whose maximin fitness is
equal to zero is a weakly-dominated individual.

Some interesting properties of the maximin fitness function are
the following:

1) The maximin fitness function penalizes clustering of
non-dominated individuals. See Figure 1(b).

2) The maximin fitness of dominated individuals is a
metric of the distance to the non-dominated front.
See Figure 1(c).

3) The max function in the maximin fitness of a
dominated individual is always controlled by a non-
dominated individual and is indifferent to clustering.
The max function in the maximin fitness of a non-
dominated individual may be controlled by a domi-
nated or a non-dominated individual. See Figure 1(c).
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Fig. 1. Properties of the maximin fitness function. In (a) all individuals have the same

fitness because they are non-dominated to each other and they are well distributed. In (b),

we can see that if we incorporate individual D, individuals B, C and also D are penalized

because they are close from each other. In (c), we can see that the fitness of individuals

D, E and F is controlled by the non-dominated individual B, and their fitness is a metric

of the distance to the individual B. Also, we can see that the fitness of individual B is

affected by the dominated individual D because they are close.

The author of the maximin fitness function proposes in [18]
the following modified maximin fitness function:

fitnessi = maxj 6=i,j∈ND(mink(f
i
k − f

j
k)) (5)

where ND is the set of non-dominated individuals. Using
eq. (5) to assign the fitness of each individual, we guarantee
that the fitness of a non-dominated individual is controlled
only by non-dominated individuals and then we only penalize
clustering between non-dominated individuals. For example, if
we use the modified maximin fitness function in Figure 1(c),
individual B would not be penalized and it would retain a
fitness equal to -1.

IV. PREVIOUS RELATED WORK

The maximin fitness function has been incorporated in
genetic algorithms [18], [19], [16], particle swarm optimiz-
ers [20], [21], ant colony optimizers [22] and differential evo-
lution [15]. In most of these papers, only low dimensionality
MOPs were considered (i.e., MOPs with 2 objectives) and no
extra diversity mechanism was adopted.

In [15], two important disadvantages of the maximin fitness
function were identified. The main disadvantage arises from
the following question: Is it better to prefer weakly dominated
individuals than dominated individuals? The answer was that
it is not good to prefer weakly dominated individuals or
individuals which are close to being weakly dominated (even
if they are weakly dominated by any dominated individual).
For example, if we assign the fitness of each individual using
the maximin fitness function, and then we sort the individuals
according to their fitness values, we can obtain many (even
only) weakly Pareto points. In order to address this problem,

the following constraint was proposed in [15]: Any individual
that we want to select must not be similar (in objective function
space) to another (selected) individual.

The second disadvantage has to do with the poor diversity
obtained in objective function space when we use the maximin
fitness to select individuals. In [15], the authors showed that
the maximin fitness function has difficulties in some cases.
For example, in Figure 1(b), individuals B, C and D have
the same maximin fitness. Then, we cannot know which of
these three individuals is the best choice to form part of
the next generation. In order to address this problem, in
[15] it was proposed to use a clustering technique to correct
the possible errors produced in the selection process when
using the maximin fitness as follows: If we want to select S
individuals from a population of size P , then, we choose the
best S individuals with respect to their maximin fitness value,
and we use them as centers of the clusters. Then, we proceed to
place each individual in the nearest cluster. Finally, for each of
the resulting clusters, we recompute the center and we choose
the individual closest to it. This technique is only effective in
cases when more than S individuals are non-dominated. The
clustering technique does not iterate many times to improve
the distribution of the centers, because we choose the initial
centers according to the maximin fitness value and we only
want to do a small correction based on the idea on which
the maximin fitness function penalizes clustering. Because of
this, in [16] the authors studied the effect of using different
selection operators based on either the original maximin fitness
function or the modified maximin fitness function and the
above clustering technique.

V. OUR PROPOSED SELECTION MECHANISM

We based our selection mechanism on the mechanisms
proposed in [15], [16] but instead of using a clustering
technique to improve the diversity in the population (objective
function space) we propose here the use of a technique based
on Euclidean distances between solutions. We choose this type
of distance because we want that the solutions are uniformly
distributed in objective function space. Also, it is important
to mention that if all the objectives are equally important, we
need to calculate the Euclidean distance on the normalized
values of the objective functions. Our selection mechanism
works as follows: Let’s assume that we want to select S
individuals from a population of size P . First, we assign fitness
to each individual using the modified maximin fitness function
(see equation (5)). Then, we proceed to select individuals
according to their fitness, verifying similarity between selected
individuals (see Algorithm 1, lines 1 to 20). If we already
selected the S individuals but there are still non-dominated
individuals who have not participated in the selection process,
then we proceed to use the technique proposed in the next
Subsection to improve diversity (see Algorithm 1, lines 22 to
41). The process to verify similarity is shown in Algorithm 2,
where min dif is the minimum difference allowed between
solutions with respect to all objective functions and K is the
number of objective functions.

A. Improving Diversity

Our aim now will be to maximize the minimum distance
between solutions in objective function space. For this sake,
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we will do the following: Let X be the population from which
we want to select S individuals and let S be the set of already
selected individuals. For each nondominated individual X[i]
who has not participated in the selection process (because its
fitness is low), we obtain its nearest neighbor from S (S[X ])
and we choose a random individual2 from S (S[R], such that
X 6= R). Then, X[i] will compete with S[R] and S[X ] to
survive. We use S[X ] with the idea of improving the diversity
locally: If we move S[X ] to X[i], do we increase the distance
with respect to its nearest neighbor in S? And, we use S[R]
because we consider the scenario in which the solution S[X ]
is in an unexplored region and, therefore, it is not a good
idea to delete S[X ] or X[i]. Therefore, we propose that first,
X[i] competes with the randomly chosen solution S[R]: If the
Euclidean distance from X[i] to its nearest neighbor in S is
greater than the Euclidean distance from S[R] to its nearest
neighbor in S, we replace S[R] with X[i]. If X[i] loses the
competition, then X[i] competes with its nearest neighbor to
survive. If the Euclidean distance from X[i] to its nearest
neighbor in S (without considering S[X ]) is greater than the
Euclidean distance from S[X ] to its nearest neighbor in S, then
we replace S[X ] with X[i].

In Figure 2(a), we can see an example of selection using
only the maximin fitness function; the black points are the
selected individuals. Figures 2(b,c) show the selection process
using the maximin fitness function and the clustering technique
proposed in [15]. In (b), we can see the clusters constructed
and, in (c), we can see the selected individuals. Figures 2(d,e)
show the selection process using the maximin fitness function
and our technique based on Euclidean distances. Since indi-
viduals C and D are not considered in (a), in (d), C competes
with A and B, and C replaces B. In (e), D competes with A
and C, and D replaces C. As we can observe in Figure 2, our
selection mechanism obtains better results than the other two.

B. Maximin-Distances Multi-Objective Evolutionary Algo-
rithm (MD-MOEA)

In order to validate our selection mechanism, we designed
a multi-objective evolutionary algorithm that uses the oper-
ators of NSGA-II (crossover and mutation) to create new
individuals. This is because our main aim is to validate the
effect of our proposed selection mechanism comparing it with
respect to other three selection mechanisms based on different
techniques: (1) the first is based on the same maximin fitness
function, (2) the second is based on the approximation of
the hypervolume indicator and, (3) the third is based on
decomposition. For this sake, we used the following MOEAs:
MC-MOEA [16] (the version in which the modified maximin
fitness is used all the time), SMS-EMOA-HYPE (a version
of SMS-EMOA [4] that uses a fitness assignment based on
the approximation of the hypervolume indicator, proposed in
[8]) and MOEA/D [5] (using PBI to decompose the MOP).
All of these MOEAs use the same operators to create new
individuals, which allows a fair comparison.

Our MOEA is called “Maximin-Distances Multi-
Objective Evolutionary Algorithm (MD-MOEA)” and it
works as follows. First, it creates an initial population of size

2We assume that the probability of choosing an individual in a crowded
region is higher than the probability of choosing an individual in an unexplored
region.

Algorithm 1: Maximin selection

Input : X (Population), S (number of individuals to choose
S < ‖X‖).

Output: S (Selected individuals).
1 AssignFitness(X);
2 numNonDom ← Number of nondominated solutions in X;
/*Sorting with respect to the maximin

fitness */

3 Sort(X);
4 s← 1, i← 1, S← ∅;
/*Fill up the new population with the best

copies according to the maximin fitness,

verifying that there is not a similar

one */

5 while s ≤ S AND i ≤ ‖X‖ do
6 if X[i] is not similar to any individual in S then

/*Select individual i */

7 S← S ∪ X[i];
8 s← s+ 1;
9 end

10 i← i+ 1;
11 end
12 if s ≤ S then

/*Choose the remaining individuals

considering only the maximin fitness

*/

13 i← 1;
14 while s ≤ S do
15 if X[i] has not been selected then
16 S← S ∪ X[i];
17 s← s+ 1;
18 end
19 i← i+ 1;
20 end
21 else

/*Improve diversity according to the

Euclidean distances between

solutions. */

22 while i < numNonDom do
23 if X[i] is not similar to any individual in S then
24 X ← Index of nearest neighbor to X[i] in S;
25 dItoX ← Distance from X[i] to S[X];
26 R← Obtain a random index between 1 and S

such that R 6= X;
27 Y ← Index of nearest neighbor to S[R] in S;
28 dRtoY ← Distance from S[R] to S[Y ];
29 if dItoX > dRtoY then
30 Replace S[R] with X[i];
31 else
32 Z ← Index of nearest neighbor to X[X] in S;
33 dXtoZ ← Distance from S[X] to S[Z];
34 W ← Index of nearest neighbor to X[i],

without regard to X , in S;
35 dItoW ← Distance from X[i] to S[W ];
36 if dItoW > dXtoZ then
37 Replace S[X] with X[i];
38 end
39 end
40 end
41 end
42 end
43 return S;
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Fig. 2. Let’s assume that we want to select two individuals. If we use only the maximin

fitness function and we assume that A, B, C and D is the ordering of the solutions after

sorting them with respect to their fitness value, then we select individuals A and B and

individuals C and D are not considered (see (a)). This is clearly not a good selection. If

we use the clustering technique proposed in [15], we take A and B as initial centers of

the clusters and we obtain two clusters: the first one only has A and the second has B,

C and D, see (b). When we recalculate the centers of the clusters and choose the closest

solution to the centers, we select A and C, see (c). If we use our proposed technique,

first we select A and B (S = A,B). After that, we consider individual C; its nearest

neighbor is B and we choose A as a random solution. First, C competes with A and C

loses because the distance from A to B is greater than the distance from C to B. Then,

C competes with B and C wins because the distance from C to A is greater than the

distance from B to A. Finally, we consider D, and D loses with A but it wins with C.

Then, we select A and D, see (e). We can say that (e) is a better choice than (a) and (c)

in the selection process.

Algorithm 2: Verify similarity

Input : x (individual), S (population).
Output: Returns 1, if the individual x is similar to any

individual in the population S; otherwise, it returns 0.
1 for i← 1 to ‖S‖ do
2 for k ← 1 to K do
3 if |x.f [k] − S[i].f [k]| < min dif then
4 return 1;
5 end
6 end
7 end
8 return 0;

P . After that, it creates P new individuals and it combines the
population of parents and offspring to obtain a population of
size 2P . Then, we use the selection mechanism described in
Algorithm 1 to choose the P individuals that will take part of
the following generation. Finally, this process is repeated for
a (pre-defined) number of generations.

VI. EXPERIMENTAL RESULTS

As we mentioned before, we validated our selection mech-
anism by comparing our MD-MOEA with respect to MC-
MOEA, MOEA/D and SMS-EMOA-HYPE. In the case of
SMS-EMOA-HYPE, we used the source code of HyPE avail-
able in the public domain [8] adopting 104 as our number of
samples to assign fitness in the original SMS-EMOA. In the
case of MOEA/D, we generated the convex weights using the
technique proposed in [13] and after that, we applied clustering
(k-means) to obtain a specific number of weights.3

For our experiments, we used seven problems taken from
the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [23]. We
used k = 5 for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for
the remaining test problems. Also, we used seven problems
taken from the WFG toolkit [24], with k factor = 2 and
l factor = 10. For each test problem, we performed 30
independent runs. For all four algorithms, we adopted the
parameters suggested by the authors of NSGA-II: pc = 0.9
(crossover probability), pm = 1/n (mutation probability),
where n is the number of decision variables. We also used
ηc = 15 and ηm = 20, respectively. In the case of MC-
MOEA and our MD-MOEA, we used min dif = 0.0001. We
performed a maximum of 50,000 fitness function evaluations
(in this case, we used a population size of 100 individuals
and we iterated for 500 generations). Only in DTLZ3 we
performed 100,000 evaluations (we used a population size of
100 individuals and we iterated for 1000 generations).

A. Performance Indicators

We adopted only the hypervolume indicator (IH ) to vali-
date our results because it rewards both convergence towards
the Pareto front as well as the maximum spread of the
solutions obtained. Furthermore, IH is the only unary indicator
which is known to be “Pareto compliant” [25]. To calculate
the hypervolume indicator, we used the following reference
points: yref = [y1, · · · , yM ] such that yi = 0.7 for DTLZ1,
yref = [y1, · · · , yM ] such that yi = 1.1 for DTLZ(2-6),
yref = [y1, · · · , yM ] such that yM = 6.1 and yi6=M = 1.1 for
DTLZ7. In the case of the WFG test problems, we generated
the reference point using the highest value found for each
objetive function taking into account all the outputs of the four
algorithms (i.e., MC-MOEA, MOEA/D, SMS-EMOA-HYPE
and MD-MOEA).

B. Discussion of Results

Table I shows the results with respect to IH in problems
with three objective functions as well as the results of the
statistical analysis that we made to validate our experiments,
for which we used Wilcoxon’s rank sum. In (a), we can see

3The source code of the three algorithms (MOEA/D, SMS-EMOA-HYPE
and MD-MOEA) can be provided by the first author upon request. For
MOEA/D, we used the source code available in the MOEA/D webpage
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IH P (H)

DTLZ1 (3)
0.311634

(0.001536)

0.311213

(0.001637)
0.228 (0)

DTLZ2 (3)
0.696078

(0.008462)

0.716900

(0.006070)
0.000 (1)

DTLZ3 (3)
0.666299

(0.022591)

0.720263

(0.007612)
0.000 (1)

DTLZ4 (3)
0.703924

(0.008896)

0.714999

(0.007642)
0.000 (1)

DTLZ5 (3)
0.424854

(0.005358)

0.433524

(0.005550)
0.000 (1)

DTLZ6 (3)
0.381283

(0.026286)

0.407466

(0.024926)
0.000 (1)

DTLZ7 (3)
1.851081

(0.202273)

1.854329

(0.208323)
0.411 (0)

WFG1 (3)
17.622577

(1.379125)

17.365532

(1.698654)
0.129 (0)

WFG2 (3)
0.115221

(0.009956)

0.116298

(0.010288)
0.027 (1)

WFG3 (3)
0.407785

(0.006808)

0.448216

(0.002539)
0.000 (1)

WFG4 (3)
20.858572

(0.557784)

25.854932

(0.333751)
0.000 (1)

WFG5 (3)
7.997923

(0.203347)

9.265981

(0.077585)
0.000 (1)

WFG6 (3)
0.920378

(0.012003)

0.977053

(0.011069)
0.000 (1)

WFG7 (3)
17.286919

(0.727687)

18.961153

(0.389552)
0.000 (1)

~f

moead

IH

md-moea

IH P (H)

DTLZ1 (3)
0.303053

(0.000450)

0.311213

(0.001637)
0.000 (1)

DTLZ2 (3)
0.708105

(0.000205)

0.716900

(0.006070)
0.000 (1)

DTLZ3 (3)
0.702575

(0.004807)

0.720263

(0.007612)
0.000 (1)

DTLZ4 (3)
0.708295

(0.000133)

0.714999

(0.007642)
0.000 (1)

DTLZ5 (3)
0.416468

(0.000529)

0.433524

(0.005550)
0.000 (1)

DTLZ6 (3)
0.352563

(0.026612)

0.407466

(0.024926)
0.000 (1)

DTLZ7 (3)
1.607354

(0.202304)

1.854329

(0.208323)
0.000 (1)

WFG1 (3)
16.211830

(0.312977)

17.365532

(1.698654)
0.063 (0)

WFG2 (3)
0.088530

(0.006124)

0.116298

(0.010288)
0.000 (1)

WFG3 (3)
0.388538

(0.014871)

0.448216

(0.002539)
0.000 (1)

WFG4 (3)
22.853573

(0.541417)

25.854932

(0.333751)
0.000 (1)

WFG5 (3)
8.501790

(0.147219)

9.265981

(0.077585)
0.000 (1)

WFG6 (3)
0.845541

(0.009395)

0.977053

(0.011069)
0.000 (1)

WFG7 (3)
16.227431

(1.859549)

18.961153

(0.389552)
0.000 (1)

~f

sms-emoa

hype

IH

md-moea

IH P (H)

DTLZ1 (3)
0.314237

(0.000752)

0.311213

(0.001637)
0.000 (1)

DTLZ2 (3)
0.741222

(0.002104)

0.716900

(0.006070)
0.000 (1)

DTLZ3 (3)
0.000000

(0.000000)

0.720263

(0.007612)
0.000 (1)

DTLZ4 (3)
0.743932

(0.002429)

0.714999

(0.007642)
0.000 (1)

DTLZ5 (3)
0.438030

(0.000195)

0.433524

(0.005550)
0.000 (1)

DTLZ6 (3)
0.363403

(0.062094)

0.407466

(0.024926)
0.003 (1)

DTLZ7 (3)
1.830760

(0.195849)

1.854329

(0.208323)
0.004 (1)

WFG1 (3)
17.841521

(1.282806)

17.365532

(1.698654)
0.021 (1)

WFG2 (3)
0.116636

(0.010844)

0.116298

(0.010288)
0.046 (1)

WFG3 (3)
0.446381

(0.004118)

0.448216

(0.002539)
0.046 (1)

WFG4 (3)
27.035334

(0.224630)

25.854932

(0.333751)
0.000 (1)

WFG5 (3)
9.462112

(0.048270)

9.265981

(0.077585)
0.000 (1)

WFG6 (3)
0.987239

(0.007085)

0.977053

(0.011069)
0.000 (1)

WFG7 (3)
18.288252

(0.873704)

18.961153

(0.389552)
0.001 (1)

(a) (b) (c)
TABLE I. RESULTS OBTAINED IN THE DTLZ AND WFG TEST PROBLEMS WITH THREE OBJECTIVE FUNCTIONS. WE COMPARE OUR MD-MOEA WITH RESPECT TO

MC-MOEA, MOEA/D AND SMS-EMOA-HYPE, USING THE HYPERVOLUME INDICATOR (IH ). WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES IN

PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS APPLIED TO OUR

EXPERIMENTS USING WILCOXONS RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS TRUE). SMALL VALUES OF P CAST DOUBT

ON THE VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS ARE EQUAL”) CANNOT BE REJECTED AT THE 5% LEVEL. H = 1
INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.

that our MD-MOEA outperformed MC-MOEA in twelve cases
and we can reject the null hypothesis (medians are equal) in
eleven of them. On the other hand, only in two cases MC-
MOEA obtained better results than our MD-MOEA and in
these two cases we cannot reject the null hypothesis. That
means that in eleven problems our MD-MOEA significantly
outperforms MC-MOEA and in the remaining three both MC-
MOEA and MD-MOEA have a similar behavior. Thus, we can
say that our MD-MOEA is better than MC-MOEA. In (b),
we can observe that our MD-MOEA is better than MOEA/D
because it outperforms MOEA/D in all cases and only in one
of them, we cannot reject the null hypothesis. Finally, in (c),
we can see that our MD-MOEA outperformed SMS-EMOA-
HYPE in five cases and it was outperformed in nine cases
(in all cases the null hypothesis can be rejected). However, it
is important to note that in DTLZ3, SMS-EMOA-HYPE was
unable to converge to the true Pareto front. In contrast, our
MD-MOEA was able to reach the true Pareto front in that
problem.

Table II shows a scalability study of our proposed approach
(using up to six objective functions). We chose four problems
from the DTLZ test suite: DTLZ1, DTLZ3, DTLZ5 and
DTLZ74 and two problems from the WFG toolkit: WFG3 and
WFG7.5 In (a), we can see that our proposed MD-MOEA still

4We chose these problems because their Pareto fronts have different forms:
linear (DTLZ1), concave (DTLZ3), degenerate (DTLZ5) and disconnected
(DTLZ7).

5We chose these problems because MD-MOEA outperformed SMS-EMOA-
HYPE in them, when using three objective functions and we wanted to see if
this behavior would hold if we increased the number of objectives.

outperforms MC-MOEA because it obtained better results in
all cases and only in three cases we cannot reject the null
hypothesis. In (b), we can see that MOEA/D outperformed
our MD-MOEA in five of the eighteen MOPs adopted. An
important observation is that this happens in MOPs with
degenerate Pareto fronts such as DTLZ5 and DTLZ6 and in
MOPs with a disconnected Pareto front such as DTLZ7. In
all problems, we can reject the null hypothesis. Therefore,
we can say that our MD-MOEA is better than MOEA/D in
most cases. Finally, in (c), we can see that our MD-MOEA
outperformed SMS-EMOA-HYPE in most cases (fourteen out
of eighteen), and only in three of them, we cannot reject
the null hypothesis. Therefore, we claim that our proposed
MD-MOEA maintains its good behavior as we increase the
number of objective functions. In fact, our proposed MD-
MOEA outperforms SMS-EMOA-HYPE in most cases when
we use four or more objective functions. It is important to
observe that SMS-EMOA-HYPE outperformed our proposed
MD-MOEA in the same problems as MOEA/D did (DTLZ5
and DTLZ7).

Another important thing that we must consider is the
running time required by the four algorithms. In Table III,
we can see that our proposed MD-MOEA requires at most
five seconds to solve problems with three objective functions
while SMS-EMOA-HYPE requires up to 168 seconds. Then,
although SMS-EMOA-HYPE obtains better results than our
MD-MOEA in several three-objective MOPs, our MD-MOEA
requires much less time while obtaining competitive results.
As we increase the number of objectives, our proposed MD-
MOEA requires at most seven seconds while SMS-EMOA-
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~f

mc-moea

IH

md-moea

IH P (H)

DTLZ1 (4)
0.209699

(0.050196)

0.227252

(0.001531)
0.695 (0)

DTLZ3 (4)
0.857388

(0.036140)

0.940285

(0.015157)
0.000 (1)

DTLZ5 (4)
0.205774

(0.028565)

0.232610

(0.033320)
0.003 (1)

DTLZ7 (4)
0.554462

(0.066262)

0.571259

(0.078772)
0.004 (1)

DTLZ1 (5)
0.077149

(0.074751)

0.161622

(0.000807)
0.000 (1)

DTLZ3 (5)
0.999126

(0.042205)

1.132718

(0.014944)
0.000 (1)

DTLZ5 (5)
0.164502

(0.026344)

0.165387

(0.026130)
0.994 (0)

DTLZ7 (5)
0.064793

(0.013324)

0.069806

(0.028375)
0.045 (1)

DTLZ1 (6)
0.033675

(0.044938)

0.113517

(0.000686)
0.000 (1)

DTLZ3 (6)
1.060825

(0.096036)

1.272017

(0.022573)
0.000 (1)

DTLZ5 (6)
0.138851

(0.044069)

0.195823

(0.027087)
0.000 (1)

DTLZ7 (6)
0.003920

(0.001524)

0.004332

(0.002933)
0.529 (0)

WFG3 (4)
0.133793

(0.006850)

0.186307

(0.001452)
0.000 (1)

WFG7 (4)
126.673434

(4.468933)

137.524340

(5.091123)
0.000 (1)

WFG3 (5)
0.006545

(0.003399)

0.034708

(0.000433)
0.000 (1)

WFG7 (5)
887.581970

(39.672574)

990.070618

(33.543485)
0.000 (1)

WFG3 (6)
0.000055

(0.000053)

0.004540

(0.000107)
0.000 (1)

WFG7 (6)
7058.029077

(371.172528)

7873.374654

(435.168613)
0.000 (1)

~f

moead

IH

md-moea

IH P (H)

DTLZ1 (4)
0.207214

(0.000826)

0.227252

(0.001531)
0.000 (1)

DTLZ3 (4)
0.849726

(0.008275)

0.940285

(0.015157)
0.000 (1)

DTLZ5 (4)
0.395004

(0.003938)

0.232610

(0.033320)
0.000 (1)

DTLZ7 (4)
0.510402

(0.136447)

0.571259

(0.078772)
0.000 (1)

DTLZ1 (5)
0.138851

(0.001183)

0.161622

(0.000807)
0.000 (1)

DTLZ3 (5)
0.907270

(0.016862)

1.132718

(0.014944)
0.000 (1)

DTLZ5 (5)
0.384474

(0.004732)

0.165387

(0.026130)
0.000 (1)

DTLZ7 (5)
0.090559

(0.025208)

0.069806

(0.028375)
0.000 (1)

DTLZ1 (6)
0.090773

(0.000779)

0.113517

(0.000686)
0.000 (1)

DTLZ3 (6)
0.836798

(0.127543)

1.272017

(0.022573)
0.000 (1)

DTLZ5 (6)
0.386218

(0.005819)

0.195823

(0.027087)
0.000 (1)

DTLZ7 (6)
0.017423

(0.001653)

0.004332

(0.002933)
0.000 (1)

WFG3 (4)
0.130169

(0.006990)

0.186307

(0.001452)
0.000 (1)

WFG7 (4)
65.878334

(9.319913)

137.524340

(5.091123)
0.000 (1)

WFG3 (5)
0.018217

(0.001263)

0.034708

(0.000433)
0.000 (1)

WFG7 (5)
292.456527

(30.794113)

990.070618

(33.543485)
0.000 (1)

WFG3 (6)
0.001995

(0.000324)

0.004540

(0.000107)
0.000 (1)

WFG7 (6)
2333.063125

(246.601646)

7873.374654

(435.168613)
0.000 (1)

~f

sms-emoa

hype

IH

md-moea

IH P (H)

DTLZ1 (4)
0.227248

(0.003551)

0.227252

(0.001531)
0.411 (0)

DTLZ3 (4)
0.000000

(0.000000)

0.940285

(0.015157)
0.000 (1)

DTLZ5 (4)
0.407141

(0.006175)

0.232610

(0.033320)
0.000 (1)

DTLZ7 (4)
0.471140

(0.233999)

0.571259

(0.078772)
0.258 (0)

DTLZ1 (5)
0.148712

(0.038414)

0.161622

(0.000807)
0.001 (1)

DTLZ3 (5)
0.020370

(0.073259)

1.132718

(0.014944)
0.000 (1)

DTLZ5 (5)
0.397983

(0.012657)

0.165387

(0.026130)
0.000 (1)

DTLZ7 (5)
0.054747

(0.052799)

0.069806

(0.028375)
0.082 (0)

DTLZ1 (6)
0.106482

(0.013763)

0.113517

(0.000686)
0.000 (1)

DTLZ3 (6)
0.014137

(0.053109)

1.272017

(0.022573)
0.000 (1)

DTLZ5 (6)
0.398966

(0.011553)

0.195823

(0.027087)
0.000 (1)

DTLZ7 (6)
0.013773

(0.011388)

0.004332

(0.002933)
0.000 (1)

WFG3 (4)
0.183098

(0.002400)

0.186307

(0.001452)
0.000 (1)

WFG7 (4)
98.364141

(7.586617)

137.524340

(5.091123)
0.000 (1)

WFG3 (5)
0.032837

(0.000599)

0.034708

(0.000433)
0.000 (1)

WFG7 (5)
497.644458

(43.994542)

990.070618

(33.543485)
0.000 (1)

WFG3 (6)
0.004313

(0.000114)

0.004540

(0.000107)
0.000 (1)

WFG7 (6)
3756.921293

(286.752275)

7873.374654

(435.168613)
0.000 (1)

(a) (b) (c)
TABLE II. RESULTS OBTAINED IN THE DTLZ AND WFG TEST PROBLEMS WITH FOUR, FIVE AND SIX OBJECTIVE FUNCTIONS. WE COMPARE OUR MD-MOEA WITH

RESPECT TO MC-MOEA, MOEA/D AND SMS-EMOA-HYPE, USING THE HYPERVOLUME INDICATOR (IH ). WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE

VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS APPLIED TO

OUR EXPERIMENTS USING WILCOXONS RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS TRUE). SMALL VALUES OF P CAST

DOUBT ON THE VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS ARE EQUAL”) CANNOT BE REJECTED AT THE 5% LEVEL.

H = 1 INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.

HYPE requires up to 445 seconds. Furthermore, MD-MOEA
outperformed SMS-EMOA-HYPE in most of these problems
with more than three objectives. With respect to MC-MOEA,
our approach requires a similar running time. MOEA/D is
faster than our proposed MD-MOEA but not for a significant
time difference.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a new selection mechanism based on the
modified maximin fitness function and the use of Euclidean
distances between solutions (in objective function space). Our
idea is to use this modified maximin fitness function to select
individuals and, after that, correct the possible errors in the se-
lection process with respect to diversity in the population using
the Euclidean distances between solutions. Our new selection
mechanism has a linear complexity with respect to the number
of objective functions and it is therefore suitable for solving
many-objective optimization problems. Our preliminary results
indicate that our proposed MD-MOEA is able to outperform
MOEAs such as MC-MOEA and MOEA/D and that it is
competitive with respect to a version of SMS-EMOA that uses
a fitness assignment mechanism based on the approximation of
the hypervolume (SMS-EMOA-HYPE). Indeed, as we increase
the number of objective functions, our proposed MD-MOEA

outperforms SMS-EMOA-HYPE in most cases. Finally, it is
important to mention that our proposed approach requires
much less running time than SMS-EMOA-HYPE and it does
not require any additional information such as MOEA/D and
SMS-EMOA.

As part of our future work, we are interested in further
studying the reasons for which our proposed mechanism has
difficulties to deal with MOPs having degenerate Pareto fronts
(e.g., DTLZ5 and DTLZ6) and disconnected Pareto fronts
(e.g., DTLZ7). Also, we want to study the possibility of
hybridizing our selection mechanism with some performance
indicator such as the hypervolume or R2.
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