
A Compression Optimization Algorithm for
Community Detection

Jianshe Wu, Lin Yuan, Qingliang Gong, Wenping Ma, Jingjing Ma, and Yangyang Li
The Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China

Xidian University
Xi’an, China

Email: jshwu@mail.xidian.edu.cn

Abstract—Community detection is important in
understanding the structures and functions of complex networks.
Many algorithms have been proposed. The most popular
algorithms detect the communities through optimizing a criterion
function known as modularity, which suffer from the resolution
limit problem. Some algorithms require the number of
communities as a prior. In this paper, a non-modularity based
compression optimization algorithm for community detection is
proposed without any prior knowledge, which is efficient and is
suitable for large scale networks.

Keywords—community detection; complex networks;
compression optimazation

I. INTRODUCTION
Community detection is important in understanding the

structures and functions of many real world networks [1-4].
Many efforts have been devoted to this disciplinary research
field with various methods [5-9]. The most popular method for
community detection is from maximizing a criterion function
known as modularity (Q) [5, 6], or other modified criterion
functions [7]. Along this direction, many modularity based
optimization algorithms have been designed [8-12, just to
name a few]. But the modularity optimization algorithms
suffer from the resolution limit problem [13, 14]. In other
words, small size communities cannot be detected by the
modularity optimization algorithms. Detailed review of the
algorithms and difficulties for community detection can be
found in Ref.[3]. Thus non-modularity based algorithms are
designed, e.g., the dynamics based algorithms developed in
recent years [15, 16]. Some of the modularity based
algorithms also require the number of communities as prior
information [12], which is not always available.

In this paper, a non-modularity based fast algorithm without
requiring the number of communities is provided, which can
run on large scale networks with relatively low time
complexity.

Our algorithm consists of two stages: compression and
optimization. Thus the proposed algorithm is labeled as
ComOpt for clarity.

II. PRELIMINARIES
A network is usually described by a graph G=(V, E), where

V={v1, v2,…, vN} is the set of nodes and E is the set of edges.
Several definitions of parameters, variables, functions are
introduced in this section, which are needed in description of
the algorithm.

In the compression stage, the initial network is compressed
by merging two or more nodes into one super-node, until the
termination condition is satisfied.

Definition 1: Compression ratio: R(Gk, Gk+1). Usually, a
number of steps are needed to complete the compression stage.
Let Gk=(Vk, Ek) denote the graph in the k-th step of
compression, k=0,1, 2, … . If k=0, G0=G is the initial graph.
R(Gk, Gk+1) is defined as follows,

1
1 () ()(,)

()

k k
k k

k

N G N GR G G
N G

+
+ −= , (1)

where N(Gk) is the number of nodes (include super_nodes) in
Gk. Since Gk+1 is compressed from Gk, N(Gk+1)≤N(Gk). The
value of R(Gk, Gk+1) is used to determine when to stop the
compression process(see Step 3 in Section III). Definition 2: Dense pair (vi, vj) [17]. Let w(vi, vj) be the
similarity between nodes vi and vj. If (2) holds for vi and vj,
then {vi, vj} is called a dense pair.

(,) max{ (,)}, (),
(,) max{ (,)}, (),

i j i i

i j j j

w v v w v y y T v
w v v w v x x T v

= ∈⎧
⎨ = ∈⎩

 (2)

where T(vi) is neighbor set of node vi, similarly, T(vj) is
neighbor set of node vj.

A dense pair is a pair of nodes; the similarity between them
is the largest in all the neighbors of them. Dense pair has been
defined originally by Huang et. al. in Ref.[17] and is used to
find the micro-community in the DenShrink algorithm. Here,
dense pair is used to compress a pair of nodes into one super-
node in ComOpt.

Definition 3: Minimum similarity threshold (mst). The
definition of mst is given as follows,

 | |
2* ()

k Emst
N G

= , (3)

where |E| is the total number of edges in the network, N(G)
is the total number of nodes in the network, and k is an

This work was supported by the National Natural Science Foundation of
China (Nos. 61072139, 61203303, and 61272279) and the Program for New
Century Excellent Talents in University (No. NCET-12-0920).

667

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

empirical parameter. This definition aims at giving the
termination condition of the compression process. If
N(G)=5000, k can be set to 0.2; if N(G)=50000, k can be set to
0.05. For a dense pair {vi, vj}, if w(vi, vj) < mst, they should not
be compressed into a super-node.

Definition 4: Super-node. Two nodes are compressed into
one super-node in our ComOpt. Given a network G=(V, E), a
super-node vi

k�Vk is a connected sub-graph of G, which is
composed of two nodes vi

k-1 and vj
k-1 if: 1) (vi

k-1, vj
k-1) is a

dense pair and 2) w(vi
k-1, vj

k-1) ≥mst.
In the original graph G, each node is composed of only one

node. As the compression process going on, a super-node may
have lots of nodes. To some extent, one super-node represents
a community. The connections in the interior of the
communities are relatively dense and the connections outside
the communities are relatively sparse.

Definition 5: Weight of a node, denoted as weight (vi
k).

Weight (vi
k) is the number of the internal nodes of super-node

vi
k. Of course, the weight of an initial node is 1.

 When nodes are compressed into super-nodes, in a graph Gk
of the k-th step compression, the edge between two super-
nodes may be merged from several edges in the initial graph G.

Definition 6: Similarity function w(vi
k, vj

k).
(,)

(,)
()

k k
i jk k

i j k
j

E v v
w v v

weight v
= , (4)

where E(vi
k, vj

k) represents the number of edges in the initial
graph G between super-nodes vi

k and vj
k.

In (4), super-node vj
k is a neighbor of vi

k. In our ComOpt,
the similarity function defined by (4) is used to find the most
suitable nodes to merge with super-node vi

k.
As stated above, if w(vi

k, vj
k)≥mst, vi

k and vj
k can be further

merged into one super-node in the next k+1-th step of
compression. By this definition, node vi

k is prone to merge a
node that E(vi

k, vj
k) is relatively large and weight(vj

k) is
relatively small. Obviously, computing of the similarity using
only local information, thus the time complexity is very low.

III. DESCRIPTION OF COMOPS
As stated in Section I, ComOpt has two stages:

compression and optimization.

A. Compression
The super-nodes after compression can be roughly regarded

as a community. Some communities may have only one or
two nodes, which are obviously not real communities. Those
small communities are reassigned into other communities.
Thus the partition of a network is basically completed at this
stage.

Compression is the most important process in the algorithm,
which directly determines the quality of the initial network
partition. The main idea of this process is that two nodes with
the highest similarity merge to form a super-node, the process
repeats until the termination condition is satisfied.

Assume that G0=(V0, E0) is the initial network, here the
superscript 0 means that the current network is the initial
network in the 0-th layer before compression. For each node

in V0, find its dense pair that can be merged to form a new
super-node, thus constitute the 1-th layer network G1=(V1, E1).
An edge in G1 may be an edge in G0 or it may be merged by
several edges in G0 that connect nodes between the two super-
nodes. Continue to use the lower layer network Gk-1 to build
higher layer network Gk. Detailed steps of compression are as
follows:

Step 1: Choose randomly a node, e.g. vi
0, which has not

been handled.
Step 2 : Select the dense pair(vi

0, vj
0). At the same time,

ensure that w(vi
0, vj

0)≥mst and vj
0 has not been handled in this

layer. Then merge vi
0 and vj

0 to form a new super-node vi
1 in

the next layer.
If the condition is not satisfied, then node vi

0 remains
unchanged or it can be considered to merge with itself to form
a new super-node in a next layer network.

Step 3: Repeat the above steps until all nodes have been
involved in constituting the super-node, then the next layer
network G1 is obtained. Similarly, G2, G3,…, can be obtained.
The compression process of the algorithm doesn’t terminate
until the number of nodes in the network changes little, that is

1(,) 0.05i iR G G + ≤ .
At this moment, the graph Gend can be considered as the initial
result of the community detection. Each super-node in Gend

 is
a community.

 In the initial result of community detection, some super-
nodes have only one or two nodes. In the compression process,
they may not be merged with any other node. In intuition, a
community may not have only one or two nodes. The nodes in
those “small communities” should be reassigned into other

668

communities. In this paper, the communities whose number of
nodes is less than the minimum degree of the network are
treated as “small communities”. The nodes in those “small
communities” are reassigned into other communities
according to the similarity calculated by (4) to the other super-
nodes.

The detail steps of reassignments are as follows:
Step1: Find the “small communities” whose number of

nodes is less than the minimum degree of the network.
Step 2: Calculate the similarity by (4) of every node in the

“small community” to other communities and obtain the
community which has the largest similarity.

Step 3: Delete the “small communities” and reassign each
node in those communities to the community which has the
largest similarity.

B. Optimization
This process can be also called local search [18]. To further

improve the performance of the community detection, a fast
and efficient local search phase is used. The local search is
modified from an efficient tabu search algorithm for graph
partitioning [19]. After our modification, it also played an
efficient role in improving the performance of community
detection.

After a result of community detection is obtained, the local
search algorithm moves appropriate nodes from a community
to other communities to reduce the number of edges among
communities, thus improve the performance of community
partitioning.

Basically, the local search has two parts: neighborhood
search and perturbation.

Neighborhood search. Neighborhood search tries to find a

better solution from a known solution, which is composed of
two moving operators, denoted as MoveOne and MoveTwo
respectively. The two operators are explored in a token-ring
way. That is, repeatedly apply one moving operator to the
result (solution) produced by the other moving operator.

Given a community Cj of a k-community partition (k is the
number of the communities). If vi is an overlapping (border)
node of Cj and vi belongs to Cj, then moving vi into Cj obtains
a neighbor solution of the original community partition. An
overlapping node means that it has at least one connection to a
node in the community Cj. As the number of the overlapping

nodes is very limited, so the neighborhood search is very fast.
The problem is how to evaluate the quality of the

neighborhood solution. Suppose vi is moved from Cm to Cj ,
the moving-gain(vi, m, j) is defined for this purpose. The
moving-gain(vi, m, j) is the number of edges connecting vi
with Cj minus the number of the edges connecting vi with Cm.
In order to move the node into the community with the highest
gain, moving-gains of all the nodes in the border set of the
communities are computed. After each moving, only the
relevant nodes’ moving-gain is changed and should be
updated.

Let I={C1, C2,…, Ck} be a community k-partition, B(Ci) be
the set of the border nodes which are relative to the
community Ci. The neighborhood search uses the following
two move operators: MoveOne and MoveTwo, which are
explored in a token-ring way.

MoveOne: move one highest gain node vi.
Choose randomly a subset Cj, j=1,…, k, then select the

highest gain node vi belongs to B(Cj) whose current subset is
Cm. If both (5) and (6) hold, then move the selected node vi to
community Cj.

min() (m iweight C weight v d− >） , (5)

max() ()j iweight C weight v d+ < , (6)
where dmin is the minimum degree of the network and dmax
is the maximum degree of the network.

MoveTwo: move two highest gain nodes vi and vp.
MoveTwo has two steps. The first step is the same as the

MoveOne. Choose randomly a community Cj and move its
highest gain node vi to Cj. The second step is as follows:
choose randomly an another community Cq, q≠j, then, select
node vp belongs to B(Cq) whose current community is denoted
as Cm, if both (7) and (8) hold, then move vp to Cq.

min() (m pweight C weight v d− >） , (7)

max() ()q pweight C weight v d+ < . (8)
MoveTwo is helpful to bring diversity into the search.
Perturbation. Since the neighborhood search move only the

border nodes, it is easy to get trapped in a local optimum.
Perturbation brings more diversification into the search, as far
as possible to reduce the probability of trapping into local
optimums.

In perturbation, we periodically move a fixed number of
nodes, including non-border ones, in the following way:

Randomly choose a node vi, whose current community is
Cm. Move vi into a randomly selected community Cj. Repeat
the operator z times (z is set to 1% of the total number of the
nodes in the simulations of this paper).

The perturbation process can increase the diversity of
ComOpt and help to find a better solution.

IV. EXPERIMENT RESULTS
In this section, the proposed ComOpt is evaluated by

comparative experiments on the LFR benchmark datasets [20].
Three recent modularity-based algorithms are selected in the
experiments: BGLL [21], DenShrink [17], and simulated
annealing [22].

669

The LFR benchmark networks are governed by the
following parameters [20].

• N: number of nodes in the network.
• <k>: average degree of the nodes
• kmax: maximum degree
• µ: mixing parameter, each node shares a fraction µ of its

edges with nodes in other communities and a fraction 1-µ
of its edge with intra-community nodes.

•γ: exponent for the degree distribution of nodes.
•β: exponent for the community size distribution.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mst

N
M

I

Mixing parameter μ=0.4

<k>=15 γ= 2 β=1
<k>=15 γ= 2 β=2
<k>=15 γ=3 β=1
<k>=15 γ=3 β=2
<k>=20 γ=2 β=1
<k>=20 γ=2 β=2
<k>=20 γ=3 β=1
<k>=20 γ=3 β=2
<k>=25 γ=2 β=1
<k>=25 γ=2 β=2
<k>=25 γ= 3 β=1
<k>=25 γ=3 β=2

(a)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mst

N
M

I

Mixing parameter μ=0.5

<k>=15 γ= 2 β=1
<k>=15 γ= 2 β=2
<k>=15 γ=3 β=1
<k>=15 γ=3 β=2
<k>=20 γ=2 β=1
<k>=20 γ=2 β=2
<k>=20 γ=3 β=1
<k>=20 γ=3 β=2
<k>=25 γ=2 β=1
<k>=25 γ=2 β=2
<k>=25 γ= 3 β=1
<k>=25 γ=3 β=2

(b)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mst

N
M

I

Mixing parameter μ=0.6

<k>=15 γ= 2 β=1
<k>=15 γ= 2 β=2
<k>=15 γ=3 β=1
<k>=15 γ=3 β=2
<k>=20 γ=2 β=1
<k>=20 γ=2 β=2
<k>=20 γ=3 β=1
<k>=20 γ=3 β=2
<k>=25 γ=2 β=1
<k>=25 γ=2 β=2
<k>=25 γ= 3 β=1
<k>=25 γ=3 β=2

(c)

Fig. 1. The performance of ComOpt on the value of mst. (a) µ=0.4. (b) µ=0.5.
(c) µ=0.6.

In our experiments, we adopt the Normalized Mutual
Information (NMI) [10], a measurement based on the
information theory, to evaluate the quality of the community
detection results generated by different algorithms. NMI is
widely accepted in measuring the performance of network
community detection algorithms. The value of NMI is in the
range from 0 to 1. NMI = 1 indicates that the network partition
is perfect. In general, the higher score the NMI, the better the
performance. All the experiments were conducted on a PC with
a 2.2GHz, i7CPU and 8 GB of RAM.

A. Parameter sensitivity
In this subsection, experiments are done to test the

performance of ComOpt on the value of mst, which is helpful
for us to select appropriate value for mst.

In the experiments, N=5000 and kmax=50. Many networks
are generated with different values of parameters. Fig. 1(a),
Fig. 1(b), and Fig. 1(c) are the simulation results when µ=0.4,
0.5, 0.6, respectively. In each of the figures, three values of
<k> are tested (15, 20, 25), corresponding to (γ, β)= (2, 1), (γ,
β)= (2, 2), (γ, β)= (3, 1), and (γ, β)= (3, 2), respectively. Thus,
in each of the figures, 12 curves are shown.

When µ=0.4 (see Fig. 1(a)), in a wide range of mst from
0.05 to 0.45, the value of NMI is high; when µ=0.5 (see Fig.
1(b)), in the range of mst from 0.05 to 0.35, the value of NMI
is high; when µ=0.6 (see Fig. 1(c)), in the range of mst from
0.05 to 0.25, the value of NMI is high. Beyond the range of
mst, larger values of mst will make losing of the performance,
but the effects on <k>=15 is smaller than that of on <k>=25.

From mst=0, as the increasing of mst, the values of NMI is
increasing. The value of mst corresponding to the peak value of
NMI is the most appropriate value of mst. Choosing an
appropriate value of mst is dependent on µ. Smaller value of µ
requires a larger value of mst.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

μ

N
M

I

<k>=30

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

μ

N
M

I

<k>=40

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

μ

N
M

I

<k>=50

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

μ

N
M

I

<k>=60

 ComOpt
 DenShrink
 BGLL

 ComOpt
 DenShrink
 BGLL

 ComOpt
 DenShrink
 BGLL

 ComOpt
 DenShrink
 BGLL

Fig. 2. Comparison of ComOpt with BGLL and DenShrink on LFR networks
with N=50000, γ=2, β=1, and kmax=100.

B. Comparative experiments
In this subsection, two experiments are done to compare

ComOpt with BGLL and DenShrink on LFR networks with
N=50000 and kmax=100. In the first experiment, γ=2 and β=1.
Four groups of networks are generated corresponding to
<k>=30, 40, 50, and 60 respectively. The mixing parameter µ

670

is varying from 0.05 to 0.8 with distance 0.05. In each value of
µ, three networks are generated and tested with the three
algorithms. The simulation results are shown in Fig. 2.

From Fig. 2, when µ is less than 0.6, the NMI of our
ComOpt is slightly lower than that of DenShrink algorithm,
but is high enough and it is basically maintained at about 0.95.
When µ is larger than 0.6, the NMI of DenShrink algorithm
declines sharply, however, ComOpt is still able to maintain at
a higher value of NMI.

In the second experiment <k>=30. Four groups of networks
are generated corresponding to (γ, β)=(2, 1), (2, 2), (3, 1), and
(3, 2), respectively. In each value of µ, three networks are
generated and tested with the three algorithms. The simulation
results are shown in Fig. 3, which indicates that the
performance of ComOpt is insensitive with the variety of γ
and β.

0.2 0.4 0.6
0.2

0.4

0.6

0.8

μ

N
M

I

 γ=2 β=1

0.2 0.4 0.6
0.2

0.4

0.6

0.8

μ

N
M

I

 γ=3 β=2

0.2 0.4 0.6
0.2

0.4

0.6

0.8

μ

N
M

I

 γ=2 β=2

0.2 0.4 0.6
0.2

0.4

0.6

0.8

μ

N
M

I

 γ=3 β=1

 ComOpt
 BGLL
 DenShrink

ComOpt
BGLL
DenShrink

ComOpt
BGLL
DenShrink

ComOpt
BGLL
DenShrink

Fig. 3. Comparison of ComOpt with BGLL and DenShrink on LFR networks
with N=50000, <k>=30, and kmax=100.

REFERENCES
[1] M. Girvan and M. E. J. Newman, “Community structure in social and

biological networks,” Proc. Natl. Acad. Sci. USA, vol. 99, no. 12, pp.
7821-7826, 2002.

[2] E. A. Leicht, M. E. J. Newman, “Community structure in directed
networks,” Phys. Rev. Lett. vol. 100, p.118703, 2008.

[3] S. Fortunato, “Community detection in graphs,” Phys. Rep. vol. 486, pp.
75-174, 2010.

[4] J. Wu, X. Wang, and L. Jiao, “Synchronization on overlapping
community network,” Physica A, vol. 391, pp. 508-514, 2012.

[5] M. E. J. Newman, “Modularity and community structure in networks,”
Proc. Natl. Acad. Sci. USA , vol. 103, p.8577, 2006.

[6] M. E. J. Newman, “Fast algorithm for detecting community structure in
networks,” Phys. Rev. E, vol. 69, p.066133, 2004.

[7] Z. Li, S. Zhang, R. Wang, S. Zhang, and L. Chen, “Quantitative function
for community detection,” Phys. Rev. E, vol. 77, p.036109, 2008.

[8] Y. Li, J. Liu, and C. Liu, “A comparative analysis of evolutionary and
memetic algorithms for community detection from signed social
networks,” Soft Computing, [Online]. Available:
http://link.springer.com/article/10.1007/s00500-013-
1060-4#.

[9] M. Gong, B. Fu, L. Jiao, and H. Du, “Memetic Algorithm for
Community Detection in Networks,” Phys. Rev. E, vol. 84, no. 5,
p.056101, 2011.

[10] W. Zhan, Z. Zhang, J. Guan, and S. Zhou, “Evolutionary method for
finding communities in bipartite networks,” Phys. Rev. E, vol. 83, p.
066120, 2011.

[11] M. Gong, L. Ma, Q. Zhang, and L. Jiao, “Community Detection in
Networks by Using Multiobjective Evolutionary Algorithm with
Decomposition” Physica A, vol. 391, pp. 4050-4060, 2012.

[12] R. Shang, J. Bai, L. Jiao, and C. Jin, “Community detection based on
modularity and an improved genetic algorithm,” Physica A, vol. 392, pp.
1215-1231, 2013.

[13] S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” Proc. Nati. Acad. Sci. 104(1), pp. 36-41, 2007.

[14] A. Lancichinetti and S. Fortunato, “Limits of modularity maximization
in community detection,” Phys. Rev. E, vol. 84, p.066122, 2011.

[15] J. Wu, L. Jiao, C. Jin, F. Liu, M. Gong, R. Shang, W. Chen,
“Overlapping community detection via network dynamics,” Phys. Rev.
E, vol. 85, p.016115, 2012.

[16] J. Wu, R. Lu, L. Jiao, F. Liu, X. Yu, D. Wang, B. Sun, “Phase transition
model for community detection,” Physica A, vol. 392, pp. 1287-1301,
2013.

[17] J. Huang, H. Sun, J. Han, and B. Feng, “Density-based shrinkage for
revealing hierarchical and overlapping community structure in
networks,” Physica A, vol. 390, pp. 2160–2171, 2011.

[18] U. Benlic and J.-K. Hao, “A Multilevel Memetic Approach for
Improving Graph k-Partitions,” IEEE Trans. On Evolut. Compt., vol.15,
pp. 624-642, 2011

[19] U. Benlic and J.-K. Hao, “An effective multilevel memetic algorithm
for balanced graph partitioning,” in Proc. 22th Int. Conf. Tools Artif.
Intell., 2010, pp. 121–128.

[20] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical Review E, vol. 78, p.
046110, 2008.

[21] P. Chaturvedi, M. Dhara, and D. Arora, “Community Detection in
Complex Network via BGLL Algorithm,” International Journal of
Computer Applications, vol. 48, pp. 32-42, 2012.

[22] R. Guimerà and L. A. N. Amaral, “Functional cartography of complex
metabolic networks,” Nature, vol. 433, pp. 895-900, 2005.

[23] A. Lancichinetti and S. Fortunato, “Community detection algorithms: a
comparative analysis,” Phys. Rev. E, vol. 80, p.056117, 2009.

671

