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Abstract—Community detection is important in 
understanding the structures and functions of complex networks. 
Many algorithms have been proposed. The most popular 
algorithms detect the communities through optimizing a criterion 
function known as modularity, which suffer from the resolution 
limit problem. Some algorithms require the number of 
communities as a prior. In this paper, a non-modularity based 
compression optimization algorithm for community detection is 
proposed without any prior knowledge, which is efficient and is 
suitable for large scale networks. 
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I. INTRODUCTION 
Community detection is important in understanding  the 

structures and functions of many real world networks [1-4]. 
Many efforts have been devoted to this disciplinary research 
field with various methods [5-9]. The most popular method for 
community detection is from maximizing a criterion function 
known as modularity (Q) [5, 6], or other modified criterion 
functions [7]. Along this direction, many modularity based 
optimization algorithms have been designed [8-12, just to 
name a few]. But the modularity optimization algorithms 
suffer from the resolution limit problem [13, 14]. In other 
words, small size communities cannot be detected by the 
modularity optimization algorithms. Detailed review of the 
algorithms and difficulties for community detection can be 
found in Ref.[3]. Thus non-modularity based algorithms are 
designed, e.g., the dynamics based algorithms developed in 
recent years [15, 16]. Some of the modularity based 
algorithms also require the number of communities as prior 
information [12], which is not always available.  

In this paper, a non-modularity based fast algorithm without 
requiring the number of communities is provided, which can 
run on large scale networks with relatively low time 
complexity.  

Our algorithm consists of two stages: compression and 
optimization. Thus the proposed algorithm is labeled as 
ComOpt for clarity. 

II. PRELIMINARIES 
A network is usually described by a graph G=(V, E), where 

V={v1, v2,…, vN} is the set of nodes and E is the set of edges. 
Several definitions of parameters, variables, functions are 
introduced in this section, which are needed in description of 
the algorithm. 

In the compression stage, the initial network is compressed 
by merging two or more nodes into one super-node, until the 
termination condition is satisfied.  

Definition 1: Compression ratio: R(Gk, Gk+1).  Usually, a 
number of steps are needed to complete the compression stage. 
Let Gk=(Vk, Ek) denote the graph in the k-th step of 
compression, k=0,1, 2, … . If k=0, G0=G is the initial graph. 
R(Gk, Gk+1) is defined as follows, 
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where N(Gk)  is the number of nodes (include super_nodes) in 
Gk. Since Gk+1 is compressed from Gk, N(Gk+1)≤N(Gk). The 
value of R(Gk, Gk+1) is used to determine when to stop the 
compression process(see Step 3 in Section III).  Definition 2: Dense pair (vi, vj) [17]. Let w(vi, vj) be the 
similarity between nodes vi and vj. If (2) holds for vi and vj, 
then {vi, vj} is called a dense pair. 
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where T(vi) is neighbor set of node vi, similarly, T(vj) is 
neighbor set of node vj. 

A dense pair is a pair of nodes; the similarity between them 
is the largest in all the neighbors of them. Dense pair has been 
defined originally by Huang et. al. in Ref.[17] and is used to 
find the micro-community in the DenShrink algorithm. Here, 
dense pair is used to compress a pair of nodes into one super-
node in ComOpt.      

Definition 3: Minimum similarity threshold (mst). The 
definition of mst is given as follows,  

 | |
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where |E| is the total number of edges in the network, N(G) 
is the total number of nodes in the network, and k is an 
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empirical parameter. This definition aims at giving the 
termination condition of the compression process. If  
N(G)=5000, k can be set to 0.2;  if N(G)=50000, k can be set to 
0.05. For a dense pair {vi, vj}, if w(vi, vj) < mst, they should not  
be compressed into a super-node. 

Definition 4:  Super-node. Two nodes are compressed into 
one super-node in our ComOpt. Given a network G=(V, E), a 
super-node vi

k�Vk is a connected sub-graph of G, which is 
composed of two nodes vi

k-1 and vj
k-1 if: 1) (vi

k-1, vj
k-1) is a 

dense pair and 2) w(vi
k-1, vj

k-1) ≥mst. 
In the original graph G, each node is composed of only one 

node. As the compression process going on, a super-node may 
have lots of nodes. To some extent, one super-node represents 
a community. The connections in the interior of the 
communities are relatively dense and the connections outside 
the communities are relatively sparse. 

Definition 5: Weight of a node, denoted as weight (vi
k).   

Weight (vi
k) is the number of the internal nodes of super-node 

vi
k. Of course, the weight of an initial node is 1.  

    When nodes are compressed into super-nodes, in a graph Gk 
of the k-th step compression, the edge between two super-
nodes may be merged from several edges in the initial graph G. 

Definition 6: Similarity function w(vi
k, vj

k).  
( , )
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where E(vi
k, vj

k) represents the number of edges in the initial 
graph G between super-nodes vi

k and vj
k. 

In (4), super-node vj
k is a neighbor of vi

k. In our ComOpt, 
the similarity function defined by (4) is used to find the most 
suitable nodes to merge with super-node vi

k. 
As stated above, if w(vi

k, vj
k)≥mst, vi

k and vj
k can be further 

merged into one super-node in the next k+1-th step of 
compression. By this definition, node vi

k is prone to merge a 
node that E(vi

k, vj
k) is relatively large and weight(vj

k) is 
relatively small. Obviously, computing of the similarity using 
only local information, thus the time complexity is very low. 

III. DESCRIPTION OF COMOPS 
As stated in Section I, ComOpt has two stages: 

compression and optimization. 

A. Compression 
The super-nodes after compression can be roughly regarded 

as a community. Some communities may have only one or 
two nodes, which are obviously not real communities. Those 
small communities are reassigned into other communities. 
Thus the partition of a network is basically completed at this 
stage. 

Compression is the most important process in the algorithm, 
which directly determines the quality of the initial network 
partition. The main idea of this process is that two nodes with 
the highest similarity merge to form a super-node, the process 
repeats until the termination condition is satisfied.  

Assume that G0=(V0, E0) is the initial network, here the 
superscript 0 means that the current network is the initial 
network in the 0-th layer before compression. For each node 

in V0, find its dense pair that can be merged to form a new 
super-node, thus constitute the 1-th layer network G1=(V1, E1).  
An edge in G1 may be an edge in G0 or it may be merged by 
several edges in G0 that connect nodes between the two super-
nodes. Continue to use the lower layer network Gk-1 to build 
higher layer network Gk. Detailed steps of compression are as 
follows: 

Step 1: Choose randomly a node, e.g. vi
0, which has not 

been handled.  
Step 2 : Select the dense pair(vi

0, vj
0). At the same time, 

ensure that w(vi
0, vj

0)≥mst  and vj
0 has not been handled in this 

layer. Then merge vi
0 and vj

0 to form a new super-node vi
1 in 

the next layer.  
If the condition is not satisfied, then node vi

0 remains 
unchanged or it can be considered to merge with itself to form 
a new super-node in a next layer network. 

Step 3: Repeat the above steps until all nodes have been 
involved in constituting the super-node, then the next layer 
network G1 is obtained. Similarly, G2, G3,…, can be obtained. 
The compression process of the algorithm doesn’t terminate 
until the number of nodes in the network changes little, that is 

1( , ) 0.05i iR G G + ≤ . 
At this moment, the graph Gend can be considered as the initial 
result of the community detection. Each super-node in Gend

 is 
a community.  

 
   In the initial result of community detection, some super-
nodes have only one or two nodes. In the compression process, 
they may not be merged with any other node. In intuition, a 
community may not have only one or two nodes. The nodes in 
those “small communities” should be reassigned into other 
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communities. In this paper, the communities whose number of 
nodes is less than the minimum degree of the network are 
treated as “small communities”. The nodes in those “small 
communities” are reassigned into other communities 
according to the similarity calculated by (4) to the other super-
nodes. 

The detail steps of reassignments are as follows: 
Step1: Find the “small communities” whose number of 

nodes is less than the minimum degree of the network. 
Step 2: Calculate the similarity by (4) of every node in the 

“small community” to other communities and obtain the 
community which has the largest similarity. 

Step 3: Delete the “small communities” and reassign each 
node in those communities to the community which has the 
largest similarity. 

B. Optimization 
This process can be also called local search [18]. To further 

improve the performance of the community detection, a fast 
and efficient local search phase is used. The local search is 
modified from an efficient tabu search algorithm for graph 
partitioning [19]. After our modification, it also played an 
efficient role in improving the performance of community 
detection.  

After a result of community detection is obtained, the local 
search algorithm moves appropriate nodes from a community 
to other communities to reduce the number of edges among 
communities, thus improve the performance of community 
partitioning.  

Basically, the local search has two parts: neighborhood 
search and perturbation.  

 
Neighborhood search. Neighborhood search tries to find a 

better solution from a known solution, which is composed of 
two moving operators, denoted as MoveOne and MoveTwo 
respectively. The two operators are explored in a token-ring 
way. That is, repeatedly apply one moving operator to the 
result (solution) produced by the other moving operator.  

Given a community Cj of a k-community partition (k is the 
number of the communities). If vi is an overlapping (border) 
node of Cj and vi belongs to Cj, then moving vi into Cj obtains 
a neighbor solution of the original community partition. An 
overlapping node means that it has at least one connection to a 
node in the community Cj. As the number of the overlapping 

nodes is very limited, so the neighborhood search is very fast. 
The problem is how to evaluate the quality of the 

neighborhood solution. Suppose vi is moved from Cm  to Cj , 
the moving-gain(vi, m, j) is defined for this purpose. The 
moving-gain(vi, m, j) is the number of  edges  connecting vi 
with Cj minus the number of the edges connecting vi with Cm. 
In order to move the node into the community with the highest 
gain, moving-gains of all the nodes in the border set of the 
communities are computed. After each moving, only the 
relevant nodes’ moving-gain is changed and should be 
updated.   

Let I={C1, C2,…, Ck} be a community k-partition, B(Ci) be 
the set of the border nodes which are relative to the 
community Ci. The neighborhood search uses the following 
two move operators: MoveOne and MoveTwo, which are 
explored in a token-ring way. 

MoveOne: move one highest gain node vi.  
Choose randomly a subset Cj, j=1,…, k, then select the 

highest gain node vi belongs to B(Cj) whose current subset is 
Cm. If both (5) and (6) hold, then move the selected node vi to 
community Cj. 

min( ) (m iweight C weight v d− >） ,                   (5) 

max( ) ( )j iweight C weight v d+ < ,              (6) 
where dmin  is  the minimum degree of  the network  and dmax 
is the maximum degree of the network.  

MoveTwo: move two highest gain nodes vi and vp. 
MoveTwo has two steps. The first step is the same as the 

MoveOne. Choose randomly a community Cj and move its 
highest gain node vi to Cj. The second step is as follows: 
choose randomly an another community Cq, q≠j, then, select 
node vp belongs to B(Cq) whose current community is denoted 
as Cm, if both (7) and (8) hold, then move vp to Cq. 

min( ) (m pweight C weight v d− >） ,                      (7) 

max( ) ( )q pweight C weight v d+ < .            (8) 
MoveTwo is helpful to bring diversity into the search.  
Perturbation. Since the neighborhood search move only the 

border nodes, it is easy to get trapped in a local optimum. 
Perturbation brings more diversification into the search, as far 
as possible to reduce the probability of trapping into local 
optimums.  

In perturbation, we periodically move a fixed number of 
nodes, including non-border ones, in the following way: 

Randomly choose a node vi, whose current community is 
Cm. Move vi into a randomly selected community Cj. Repeat 
the operator z times (z is set to 1% of the total number of the 
nodes in the simulations of this paper).  

The perturbation process can increase the diversity of 
ComOpt and help to find a better solution. 

IV. EXPERIMENT RESULTS 
In this section, the proposed ComOpt is evaluated by 

comparative experiments on the LFR benchmark datasets [20]. 
Three recent modularity-based algorithms are selected in the 
experiments: BGLL [21], DenShrink [17], and simulated 
annealing [22]. 

669



The LFR benchmark networks are governed by the 
following parameters [20].  

• N: number of nodes in the network. 
• <k>: average degree of the nodes 
• kmax: maximum degree 
• µ: mixing parameter, each node shares a fraction µ of its 

edges with nodes in other communities and a fraction 1-µ 
of its edge with intra-community nodes. 

•γ: exponent for the degree distribution of nodes. 
•β: exponent for the community size distribution. 
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Fig. 1. The performance of ComOpt on the value of mst. (a)  µ=0.4. (b) µ=0.5. 
(c) µ=0.6.  

In our experiments, we adopt the Normalized Mutual 
Information (NMI) [10], a measurement based on the 
information theory, to evaluate the quality of the community 
detection results generated by different algorithms. NMI is 
widely accepted in measuring the performance of network 
community detection algorithms. The value of NMI is in the 
range from 0 to 1. NMI = 1 indicates that the network partition 
is perfect. In general, the higher score the NMI, the better the 
performance. All the experiments were conducted on a PC with 
a 2.2GHz, i7CPU and 8 GB of RAM. 

A. Parameter sensitivity 
In this subsection, experiments are done to test the 

performance of ComOpt on the value of mst, which is helpful 
for us to select appropriate value for mst.  

In the experiments, N=5000 and kmax=50. Many networks 
are generated with different values of parameters. Fig. 1(a), 
Fig. 1(b), and Fig. 1(c) are the simulation results when µ=0.4, 
0.5, 0.6, respectively. In each of the figures, three values of 
<k> are tested (15, 20, 25), corresponding to (γ, β)= (2, 1), (γ, 
β)= (2, 2), (γ, β)= (3, 1), and (γ, β)= (3, 2), respectively. Thus, 
in each of the figures, 12 curves are shown.  

When µ=0.4 (see Fig. 1(a)), in a wide range of mst from 
0.05 to 0.45, the value of NMI is high; when µ=0.5 (see Fig. 
1(b)), in the range of mst from 0.05 to 0.35, the value of NMI 
is high; when µ=0.6 (see Fig. 1(c)), in the range of mst from 
0.05 to 0.25, the value of NMI is high. Beyond the range of 
mst, larger values of mst will make losing of the performance, 
but the effects on <k>=15 is smaller than that of on <k>=25. 

From mst=0, as the increasing of mst, the values of NMI is 
increasing. The value of mst corresponding to the peak value of 
NMI is the most appropriate value of mst.  Choosing an 
appropriate value of mst is dependent on µ. Smaller value of µ 
requires a larger value of mst. 
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Fig. 2. Comparison of ComOpt with BGLL and DenShrink on LFR networks 
with N=50000, γ=2, β=1, and kmax=100. 

B. Comparative experiments 
In this subsection, two experiments are done to compare 

ComOpt with BGLL and DenShrink on LFR networks with 
N=50000 and kmax=100. In the first experiment, γ=2 and β=1. 
Four groups of networks are generated corresponding to 
<k>=30, 40, 50, and 60 respectively. The mixing parameter µ 
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is varying from 0.05 to 0.8 with distance 0.05. In each value of 
µ, three networks are generated and tested with the three 
algorithms. The simulation results are shown in Fig. 2. 

From Fig. 2, when µ is less than 0.6, the NMI of our 
ComOpt is slightly lower than that of DenShrink algorithm, 
but is high enough and it is basically maintained at about 0.95. 
When µ is larger than 0.6, the NMI of DenShrink algorithm 
declines sharply, however, ComOpt is still able to maintain at 
a higher value of NMI. 

In the second experiment <k>=30. Four groups of networks 
are generated corresponding to (γ, β)=(2, 1), (2, 2), (3, 1), and 
(3, 2), respectively.  In each value of µ, three networks are 
generated and tested with the three algorithms. The simulation 
results are shown in Fig. 3, which indicates that the 
performance of ComOpt is insensitive with the variety of γ 
and β.  
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Fig. 3. Comparison of ComOpt with BGLL and DenShrink on LFR networks 
with N=50000, <k>=30, and kmax=100. 
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