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Abstract—Model-based search is an abstract framework that
unifies the main features of a large class of heuristic procedures
for combinatorial optimization, it includes ant algorithms, cross
entropy and estimation of distribution algorithms. Properties
shown for the model-based search therefore apply to all these
algorithms.

A crucial parameter for the long term behavior of model-
based search is the learning rate that controls the update of the
model when new information from samples is available. Often
this rate is kept constant over time. We show that in this case
after finitely many iterations, all model-based search algorithms
will be absorbed into a state where all samples consist of a
single solution only. Moreover, it cannot be guaranteed that
this solution is optimal, at least not when the optimal solution
is unique.

I. INTRODUCTION

HEURISTIC optimization algorithms are often divided
into the so-called model-based approaches and the

solution-based approaches. In [1] the model-based approach
was given a more formal definition as model-based search
(MBS). This is a very general framework for heuristic
combinatorial optimization procedures that claims to cover
the essential parts e.g. of ant algorithms (Ants, see [2]), cross
entropy algorithm (CE, see [3]), estimation of distribution
algorithms (EDAs, see [4]), classical stochastic gradient
ascent [5] or population-based incremental learning [6]. Not
model-based in this sense are e.g. some population-based
procedures like genetic algorithms, local search methods and
tabu-search.

Generally, MBS concentrates on a ’model’ which is a
probability distribution on the set of solutions of a combina-
torial optimization problem. The aim is to find a distribution
that gives high probability to optimal solutions. More pre-
cisely, MBS proceeds by repeating the following two steps
in each iteration t = 0, 1, . . . :

Sampling Draw a random sample Xt from the present
model Πt, which is from some family P of distributions
on the solution space;

Adaptation Construct Πt+1 ∈ P using Πt, Xt and
some auxiliary memory Mt in order to bias future
sampling toward good solutions.

The ’Adaptation’ step is crucial for MBS. In this paper we
assume that this step consists of the following two sub-steps:

The work of Z. Wu was supported by China Scholarship Council,
No.2010624003.

A1 ’Learn’ a distribution Wt ∈ P from Xt and Mt

using a learning method, update the memory to
Mt+1;

A2 construct Πt+1 ∈ P from Πt and Wt using an
update rule.

As was pointed out in [1], many formulations of Ants, CE
and EDAs have this structure.

In this paper we assume that the MBS has an update rule
of the form

Πt+1 = (1− %t+1)Πt + %t+1Wt, (I.1)

where %t+1 is a learning rate which reflects the relative
importance of the sample based distribution Wt in iteration t.
Often this learning rate is chosen to be a constant % ∈ (0, 1),
see e.g. implementations of CE [7] and Ants [8] where the
learning rate is called smoothing parameter and evaporation
rate respectively.

In genetic algorithms the phenomenon of genetic drift is
well-known, see e.g. [9]. It describes the loss of all variation
in the solutions produced until finally the process is absorbed
into a single solution. A similar thing may also happen in
MBS. Under fairly weak conditions on the ’Adaptation’ step,
all solutions seen in the ’Sampling’ step of MBS will be
identical after finitely many iterations. This will happen if
the learning rate is bounded away from 0 (which is fulfilled
if %t is a constant) and if in some sense the influence of the
memory is limited (see assumptions (III.3) - (III.5) below).
These conditions are fulfilled e.g. in [7] and [8], therefore
absorption into a single solution after finitely many iterations
will occur in these models.

Moreover, we can show that the solution finally reached
need not be optimal, in fact absorption and the almost sure
reachability of optimal solutions are mutually exclusive at
least if the optimal solution is unique. In particular, with a
fixed learning rate we cannot be sure to ever reach the op-
timal solution. This indicates that one should avoid constant
learning rates in practice, but for a clear understanding, a
more thorough analysis of the finite time behavior is needed
which is not the topic of the present paper.

In a former paper [10], we showed how absorption occurs
in a cross entropy algorithm, the present paper extends this
result to the more general class of MBS

This paper is arranged as follows: In Section II, we
describe in detail the problem encoding and the extension of
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the MBS algorithm we are using. In Section III, we present
our main results and discuss their implications. For better
readability, the lengthy proofs of our results are given in
section IV. In Section V, we give a short summary.

II. THE MATHEMATICAL MODEL

A. Problem Encoding and Feasibility Concept

We are considering a combinatorial minimization problem
(S, f) where S represents the finite set of feasible solutions,
and f is the cost function. Let S∗ ⊂ S denote the collection
of optimal solutions.

We assume that there is a finite set A := {a1, . . . , aK} of
symbols (or components) from which the solutions are built,
i.e. S ⊂ AL for some fixed length L. Each solution s ∈ S
can therefore be written as a finite string s = (s1, . . . , sL) of
components from A. As is well known, any combinatorial
optimization problem can be represented in such a way, in
fact A = {0, 1} is sufficient though often not very efficient.

A particular feature of our model is the feasibility con-
cept that allows to introduce some dependence between the
components of a solution. We assume that we are given a
feasibility function Ci(y, a) that for every possible partial
solution y of length i assigns a weight to each a ∈ A. If
Ci(y, a) = 0, the partial solution y cannot be continued
by adding the symbol a. The larger the value of Ci(y, a),
the more desirable it seems from a greedy point of view to
continue with symbol a. We assume that these values are
normed, so that Ci(y, ·) is a probability on the set A.

As an example, let the solution s represent a tour in a
traveling salesman problem, then Ci(y, ·) can be used to
prevent loops if Ci(y, a) = 0 for all cities a already visited
in the partial tour y. Also, Ci(y, a) could be defined as
the relative distance from the end of the partial tour y to
a feasible city a ∈ Ci(y), relative to the sum of all distances
to a′ ∈ Ci(y). This is sometimes called ’visibility’ in ant
algorithms.

With the help of feasibility distributions, we can formally
define the set Ri of feasible partial solutions of length i
recursively as follows: Let the empty string � = () denote
the feasible solution of length 0 and put R0 = {�}. Assume
that we have defined Ri for some i ∈ {0, . . . , L − 1} and
that we are given a probability distribution Ci(y, ·) on the
set A for each y ∈ Ri. Then we define

Ri+1 :=
{
(y, a) | y ∈ Ri, a ∈ A, Ci(y, a) > 0

}
where (y, a) denotes the concatenation of the partial so-
lution y and a, in particular we have (�, a) = (a). The
set of feasible solution is now defined as S := RL. For
i ∈ I := {0, . . . , L− 1} and y ∈ Ri let

Ci(y) := {a ∈ A | Ci(y, a) > 0}

be the support of Ci(y, ·).
This feasibility concept allows to include the uncon-

strained case S = AL, in this case Ci(·, ·) is chosen as
the uniform distribution on A, i.e. Ci(y, a) ≡ 1

|A| . Also the
case with constraints but no degree of desirability can be

included: if for a given partial solution y ∈ Ri, the choice
of the next component is restricted to a set A ⊂ A, then we
choose Ci(y, ·) as the uniform distribution on A and have
Ci(y) = A.

B. Definition of the MBS Algorithm

We now formalize the elements occurring in A1 and A2.
As mentioned before, we concentrate on MBS using update
rule (I.1).

Let P(A) denote the set of all probability measures on
the set A and put P := P(A)L = P(A) × · · · × P(A).
Then p = (p(1), . . . ,p(L)) ∈ P is a product probability
measure on AL that describes the selection of a solution
s = (s1, . . . , sL) ∈ AL where the L symbols s1, . . . , sL
are chosen independently of each other. Here, p(i) =(
p(a; i)

)
a∈A ∈ P(A) is the distribution for the symbol on

the i-th position of the string. In this work, we use P as the
underlying family of models. Note that these distributions
cannot capture any interaction between the components and
need not be restricted to the feasible solutions S.

The distribution Wt learned in step A1 above takes values
in P. Given a sample Xt = x and a memory content Mt =
m, its value Wt = L(Xt,Mt) is determined by a learning
function

Lt(x,m) :=
(
Lt(1,x,m), . . . ,Lt(L,x,m)

)
,

where
Lt(i,x,m) :=

(
Lt(a; i,x,m)

)
a∈A

is a distribution on A. Examples for Lt(x,m) include the
empirical distribution based on a selection of a subsample
N (x,m) from the sample x and the memory m:

Lt(a; i,x,m) =
1

|N (x,m)|
∑

s∈N (x,m)

1{a}(si),

where 1A denotes the indicator function of a set A. The
selection of N (x,m) is typically biased towards the good
solutions, it may contain additional randomness or weighting
of the solutions, see e.g. [3], [7], [11] or [12].

In the sequel, we shall not use details of the learning
method or the content and update of the memory. Instead
we concentrate on the effects that the present sample has on
the resulting distribution Wt, see assumptions (III.3)–(III.5)
below

We can now formally define the MBS. Besides the sets Ri

and S of (partial) feasible solutions, it requires the following
items as input:
• the feasibility distributions Ci(·, ·), i = 0, . . . , L− 1;

• a sequence (%t)t≥1 with %t ∈ [0, 1] of learning rates;
• a sample size N > 0;
• a starting distribution p0 ∈ P;
• a sequence of learning functions Lt.

Model-based Search Algorithm

Starting: For time-step t = 0, put p := p0, let the
memory m be empty and then run through the following
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steps for t = 0, 1, . . . until some stopping criterion is
fulfilled.

Sampling: If the present distribution is p ∈ P, feasible
solutions s = (s1, . . . , sL) ∈ S are drawn according to
the probability

Q(s,p) := Q(s1; 1, �,p) ·
L∏

i=2

Q(si; i, (s1, . . . , si−1),p)

(II.1)
where

Q(a; i, y,p) :=
p(a; i)Ci−1(y, a)∑

a′∈A p(a′; i)Ci−1(y, a′)
(II.2)

is the probability that the feasible symbol a ∈ A is
added at position i to the feasible partial solution y ∈
Ri−1. We use the convention 0

0 = 0 throughout this
paper. Note that Q(·,p) is concentrated on the feasible
solutions S even if p is not.
In this way a sample x = (s(1), . . . , s(N)) of size N is
drawn independently and identically distributed (i.i.d.).

Learning: The learning function Lt is applied to this
sample x and the present memory m yielding a distri-
bution w := Lt(x,m) in P. The memory is updated
according to some rule.

Update: The present distribution p is updated as a
convex combination of p and the new sample-based
distribution w:

p := (1− %t+1)p+ %t+1w. (II.3)

Next, the counter t is increased by 1 and the step
’Sampling’ is performed with the new p.

A schematic overview of the algorithm is given in the
Figure below. This definition of MBS extends the algorithm
as defined in [1] with respect to feasibility and, as was
pointed out before, covers the essential parts of many popular
iterative stochastic search procedures.

distribution

sample

distribution

distribution
memory

feasibility

memorysamplefeasibility

iteration

iteration

Fig. II.1. A schematic diagram of the MBS

C. Underlying Stochastic Processes
Applying the MBS results in a stochastic process(

Πt,Xt,Mt,Wt

)
t=0,1,...

where Πt =
(
Πt(a; i)

)
i=1,...,L,a∈A is a random variable

taking on values in P describing the modeling distribution
underlying the sampling in the t-th iteration with Π0 = p0.
Xt takes on values in the finite set SN and is the sample
of N solutions produced in the t-th ’Sampling’ step of the
algorithm using Q(·,Πt) as defined in (II.1). Mt is the
content of the memory and Wt is the distribution from the
learning step as a random variable with values in P.

We write Xt =
(
X

(1)
t , . . . ,X

(N)
t

)
and X

(l)
t =(

X
(l)
t (1), . . . ,X

(l)
t (L)

)
. Then X

(n)
t (i) denotes the symbol

at position i, 1 ≤ i ≤ L, in the n-th solution sampled
in iteration t. X

(n)
t (1, . . . , i) denotes the partial solution

up to the i-th position in that solution. Similarly, Wt =

(Wt(1), . . . ,Wt(L)) and Wt(i) =
(
Wt(a; i)

)
a∈A

. Then
Wt(a; i) is the probability, that symbol a appears in position
i in the distribution learned in the t-th iteration.

The complete transition probabilities of this process can
be derived from the definition of the MBS. We give only
the most important one that is used in the proofs. Let Ht :=(
Πm,Xm,Mm,Wm

)
m=1,...,t

denote the history up to time
t, then

P
[
X

(n)
t (i+ 1) = a | Πt = p, X

(n)
t (1, . . . , i) = y,Ht−1

]
= Q(a ; i+ 1, y,p) (II.4)

for a ∈ A, y ∈ Ri, i ∈ I, n = 1, . . . , N , t ∈ N and p ∈ P.
Due to the deterministic nature of the update mechanism

we may also write

Πt+1(a ; i)

= (1− %t+1)Πt(a ; i) + %t+1Wt(a ; i).
(II.5)

for a ∈ A, i = 1, . . . , L and t ≥ 0. We shall refer to (II.5)
as the ’basic recursion’.

III. MAIN RESULTS

A. General Assumptions

Throughout this paper we assume that the starting distri-
bution Π0 = p0 is given such that any item from A has a
positive probability at any position i :

p0(a; i) > 0 for all a ∈ A, i = 1, . . . , L. (III.1)

Note, that in practice we often use an uniform distribution on
AL as p0. Also, without loss in generality we may assume
that there are at least two feasible symbols a 6= a′ for the
first position, i.e.

C0(�, a) > 0 and C0(�, a′) > 0. (III.2)

Otherwise, all feasible solutions would start with the same
symbol, which could then be dropped from the encoding of
the solutions.

Finally, we have to give conditions on the learning pro-
cess. Remember that Wt = Lt(Xt,Mt) is the probability
distribution learned from the present sample Xt and the
present memory content Mt. Wt is needed to update the
distribution for the next sample as in (II.5). Without fixing
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any details of the learning function Lt we assume that the
resulting dependence between the present sample Xt and the
distribution Wt is as follows: for any i ∈ {1, . . . , L}, a ∈ A
and t ≥ 0 :

if X(n)
t (i) 6= a for all n = 1, . . . , N

then Wt(a; i) = 0, (III.3)

if X(n)
t (i) = a for all n = 1, . . . , N

then Wt(a; i) = 1, (III.4)
and there is a constant α ∈ (0, 1) such that
0 <Wt(a; i) < 1 ⇒ α <Wt(a; i) < 1− α. (III.5)

Here α is assumed to be independent of Xt. It essentially
means that if in the present sample a symbol a does not ap-
pear on position i, then the value Πt+1(a, i) is not reinforced
in (II.5), and if a appears on i in all sampled solutions then
Πt+1(a; i) is increased by the maximal amount %t. Finally,
if Wt(a; i) > 0, i.e. if a appears at least once in the sample
on position i then Wt(a; i) must be larger than a fixed value
α > 0. These conditions generalize properties of empirical
distributions obtained from the sample Xt. The examples
of learning functions given above will therefore fulfill these
conditions if the memory does not override the effect of the
sample. If we only use the best solution sampled so far for
the update, then (III.3) and (III.4) need not hold. This popular
learning function is therefore excluded from our model.

B. Main Results

We say that an MBS algorithm is absorbed almost surely
if with probability one there is an iteration T < ∞ and
a solution s ∈ S such that for all m ≥ T and all
n ∈ {1, . . . , N} we have X

(n)
m = s, that is, the whole

sample consists of N identical solutions from some iteration
T onwards.

The following Theorem implies that, under a constant
learning rate %t ≡ % > 0, the MBS will be absorbed, thus all
algorithms that are covered by the MBS are affected by this
behavior. As we are dealing with random variables, formal
assertions always hold with probability one only allowing
exceptions on a set of probability 0. To be mathematically
correct, we therefore added ’almost surely’ wherever appro-
priate.

Theorem 1. If %t ≥ % > 0 for all t ≥ 1 and some constant
%, then the MBS proposed in section II-B becomes absorbed
almost surely.

Technically, Theorem 1 states that the process Xt becomes
absorbed into a state (=sample) (s, . . . , s) in the finite state
space SN almost surely. It extends well-known results from
time-homogeneous Markov chains as they are used to model
drift in simple genetic algorithms to the inhomogeneous
case we are considering here. The proof of the Theorem
proceeds by induction on the length i ∈ I = {0, . . . , L− 1}
of partial solutions for which absorption to a y ∈ Ri has
already occurred. The main induction step is contained in
the following Lemma

Lemma 2. Assume that for a fixed i ∈ I the following holds
almost surely: there is a finite time T < ∞ and a y ∈ Ri

such that
X

(n)
T+m(1, . . . , i) = y (III.6)

for all m ≥ 0 and for all solutions n = 1, . . . , N .
Then, if %t ≥ % > 0 for all t ≥ 1 and some constant %,

the following will also hold almost surely: there are T ′ <∞
and a0 ∈ A such that

X
(n)
T ′+m(i+ 1) = a0 (III.7)

for all m ≥ 0 and n = 1, . . . , N.

Lemma 2 says that if from some time T on all solutions
sampled coincide in the first i positions then this will also
be the case for the next position i + 1 after finitely many
additional steps. Now the proof of Theorem 1 follows by
observing that (III.6) holds for i = 0 and the empty partial
solution y = � as all solutions have to start with the empty
string. The proof of Lemma 2 is given in section IV-B.

As a Corollary to the Theorem 1 we get

Theorem 3. If %t ≥ % > 0 for all t ≥ 1 and some constant
%, then the density Πt converges almost surely against a one
point mass concentrated on the solution the Xt-process is
absorbed into.

For a proof of Theorem 3, see section IV-C. It shows that
absorption of the Xt-process implies convergence of the Πt-
process. However, as was pointed out in [10], convergence
of the Πt-process does not necessarily imply absorption of
the Xt-process.

In practice absorption would not be bad if we could be
sure that the solution we end up with is optimal, but this
cannot be guaranteed. The following Theorem shows that
for the case of a unique optimal solution s∗, the probability
to reach s∗ in finite time is smaller than one if the learning
rate is constant. Hence, with a positive probability, we may
be absorbed into a fixed solution before we have reached the
optimal one.

Let τ be the first iteration t in which s∗ occurs in Xt.
Then almost sure reachability of the optimal solution holds
if P(τ <∞) = 1.

Theorem 4. Assume |S∗| = 1, and %t ∈ (0, 1) for all t ≥ 1,
then absorption of Xt implies P(τ <∞) < 1.

For a proof of Theorem 4, see section IV-D, where it is
shown that almost sure reachability of the optimal solution
and absorption of Xt are mutually exclusive.

In the above statements it was (tacitly) assumed that %t ∈
(0, 1). In fact one can show that absorption of both Πt and
Xt still hold if %t = 1 for some t or even %t ≡ 1 and
also that absorption of Xt then implies P(τ < ∞) < 1.
As soon as %t = 1 has occurred, the algorithm forgets its
former model Πt and starts anew with p0 := Wt. Hence
the assertions then hold with S replaced by the subset S′ of
solutions that have positive weight in Wt. To keep things
simple, we assume in the sequel that %t ∈ (0, 1) for each
t ≥ 1 and % ∈ (0, 1).
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IV. PROOF OF MAIN RESULTS

A. Auxiliary Results

First, we list some general results related to the basic
recursion in (II.5) which is crucial for our work. Here, we
assume that the empty product has value 1, i.e.

∏k
i=m · · · ≡ 1

for m > k.

Lemma 5. Let rt ∈ (0, 1) for t = 1, 2, . . ..

a)
∞∑
t=1

rt =∞ ⇐⇒
∞∏
t=1

(1− rt) = 0

⇐⇒
∞∏
t=1

(1− crt) = 0 for any 0 < c ≤ 1.

b) Let wt ∈ [0, 1], t = 0, 1, . . . be a given sequence and
q0 ∈ (0, 1) a starting value for the recursion

qt+1 = (1− rt+1)qt + rt+1wt, t ≥ 0. (IV.1)

b 1) For t ≥ 0 the recursion has the unique solution

qt = q0

t∏
m=1

(1−rm)+

t∑
m=1

rmwm−1

t∏
i=m+1

(1−ri).

(IV.2)
b 2) If wt ≡ w ∈ [0, 1] then

qt = w− (w− q0)
t∏

m=1

(1− rm), t ≥ 0 (IV.3)

b 3) If
∏∞

m=1(1 − rm) = 0 and if limt→∞ wt → w
for some w ∈ [0, 1] then also limt→∞ qt → w.

Proof: Most of the Lemma can be proved using standard
methods, see [10] for more details. For b 3) use b 2) with the
bounds w ± ε and let ε→ 0.

The convergence of the sample generating probability
Q(a; i+1, y,Πt) as defined in (II.2) is the crucial step in
proving absorption. We need some analogy of the basic
recursion (II.5) for Q, but the dependence within the sampled
solution introduced by the feasibility function Ci(y, ·) pre-
vents a direct generalization of (II.5). We therefore introduce
a surrogate function Q′ that helps to transfer bounds from
the recursion to Q.

For p ∈ P, i ∈ I, y ∈ Ri and a ∈ A define

Q′(a; i+1, y,p) :=
p(a; i+1)∑

a′∈Ci(y)
p(a′; i+1)

1Ci(y)(a) (IV.4)

where we again use 0
0 = 0. We want to bound Q(a; i+

1, y,p) with the help of Q′(a; i+1, y,p). Let

c1 := max
{
Ci(y, a) | y ∈ Ri, a ∈ A, i ∈ I

}
,

c0 := min
{
Ci(y, a) > 0 | y ∈ Ri, a ∈ A, i ∈ I

}
.

Then 0 < c0 ≤ c1 ≤ 1 and for x ∈ [0, 1] we may define the
bounding functions

h(x) :=
c1x

c0 + (c1 − c0)x
, `(x) :=

c0x

c1 − (c1 − c0)x
.

(IV.5)
We first collects a few properties of h and `, the simple
proofs are omitted (see [10]).

Lemma 6. a) `(x) ≤ x ≤ h(x), h(x) = 1−`(1−x) and
`(x) = 1− h(1− x).

b) h and ` are both continuous and strictly increasing with
`(0) = h(0) = 0, `(1) = h(1) = 1.

c) Suppose (xn)n∈N is a convergent sequence in [0, 1]
then for any constant c ∈ (0, 1], we have∑

n

xn <∞ ⇐⇒
∑
n

h(cxn) <∞

⇐⇒
∑
n

`(cxn) <∞.

Now the next Lemma gives the desired bounds of Q, for
a proof see also [10].

Lemma 7. Let i ∈ I, y ∈ Ri and a ∈ Ci(y). Then,

`
(
Q′(a; i+1, y,p)

)
≤ Q(a; i+1, y,p)

≤ h
(
Q′(a; i+1, y,p)

)
for all p ∈ P.

B. Proof of Lemma 2

For t ≥ 0, i ∈ I and y ∈ Ri, define

Gi(y, t) :=
∑

a′∈Ci(y)

Πt(a
′; i+1), and denote (IV.6)

%yt :=
%t

Gi(y, t)
, for all t ≥ 1. (IV.7)

Note that from (III.1) and (IV.2) we may show that
Gi(y, t) > 0. The next Lemma shows that under the
condition (III.6) of partial absorption, Q′(a; i+1, y,Πt) also
satisfies the basic recursion (II.5) with %yt replacing %t.

Lemma 8. Let i ∈ I be fixed and assume that (III.6) holds
with probability one for random variables T and y as given
in Lemma 2. Then the following holds almost surely for all
t > T :

a) 0 < %t ≤ %yt < 1.
b) Q′(a; i+1, y,Πt) = (1− %yt )Q′(a; i+1, y,Πt−1)

+%yt Wt−1(a; i+1) for all a ∈ Ci(y).

Proof: Assume (III.6) holds and let t > T . From (III.3)
we see that Wt(a; i+1) > 0 is possible only for symbols a
that are feasible on position i+1. Hence under the assumption
(III.6) we know that Wt(a; i+1) must be concentrated on
Ci(y), i.e.

∑
a∈Ci(y)

Wt(a; i+1) = 1. Hence we obtain from
the basic recursion (II.5) that

Gi(y, t) = (1− %t)Gi(y, t− 1) + %t > %t > 0. (IV.8)

a) follows immediately from (IV.8).
b) For a ∈ Ci(y) and t > T

Q′(a; i+1, y,Πt) =
Πt(a;i+1)∑

a′∈Ci(y) Πt(a′;i+1)

= Πt(a;i+1)
Gi(y,t)

= (1−%t)Πt−1(a;i+1,y)
Gi(y,t)

+ %ytWt(a; i+1)

= (1− %yt )Q′(a; i+1, y,Πt−1) + %ytWt(a; i+1),

where we use (IV.8).

Proof of Lemma 2: This proof extends the approach
used in [13] and [10]. Let i ∈ I be fixed and let y and T
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be such that (III.6) holds with probability one. Note, that
if |Ci(y)| = 1, the conclusion holds trivially, so we may
assume |Ci(y)| > 1. We first show that if there is a (random
variable) a0 ∈ A such that almost surely

lim
t→∞

Q′(a0; i+1, y,Πt) = lim
t→∞

Q(a0; i+1, y,Πt) = 1

(IV.9)
then the assertion of Lemma 2 holds.

We write [X
(·)
t (i+1) ≡ a0] for the event [X(n)

t (i+1) =

a0, n = 1, . . . , N ] and Xm
k for the event [X

(·)
l (i+1) ≡

a0, l = k, . . . ,m − 1]. In order to prove the Lemma, we
have to show that the following probability is equal to one:

P
(
∃k ∀m ≥ k X(·)

m (i+1) ≡ a0
)

(IV.10)

= lim
k→∞

[
P
(
X

(·)
k (i+1) ≡ a0

)
·
∞∏

m=k+1

P
(
X(·)

m (i+1) ≡ a0
∣∣Xm

k

)]
Now from (II.4) and (IV.9) using bounded convergence, we
see that for the first factor in (IV.10)

lim
k→∞

P
(
X

(·)
k (i+1) ≡ a0

)
= lim

k→∞
E
(
Q(a0; i+1, y,Πk)

N
)

= E
(

lim
k→∞

(
Q(a0; i+1, y,Πk)

)N)
= 1. (IV.11)

For the second expression in (IV.10) we obtain for k ≥ T
and any m ≥ k + 1 using Lemma 7

P
[
X(·)

m (i+1) ≡ a0
∣∣Xm

k

]
(IV.12)

≥ E
[(
`
(
Q′(a0; i+1, y,Πm)

))N ∣∣∣Xm
k

]
.

By (III.4), the condition X
(·)
l (i+1) ≡ a0 implies Wl(a0; i+

1) = 1, therefore wl := Wl(a0; i+1) = 1 for l = k, . . . ,m−
1 under Xm

k . We may now use Lemma 8 b), Lemma 5 b 2),
(IV.2) and %ym ≥ %m ≥ % > 0 to obtain

Q′(a0; i+1, y,Πm) (IV.13)

≥ 1−
(
1−Q′(a0; i+1, y,Πk)

)
(1− %)m−k.

Now let Hm(k) := h
(
(1−Q′(a0; i+1, y,Πk))(1− %)m

)
, h

as in (IV.5). Then by Lemma 6 a) we see from (IV.13)

`
(
Q′(a0; i+1, y,Πm)

)
≥ 1−Hm−k(k). (IV.14)

Moreover, by assumption (IV.9) we have limk→∞Hm(k) =
0 almost surely. Using (IV.12), (IV.13) and (IV.14), we may
drop the condition Xm

k and obtain

lim
k→∞

∞∏
m=k+1

P
[
X(·)

m (i+1) ≡ a0
∣∣∣Xm

k

]
(IV.15)

≥ lim
k→∞

∞∏
m=1

E
[
1−Hm(k)

]N
=
∞∏

m=1

E
(

lim
k→∞

[
1−Hm(k)

]N)
= 1.

The interchange of lim and
∏

may be justified using
logarithms and the fact that 0 ≤ Hm(k) ≤ h((1− %)m) ≤ 1

and
∏∞

m=1

[
1− h((1− %)m)

]
> 0 by Lemma 6 c), Lemma

5 a).
Hence, the probability in (IV.10) must be one as was

claimed in the Lemma.
We still have to prove (IV.9). We use an approach of [13]

and first show that the learning process Wt must become
monotone for large t, i.e. there is a random variable T̂ ≥ T
such that for t ≥ T̂ and for any a ∈ A

t 7→ Zt(a) = Wt(a; i+1)−Wt−1(a; i+1)

does not have any sign changes. As Wt(·; i+1) is a proba-
bility measure on the set A, it is then clear that Wt(a; i+1)
must converge almost surely to a random variable Va taking
values in [0, 1]. We fix a ∈ A and use the abbreviation
Wt := Wt(a; i+1). We show below that there is a κ > 0
such that for any t > T

P[Wm = 1 for all m ≥ t |Wt−1 > Wt−2] ≥ κ > 0

and (IV.16)
P[Wm = 0 for all m ≥ t |Wt−1 < Wt−2] ≥ κ > 0.

Let Mk be the time of the k-th sign change of Zt(a), then
(IV.16) tells us that for any k ≥ 1

P[Mk+1 <∞ |Mk <∞] ≤ 1− κ < 1,

and then, as Mk ≤Mk+1

P(t 7→Wt has ∞-ly many sign changes)

= P[M1 <∞]
∞∏
k=1

P[Mk+1 <∞ |Mk <∞]

≤
∞∏
k=1

(1− κ) = 0

So, in order to prove the monotonicity of the learning
process, we have to prove (IV.16).

We use the abbreviation Wk for the event [Wt−1 >
Wt−2,Wt+l = 1 for l = 0, . . . , k − 1]. From assumption
(III.4) we see that X(·)

t (i+1) ≡ a implies Wt = 1. Hence,
for t > T

P
[
Wt+m = 1,m ≥ 0 |Wt−1 > Wt−2

]
= P

[
Wt = 1 |W0

] ∞∏
m=1

P
[
Wt+m = 1 |Wm

]
≥ E

[[
Q(a; i+1, y,Πt)

]N |W0

]
(IV.17)

·
∞∏

m=1

E
[[
Q(a; i+1, y,Πt+m)

]N ∣∣∣ Wm

]
.

As before, we give a lower bound for the last expression
using `

(
Q′
)
. From assumption (III.5) we see that Wt−1 >

Wt−2 ≥ 0 implies Wt−1 ≥ α. From Lemma 8 a) and b) we
may therefore derive

Q′(a; i+1, y,Πt) ≥ α · %yt ≥ α · % > 0. (IV.18)
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For any m ≥ 1 we may deduce from condition Wm using
Lemma 8 b) and Lemma 5 b 2) with w = 1 that

Q′(a; i+1, y,Πt+m) ≥ 1−
m∏
l=1

(1− %yt+l) ≥ 1− (1− %)m.

(IV.19)
Hence, using Lemma 7 we get from (IV.17) - (IV.19),

P[Wm = 1 for all m ≥ t |Wt−1 > Wt−2]

≥`(α · %)N
∞∏

m=1

[
`
(
1− (1− %)m

)]N
=
[
`(α · %)

∞∏
m=1

(
1− h

(
(1− %)m

))]N
:= κ.

From Lemma 6 c) we see that
∑∞

m=1(1−%)m <∞ implies∑∞
m=1 h

(
(1− %)m

)
<∞, hence κ > 0.

In a completely analogous manner the second inequality
in (IV.16) is shown.

As mentioned above, we now know that with probability
one, Wt(a; i+1) converges to some Va as t→∞. Now we
show that Va ∈ {0, 1}, more precisely:

∃a0 ∈ Ci(y) Va0 = 1 and ∀a ∈
(
Ci(y)− {a0}

)
Va = 0

(IV.20)
holds almost surely, where a0 is a random variable itself. To
prove (IV.20), we first show that for all a ∈ Ci(y) we have
P(Va ∈ (0, 1)) = 0. We again use the abbreviation Wm =
Wm(a; i+1), and use Vm

k for the event [Wl ∈ (0, 1), l =
k, . . . ,m− 1]. We then have

P(Va ∈ (0, 1)) = P( lim
k→∞

Wk ∈ (0, 1)) (IV.21)

≤ lim
k→∞

∞∏
m=k+1

P
[
Wm ∈ (0, 1) | Vm

k

]
.

Recall that by assumption (III.3), Wm > 0 implies that a
occurs at least once at i+1-th positions in the sample Xm.
For k ≥ T and any m ≥ k + 1, we therefore have

P[Wm ∈ (0, 1) | Vm
k ] (IV.22)

≤ 1−P
[
X(n)

m (i+1) 6= a, n = 1, . . . , N
∣∣ Vm

k

]
≤ 1−

(
1− h

(
(1− %)m−k + 1− α

))N
,

where the second inequality is justified as we have by as-
sumption (III.5) that Wm ∈ (0, 1) implies α ≤Wm ≤ 1−α.
Then Lemma 8 b) and Lemma 5 b 2) with w := 1−α show
that for m > k ≥ T

Q′(a; i+1, y,Πm) ≤ Q′(a; i+1, y,Πk)·
m∏

l=k+1

(1− %yl ) + (1− α)
(
1−

m∏
l=k+1

(1− %yl )
)

≤
m∏

l=k+1

(1− %yl ) + 1− α ≤ (1− %)m−k + 1− α.

For m large enough, (1 − %)m−k will be smaller than α,
hence the upper bound of the probability (IV.22) is smaller

than 1 and the infinite product in (IV.21) vanishes. Therefore,
we have shown

P
(
Va ∈ {0, 1} for all a ∈ Ci(y)

)
= 1. (IV.23)

We also know that P-almost surely

1 =
∑

a∈Ci(y)

Wm =
∑

a∈Ci(y)

Wm(a; i+1)

for all m ≥ T . Hence, this must also hold for the limits:
P
(∑

a∈Ci(y)
Va = 1

)
= 1. This together with (IV.23) proves

(IV.20), i.e. there is a0 such that P(Va0
= 1) = 1.

From Lemma 8 b) and the last assertion in Lemma 5 b)
we see that then also

lim
t→∞

Q′(a; i+1, y,Πt) = lim
t→∞

Wt(a; i+1) = Va0
= 1

proving the first part of (IV.9). Now as the bounding func-
tions h, ` are continuous (Lemma 6 b)) and from Lemma 7
we see that almost surely for all a ∈ Ci(y)

1 = `(Va0
) ≤ lim inf

t→∞
Q(a0; i+1, y,Πt) (IV.24)

≤ lim sup
t→∞

Q(a0; i+1, y,Πt) ≤ h(Va0
) = 1.

proving the second part of (IV.9). This completes the proof
of Lemma 2.

C. Proof of Theorem 3

Proof of Theorem 3: Absorption formally means that
there are random variables T < ∞ and σ = (σ1, . . . , σL)
taking on values in S such that almost surely

for all t > T X
(·)
t = σ. (IV.25)

By assumption (III.3) and (III.4) this implies Wt(σi, i) = 1
and Wt(a, i) = 0 for all a 6= σi and all t > T . Hence we
may use the basic recursion and Lemma 5 b 2) to obtain for
all t > T almost surely

Πt(a ; i) ≤ ΠT (a ; i)(1− %)t−T for a 6= σi

Πt(σi ; i) ≥ 1−
(
1−ΠT (σi ; i)

)
(1− %)t−T

which for t → ∞ converges to the probability measure
concentrated on σ.

D. Proof of Theorem 4

Proof of Theorem 4: Cp. [13]. Assume that s∗ =
(s∗1, . . . , s

∗
L) is the unique optimal solution. We use

[X
(·)
t (1) 6= s∗1] to abbreviate [X

(n)
t (1) 6= s∗1 for all n ∈

{1, . . . , N}].
We first derive a necessary condition of reachability.

Observe that [X(·)
t (1) 6= s∗1] for all t ∈ N implies τ = ∞.

Hence, P(τ <∞) = 1 requires P
(
X

(·)
t (1) 6= s∗1 for all t ≥

0
)
= 0. Denote Xt for [X

(·)
m (1) 6= s∗1,m = 0, . . . , t − 1],

then

0 = P
(
X

(·)
t (1) 6= s∗1 for all t ∈ N ≥ 0

)
(IV.26)

= P
(
X

(·)
0 (1) 6= s∗1

) ∞∏
t=1

P
[
X

(·)
t (1) 6= s∗1

∣∣Xt

]
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Observe that using Lemma 7 for t ≥ 1

P
[
X

(·)
t (1) 6= s∗1

∣∣Xt

]
= E

[(
1−Q(s∗1; 1, �,Πt)

)N ∣∣Xt

]
≥ E

[(
1− h

(
Q′(s∗1; 1, �,Πt)

))N ∣∣Xt

]
(IV.27)

=
[
1− h

(
Q′(s∗1; 1, �,Π0)

t∏
m=1

(1− %�m)
)]N

,

where we use the fact that under condition Xt we have
Wm(s∗1, 1) = 0 for m = 0, . . . , t− 1 by assumption (III.3).
Hence we may apply Lemma 5 b 2) with w = 0 to the
recursion of Lemma 8 b) as the assumptions of this Lemma
hold for i = 0, y = �, T = 0 and obtain the last equality in
(IV.27). Recall that %�m = %m/

∑
a′∈C0(�) Πm(a′, 1).

Under assumption (III.2) and (III.1), we know
Q(s∗1; 1, �,Π0) ∈ (0, 1) and hence P

(
X

(·)
0 (1) 6= s∗1

)
> 0.

Now (IV.26) and (IV.27) show that reachability of the
optimal solution requires

∞∏
t=1

[
1− h

(
Q′(s∗1; 1, �,Π0)

t∏
m=1

(1− %�m)
)]

= 0,

and by Lemma 5 a) and Lemma 6 c) this is equivalent to
∞∑
t=1

`
( t∏
m=1

(1− %�m)
)
=∞. (IV.28)

We are now going to show that absorption implies that
(IV.28) does not hold. If the algorithm is almost surely
absorbed in finite time, then

1 = P
(
∃a ∈ A ∃k ∈ N ∀m ≥ k X(·)

m (1) ≡ a
)

=
∑
a∈A

P
(
∃k ∈ N ∀m ≥ k X(·)

m (1) ≡ a
)

= lim
k→∞

∑
a∈A

P
(
∀m ≥ k X(·)

m (1) ≡ a
)
.

(IV.29)

Fix a ∈ A and let Nm
k denote [X

(·)
l ≡ a, l = k, . . . ,m− 1]

for m > k. Then by assumption (III.4) under condition Nm
k

we have Wl(a; 1) = 1 for l = k, . . . ,m − 1. We may then
use the recursion of Lemma 8 b) for y = �, T = 0 and obtain
from Lemma 5 b 2)

Q′(a; 1, �,Πm) ≤ 1−
(
1−Q′(a; 1, �,p0)

) m∏
l=1

(1− %�l ).

This may be used to deduce in (IV.29)

P
(
∀m ≥ k X(·)

m (1) ≡ a
)

(IV.30)

≤
∞∏

m=k+1

P
(
X(·)

m (1) ≡ a
∣∣ Nm

k

)
≤

∞∏
m=k+1

[
1− `

((
1−Q′(a; 1, �,p0)

) m∏
l=1

(1− %�l )
)]N

With (IV.30) and (IV.29), we derive that absorption requires
∞∏

m=1

[
1− `

((
1−Q′(a; 1, �,p0)

) m∏
l=1

(1− %�l )
)]N

> 0

for at least one a ∈ A which again by Lemma 5 a) and
Lemma 6 c) is equivalent to

∞∑
m=1

`
( m∏
l=1

(1− %�l ) <∞

contradicting (IV.28).

V. CONCLUSION

In this paper, we examined the absorption property of an
extended MBS algorithm with update rule (I.1) and a learning
model as in assumptions (III.3) - (III.5). We showed that the
popular setting %t = % > 0 will almost surely lead to a
stand-still after finitely many iterations, i.e. the Xt-process
is absorbed, the Πt-process is convergent and we cannot be
sure that we can reach an optimal solution.

We are presently investigating the run time behavior of
our algorithm applied to the so-called ’leading one’ reward
function. This together with a less restrictive learning that
allows to include updating from the best-so-far-solutions will
be the focus of our future research.
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