
 
 
 
 

  

Abstract—This paper puts forward a proposal for combining 
multi-operator evolutionary algorithms (EAs), in which three 
EAs, each with multiple search operators, are used. During the 
evolution process, the algorithm gradually emphasizes on the 
best performing multi-operator EA, as well as the search 
operator.  The proposed algorithm is tested on the CEC2014 
single objective real-parameter competition. The results show 
that the proposed algorithm has the ability to reach good 
solutions. 
 

Index Terms— evolutionary algorithms, multi-method 
algorithms, multi-operator algorithms 

I. INTRODUCTION 

N optimization problem is an abstraction of the 
problem of selecting the best possible alternative of a 

vector from a set of candidate options[1]. Optimization is 
used for problems arising in network design and operation, 
finance, support vector machine, and many other 
engineering areas. In unconstrained global optimization, the 
objective functions may possess different properties, such as 
linear and /or nonlinear, continuous or discontinuous, and 
unimodal or multimodal, and their combination. In addition, 
the presence of large number of variables associated with 
such complex functions pose serious challenges to any 
optimization algorithm. This makes such problems a 
challenging research area in the evolutionary computation 
field.  

Over the last few decades, EAs have shown their ability to 
successfully solve both constrained and unconstrained 
optimization problems. The EAs family contains different 
algorithms, such as the genetic algorithm (GA) [2], 
differential evolution (DE) [3], evolution strategies (ES) [4] 
and evolutionary programming (EP) [5]. Although there 
have been many EAs introduced in the literature, no single 
EA that performs consistently well for all types of problems. 
For instance, GA was well suited to parallel computing, and 
was able to solve noisy problems. However, their 
convergence pattern was slow in comparison with that of 
DE. Also, DE was suitable when the feasible patches were 
parallel to the axes but it could become stuck in a local 
optimum in multimodal functions, and the same is true for 
many other EAs. Due to this fact, the concept of multi-
method EAs and multi-operator EAs have emerged. 
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 The main idea of multi-method EAs is to utilize the 
strength of different EAs in dealing with different types of 
problems. Vrugt et al. [6] introduced an algorithm, known as 
A Multi-ALgorithm Genetically Adaptive Multiobjective 
(AMALGAM), that has been proven to be a powerful 
approach for solving multiobjective problems. Later, Vrugt 
et al. [7] extended their work for real valued function 
optimization. As tested on a set of benchmark problems, the 
algorithm obtained similar efficiencies as existing algorithms 
on relatively simple problems, but it was increasingly 
superior for more complex and higher dimensional 
multimodal optimization problems.  

In regard to multi-operator algorithms, Elsayed et al. [8] 
proposed a mix of four different DE mutation strategies 
within a single algorithm framework to solve COPs which 
performed well for a set of constrained problems that was 
further extended and improved in [9, 10]. Brest et al. [11] 
proposed a DE algorithm which embedded a self-adaptation 
mechanism for parameter control. In it, the population was 
divided into sub-populations to apply more DE strategies, 
and a population diversity mechanism was also introduced. 
Yong et al. has recently proposed a composite DE algorithm 
(CoDE) [12], in which the algorithm randomly combines 
several trial vector generation strategies with a number of 
control parameter settings at each generation to create new 
trial vectors. Elsayed et al. [13] also proposed two novel DE 
variants, each of which utilized the strengths of multiple 
mutation and crossover operators, to solve 60 constrained 
problems. The algorithm demonstrated superior 
performances in comparison with the state-of-the-art 
algorithms. Mallipeddi et al. [14] proposed an ensemble of 
mutation strategies and control parameters with DE 
(EPSDE), in which a pool of distinct mutation strategies, 
along with a pool of values for each control parameter, 
coexisted throughout the evolutionary process and competed 
to produce offspring.. Also the idea of multi-population EA 
was recently addressed in [15-18]. 

In this research, a united multi-operator EAs (UMOEAs) is 
introduced. In it, three subpopulations are initiated with the 
same individuals, but each subpopulation is then 
independently evolved using a multi-operator algorithm. The 
success rate of each multi-operator algorithm is recorded for 
a certain number of generations and the better performing 
multi-operator is used to evolve its own individuals for a 
number of subsequent generations (known as a cycle), while 
the other populations are kept on hold. After this cycle, 
information from the best performing population is used to 
update some individuals of the worst performing population, 
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and subsequently all multi-operator algorithms rerun 
independently in parallel. The process is continued up to a 
predefined number of fitness function evaluations and then 
the best performing multi-operator algorithm is selected to 
evolve only its assigned population during the rest of the 
evolution process.  

The performance of the proposed algorithm is tested on a 
well-known set of constrained problems[19], which contains 
30 test problems, with different mathematical properties, 
with 10, 30, 50 and 100 dimensions.  From the results, the 
proposed algorithm shows consistently ability to obtain good 
solutions. 

 This paper is organized as follows: after the introduction, 
section II presents a brief overview on GA, DE and ES. In 
section III, the design of the proposed algorithm is 
discussed. The experimental results and analysis are 
demonstrated in section IV. Finally, the conclusions and 
future work are given in section V. 

II. BASIC ALGORITHMS AND OPERATORS  
The proposed framework can consider any number of 

EAs. In this section, we describe the algorithms and the 
operators considered in this research.  

A.  Differential Evolution  

The basic search operators of DE are discussed here.  

A.1. Mutation 

In the basic mutation, DE/rand/1, a mutant vector ( ሬܸԦ௭,௧ሻ is 
generated by multiplying the amplification factor ܨ by the 
difference of two random vectors, and the result is added to 
another third random vector (equation 1). ݒԦ௭,௧ ൌ Ԧభ,௧ݔ  .ܨ ൫ݔԦమ,௧ െ  Ԧయ,௧൯                 (1)ݔ

where ݎଵ, ,ଶݎ ଵݎ ,ଷ are random integer numbers [1, PS]ݎ ଶݎ് ് ଷݎ ്  is a decision vector, PS is the population ݔ  ,ݖ
size, t is the current generation and F is a positive control 
parameter (amplification factor) for scaling the difference 
vector. 

The purpose of this operation is to explore the search 
space and maintain diversity. For more strategies and their 
details, readers are referred to Das and Suganthan [20]. 

A.2. Crossover 

The DE family of algorithms uses two crossover schemes. 
In this research, we use the binomial crossover, because it is 
widely accepted and is superior to the exponential one [21]. 

This crossover type is performed on each of the ݆௧variables whenever a randomly picked number ∈ [0-1] is 
less than or equal to a crossover rate (Cr). In this case, the 
number of parameters inherited from the mutant vector has a 
(nearly) binomial distribution ݑ௭,௧ ൌ ൜ݒ௭,௧,      ݂݅ ሺ݀݊ܽݎ  ൌ ݆ ݎ ݎܥ  ݆ௗሻݔ௭,௧,                                        ݁ݏ݅ݓݎ݄݁ݐ                 (2) 

where ݀݊ܽݎ ∈ ሾ0,1ሿ, and ݆ௗ ∈ ሾ1,  ሿ is a randomlyܦ
chosen index, which ensures trial vector ሺݑሬԦ௭,௧ሻ gets at least 
one component from ݒԦ௭,௧. 

The selection process then takes place, in which ݑሬԦ௭,௧ is 
selected if it is better, based on the objective function, than 
 .(Ԧ௭,௧ݔ)

B.  Genetic Algorithms 

 In this study, for GA, simulated binary crossover (SBX) 
[22] with a non-uniform mutation (NU-M) [23] and MPC-
GA [24, 25] are used. The reason for choosing these 
operators is that firstly GA-MPC has shown its superiority to 
many other algorithms [24], and also because SBX with NU-
M outperformed nine GA variants, as reported in [26].   

B.1. MPC-GA 

In MPC-GA, first an initial population is randomly 
generated, with size PS. Then an archive pool (ܣ) is 
filled with the best m individuals (based on their constraint 
violations and/or fitness function). Then a tournament 
selection procedure, with size ܿݐ, takes place, from which 
the best individual is chosen and saved in the selection pool. 
For the crossover operation, with a crossover rate, for each 
three consecutive individuals in the selection pool, three 
offspring are generated as: ݕԦଵ ൌ Ԧଵݔ   β ൈ ሺݔԦଶ െ Ԧଶݕ Ԧଷሻ                                 (3)ݔ ൌ Ԧଶݔ   β ൈ ሺݔԦଷ െ Ԧଷݕ Ԧଵሻ                                   (4)ݔ ൌ Ԧଷݔ   β ൈ ሺݔԦଵ െ  Ԧଶሻ                                   (5)ݔ

 On each generated ݕԦ௭, a diversity operator is applied to 
escape from any local minima and to visit better regions in 
the search space.  In it, for each individual a uniform random 
number ∈ [0, 1] is generated, if it is less than a predefined 
probability, , then ݕ௭ ൌ ݔ . Subsequently, the 
individuals from the archive pool are merged with all of the 
offspring, and the best ܲܵ individuals are selected as a new 
population for the next generation.  

B.2. SBX 

SBX is widely used in practice. The probability 
distribution of β in SBX is similar to the probability 
distribution of β in binary-coded crossover. From a pair of 
parents ݔԦଵ ൌ ሺݔଵଵ, ,ଶଵݔ … , Ԧଶݔ ଵሻ andݔ ൌ ሺݔଵଶ, ,ଶଶݔ … ,  ଶሻ, twoݔ
offspring ݕԦଵ ൌ ሺݕଵଵ, ,ଶଵݕ … , Ԧଶݕ ଵሻ  andݕ ൌ ሺݕଵଶ, ,ଶଶݕ … ,  ଶሻ areݕ
generated in the following manner:  

 
1. Generate a uniform random number ݀݊ܽݎ ∈ ሾ0,1ሿ. 
2. Generate a random number βത as follows: 

ҧߚ ൌ ൞ ሺ2. ሻ݀݊ܽݎ భభశആ,                            ݀݊ܽݎ  0.5ቀ ଵଶሺଵିௗሻቁ భభశആ  (6)    ݁ݏ݅ݓݎ݄݁ݐ                               ,

3. Generate two offspring as follows: ݕଵ ൌ ଵଶ ൣሺ1  .ҧ൯ߚ ଵݔ  ሺ1 െ .ҧሻߚ   ଶሿ                            (7)ݔ
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ଶݕ  ൌ ଵଶ ൣሺ1 െ .ҧ൯ߚ ଵݔ  ሺ1  .ҧሻߚ                     ଶሿ                            (8)ݔ

SBX has been found to work well in many test problems 
that have a continuous search space, when compared to other 
real-coded crossover implementations. The SBX operator 
can restrict child solutions to any arbitrary closeness to the 
parent solutions, thereby not requiring any separate mating 
restriction scheme for better performance. SBX is also useful 
in problems where the bounds of the optimum point are not 
known and where there are multiple optima [22].  

The mutation operator is applied to maintain genetic 
diversity from one generation to another. The non-uniform 
mutation is well-known in the literature. In it, the step size is 
decreased as the generations increase, thus making a uniform 
search in the initial stage and very little at the later stages 
[23]. Offspring ݔ௭′ ሺݐሻ ൌ ሺݔ௭,ଵ′ ሺݐሻ, ′௭,ଶݔ ሺݐሻ, … , ′௭,ݔ ሺݐሻሻ is 
mutated according to: ݔ௭,′ ሺݐሻ ൌ ሻݐ௭,ሺݔ   ሻ                 (9)ݐ௭,ሺߜ

using the random variation: ߜ௭,ሺݐሻ ൌቐቀݔҧ െ ሻቁݐ௭,ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵିሻ್ቁ ݀݊ܽݎ ݂݅   ,   0.5ቀݔ െ ሻቁݐ௭,ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵିሻ್ቁ ݁ݏ݅ݓݎ݄݁ݐ       ,      (10) 

where ݔҧ and ݔ are the upper and lower boundary of 
individual ݔ௭,, respectively, ݀݊ܽݎሺݐሻ is a random number ∈ሾ0, 1ሿ, t is the generation number, T is the maximum number 
of generations, and b is a parameter to control the speed at 
which the step length decreases. This operator performs well 
for problems when a solution only needs to be refined during 
the later stages of the execution of an algorithm 

C. Evolution Strategy 

In this study, we consider only one ES variant, known 
as: Covariance Matrix Adaptation-ES (CMA-ES), as it 
showed its superiority to any other ES variants. 

A.1. CMA-ES 
CMA adapts a full covariance matrix of a normal search 

(mutation) distribution [27]. CMA-ES uses the following 
steps: 

1- Create an initial population and evaluate the fitness 
function.  

2- The best ߤெ individuals are selected as a parental 
vector, and their centre is calculated according to: ݔԦ௪௧ ൌ ∑ ఓಾಲୀଵݓ  Ԧ,                (11)ݔ

where  

 ∑ ௭ݓ ൌ 1ఓಾಲ௭ୀଵ , ଵݓ  ଶݓ  ڮ   ఓಾಲݓ  0     (12) 

3- Updated population is created according to: ݔԦ௭ୀଵ:ௌ௧ାଵ ൌ Ԧ௪௧ݔ   ௭ୀଵ:ௌ,            (13)ܩ௧ܳ௧ܤ௧ߪ

where ܩୀଵ:ௌ are independent realizations of a D-
dimensional standard normal distribution with zero-mean 

and a covariance matrix equal to the identity matrix I. These 
base points are rotated and scaled by the eigenvectors ܤ௧ and 
the square root of the eigenvalues ܳ௧ of the covariance 
matrix ܥ௧. The ܥ௧, and the global step-size ߪ௧ are 
continuously updated after each generation t [28]. Please 
note that the CMA-ES version using in this paper is 
available on https://www.lri.fr/~hansen/cmaes.m. 

III. UNITED MULTI-OPERATOR EVOLUTIONARY 
ALGORITHMS (UMOEAS) 

In this section, the proposed algorithm is described as well 
as the improvement measure used in this research is 
elaborated. 

A. UMOEAs 

The pseudo-code of the proposed algorithm is given in 
this Algorithm 1. To start with, all multi-operator algorithms 
start with the same population, of a size ܲܵ, which is 
randomly generated using a uniform distribution. Let us 
name each subpopulations size as ܲ ଵܵ, ܲܵଶ and ܲܵଷ, 
respectively. The solutions in the first population are 
evolved by a multi-operator DE algorithm, while the second 
and third subpopulations are evolved using a multi-operator 
GA algorithm and a multi-operator ES algorithm, 
respectively. 

In the multi-operator DE algorithm, for each individual in ܲ ଵܵ a random number (݀݊ܽݎ ∈ ሾ0,1ሿ) is generated, if it is 
less than a predefined probability (ܾݎଵ), a new individual 
is generated using (14), otherwise it will be generated using 
Ԧ௭,௧ݒ  .(15) ൌ Ԧఝ,௧ݔ  .௭ܨ ൫ݔԦభ,௧ െ  Ԧమ,௧൯,             (14)ݔ

where ߮ is a random integer number between 1 and ௌభଶ . It is 
worthy to mention here that ߮ is selected after ܲ ଵܵ is sorted, 
based on the fitness function. ݒԦ௭,௧ ൌ Ԧ,௧ݔ  .௭ܨ ቀ൫ݔԦభ,௧ െ Ԧమ,௧൯ݔ  ൫ݔԦ௦௧,௧ െ  Ԧ,௧൯ቁ     (15)ݔ

Note also that the binomial crossover with a crossover rate 
 is used to generate a final offspring. The reason for (௭ݎܥ)
using the binomial, in this paper, is due to its superiority to 
the exponential one [21]. The vales of ܨ௭ and  ݎܥ௭  are 
adaptively calculated as will be shown in section IV. 

If the new offspring is better (based on the fitness 
function) than its parent, the success of the corresponding 
mutation (ݏଵ or ݏଶ, respectively) is increased by one.  After 
each generation, ܾݎଵ is updated, such that ܾݎଵ ൌ ௦భ௦భା௦మ.  

Following the same mechanism in the multi-operator GA, 
to generate new individuals, a random number (݀݊ܽݎ ∈ሾ0,1ሿ) is generated, then if it is less than a predefined 
probability (ܾݎଶ), three individuals are generated using 
MPC-GA, otherwise two individuals are produced using 
SBX-NU. MPC-GA uses an archive of individuals, as shown 
in section II.B, once new ܲܵଶ individuals are generated,
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ALGORITHM I. UNITED MULTI-OPERATOR EVOLUTIONARY ALGORITHMS 
PSEUDO-CODE 

- Generate initial population of a size ܲܵ; each variable is generated within 
its boundaries. 

- set ܲܵ ൌ ܲ ଵܵ= ܲܵଶ= ܲܵଷ  
- Initialize each algorithm’s parameters and set ݏ =݀݅ݎ݁ଵ= ݏଶ= ݏଷ=ݏସ=0;  ܾݎଵ=ܾݎଶ=0.5; 

while ݏܧܨܨ ൏  ݏܧܨܨݔܽ݉ 
- if ݏܧܨܨ &  ܵܥ > ݀݅ݎ݁   ݁݃ܽݐܵݔ݅ܯ

 ;1+ ݀݅ݎ݁ = ݀݅ݎ݁ -
- evolve ܲ ଵܵ using multi-operator DE, such that 

        if ݀݊ܽݎ ൏  ଵܾݎ
- generate a new solution vector using DE1 
- if it is better than its parent, set  ݏଵ ൌ ଵݏ   1;  

        else 
- generate a new solution vector using DE2 
- if it is better than its parent, set ݏଶ ൌ ଶݏ   1; 

        end 
- update  ܾݎଵ ൌ ,ሺ0.05ݔܽ݉ ௦భ௦భା௦మሻሻ  

- evolve ܲܵଶ using multi-operator GA: 
        if 2ܾݎ>݀݊ܽݎ 

- generate new solutions vector using MPC-GA;   
else 

- generate new solutions vector using SBX-NUM 
        end 
- calculate the success of each GA and update ݏଷ and ݏସ 
- update ܾݎଶ ൌ ,ሺ0.05ݔܽ݉ ௦య௦యା௦రሻሻ 

- evolve ܲܵଷ using multi-operator ES: 
- record ܾ ௧݂,ଵ, ܾ ௧݂,ଶ, ܾ ௧݂,ଷ 

- end 
- if  ݉݀ሺ݀݅ݎ݁, ሻܵܥ ൌ 0 

- Decide which multi-operator algorithm is the best (ܾ݁ܣܧ_ݐݏ), as 
shown in III.B. 

- end 
- if ( ݀݅ݎ݁  ݀݅ݎ݁ & ܵܥ ൏ ݏܧܨܨ or  (ܵܥ2   ݁݃ܽݐܵݔ݅ܯ

- if ܾ݁1== ܣܧ_ݐݏ 
- evolve ܲ ଵܵ using multi-operator DE;        else if ܾ݁2== ܣܧ_ݐݏ 
- evolve ܲܵଶ using multi-operator GA;        else  
- evolve ܲܵଷ using multi-operator ES; 

- end 
- end 
- if ܵܥ2 == ݀݅ݎ݁   

- calculate the mean(ݔ) and standard deviation (ߪ) vector of the ߤ best individuals of the ܾ݁ܣܧ_ݐݏ, and replace the k-th individual 
with  ݔԦ = ܰ(ߪ,ݔ), where ߢ is the second worst individual. 

- replace the worst individuals in the worst performing multi-
operator algorithms by the best individual found so far. 

- period= ݏଵ= ݏଶ= ݏଷ=ݏସ=0;  ܾݎଵ=ܾݎଶ=0.5; 
- end 

    update FFEs; ݐ ൌ ݐ  1; 
end 

those individuals in the archive and the new ܲܵଶ are merged, 
and the best ܲܵଶare passed on to the next generations. Next 
that, the number of individuals generated by MPC-GA and 
that passed on to the next generation is assigned to ݏଷ, while 
those generated by SBX-NU and passed on to the next 
generation are assigned to  ݏସ. Consequently, ܾݎଶ is ௦య௦యା௦ర.  

As mentioned earlier, CMA-ES was found the best ES 
variant in the literature. Therefore, instead of losing its 
search power, by using another ES variant, we decided to 
use it only as a multi-operator ES. 

The abovementioned process is repeated for ܵܥ generation 
(named as a cycle). Then, the best performing multi-operator 

is selected (as will be shown in III.B) to evolve only its 
population for the subsequent ܵܥ generations, while the 
other sub-populations are kept on hold. Once this step is 
finished, all parameters (ݏଵ, ,ଶݏ ,ଷݏ ,ଷݏ  ଶ) areܾݎ and 1_ܾݎ
re-set to their initial values and an information scheme is 
applied, such that: 

• The worst individual in each subpopulation is replaced 
with the best individual found so far, with a 
confirmation that the solution is not redundant. 

• For the best ߤ individuals in the successful population, 
the mean and standard deviation vectors ሺݔ an݀ ߪ, 
respectively) are calculated, as: ݔ ൌ ∑ ௫,ೕഋసభఓ                                (16) 

ߪ ൌ ට∑ ሺ݅ݔ,݆െ݆ݔሻ2 ݅ߤൌ1 ఓ                  (17) 

then the second worst individual in each sub-population, 
which was on hold, is replaced by the a new solution 
vector that is generated as:  ݔ௭, ൌ  ܰሺݔߪሻ                                 (18) 

After passing information, each subpopulation is sorted 
and the mean vector of CMA-ES is updated, if required, 
using (11). 

Note that the abovementioned procedure of using three 
multi-operator algorithms is used up to a predefined level, 
here it is ௫ிிா௦ଶ  generations.  After that level, the best 
algorithm is used to evolve its population until an overall 
stopping criterion is met.  

B. Handling Bound Constraints 

In this research, the bound constrains are handled as 
follows ݔ௭, ൌ ቊ݉ܽݔ ሺݔ, 2 ൈ ݔ െ ௭,ݔ           ௭,ሻݔ    ൏ ,ݔ݉݅݊ ሺݔ 2 ൈ ݔ െ ௭,ݔ          ௭,ሻݔ     ݔ ,   (19) 

where ݔ and ݔ are the lower and upper boundary of ݔ. 

C. Deciding the Best Performing MOEA 

To decide which multi-operator algorithm could be used 
after every cycle. The following steps are conducted: 

1- At each generation, record the absolute function error 
of the best solution found and the optimal solution 
obtained by each MOEA, such that: ܾ ௧݂௦,ࣜ ൌ|݂ሺݔ௦௧,ࣜሻ െ  ݂ሺכݔሻ|, where ࣜ = 1, 2 and 3 and refers 
to the multi-operator DE, multi-operator GA, and 
multi-operator ES, respectively, while ݏܿݐ ൌ :2/ܵܥ  ܵܥ
generations. 

2- Fit an exponential model (ܽ݁௫) for each ܾ݂, and 
generate the exponential model coefficients (ܽ and ܾ). 
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3- Consequently, for each multi-operator, the expected 
absolute error after subsequent ܵܥ generations is 
calculated. 

4- The algorithm with the minimum expected absolute 
error is selected as the best multi-operator algorithm. 

D. Discussion 

Here, some issues, regarding the design of the proposed 
algorithm, are discussed. 

1- The reason for generating new individuals for the 
worst performing multi-operator algorithm, instead of 
directly copying them from the best performing one, 
is to maintain diversity. However, it may not be 
efficient in generating a totally random population, as 
this may cost fitness evaluations without any valuable 
outcome. Therefore, information from the best ߤ 
individuals in the successful population is considered, 
as shown in (16) - (17). 

2- The reason for using three multi-operator algorithms 
only up to ݁݃ܽݐܵݔ݅ܯ fitness evaluations (here equal 
to ௫ிிா௦ଶ ), and not for all the evolution process, is to 
reduce the time complexity of the algorithm, 
especially at this stage the decision of which multi-
operator algorithm performs best may be justifiably 
made 

3- The point behind reusing three multi-operator 
algorithms, instead of one, after every 2ܵܥ 
generation, is that passing good information for a 
poor multi-operator algorithm may help it to reach 
better solutions latter on. 

4- It is important to mention here that a minimum 
threshold to use an operator in each multi-operator 
algorithm is set, i.e. 5%, to keep the benefit from 
poorly performing operators as they may perform 
better at later generations. 

IV. EXPERIMENTAL RESULTS  

In this section, the performance of the proposed algorithm 
is discussed and analyzed by solving a set of problems 
presented in the CEC2014 competition on real-parameter 
optimization [19], which contains 30 test problems with 10, 
30, 50 and 100 dimensions. The algorithm was run 51 times 
for each test problem, where the stopping criterion was to 
run for up to 10,000D FEs. The algorithm was coded using 
Matlab R2012b, and was run on a PC with a 3.4 GHz Core 
I7 processor with 16 GB RAM, and windows 7. 

To begin with, all parameter values are provided in Table 
I. To add to this, ݎܥ and ܨ are self-adaptively calculated, as 
follows: 

• At ݐ ൌ 1, each individual in ܲ ଵܵ is assigned with ܨሶ௭ 
and ݎܥሶ ௭, where ܨሶ௭ ൌ ܰሺ0.5,1ሻ and ݎܥሶ ௭ ൌ ܰሺ0.5,1ሻ. If 
the value is less than 0.1 or larger than 1.0, it is 
truncated to 0.1 and 1, respectively. 

• Then, to generate a new solution, based on (14) or (15), 
both parameters are calculated as follows: 

TABLE I. DETAILS OF ALL PARAMETERS VALUES

General: ܲ ଵܵ ൌ ܲܵଶ ൌ ܲܵଷ ൌ ܵܥ ,100 ൌ 50, for 10D and 100 for all 
other dimensions and ߤ ൌ 2. 

DE: ߮ ∈ ሾ1, ௌభଶ ሿ in (14) [29]. ܨ and ݎܥ are self-adaptively calculated as 
shown in (20) and (21). 

GA:  ൌ ݄ܿݎܽ ,0.1 ൌ ௌభଶ  mutation rate = 0.1, tournament ,%100=ݎܥ ,
selection size is randomly 2 or 3,  ߟ ൌ 3 and ܾ ൌ 5 [26]. 

CMA-ES: ߤெ ൌ 0.5ܲܵ_3  1.5 = ߪ ,

௭ܨ ൌ ቊܨሶభ  ଵ݀݊ܽݎ ൈ ൫ܨሶమ െ ଶ݀݊ܽݎሶయ൯,      ݂݅ ሺܨ ൏ ߬ଵሻ݀݊ܽݎଷ                                                    ݁ݏ݅ݓݎ݄݁ݐ      (20) 

௭ݎܥ ൌ ቊݎܥሶ భ  ସ݀݊ܽݎ ൈ ൫ݎܥሶ మ െ ሶݎܥ య൯, ݂݅ ሺ݀݊ܽݎହ ൏ ߬ଵሻ݀݊ܽݎ                                                    ݁ݏ݅ݓݎ݄݁ݐ   (21) 

where ݀݊ܽݎ ∈ ሾ0,1ሿ for Γ ൌ 1,2 … ,6 and ߬ଵ ൌ 0.75. 
If the value is less than 0.1 or larger than 1, it is 
truncated to 0.1 and 1, respectively. 

• If the new offspring is better than its parent, then  ܨሶ௭ ൌ ሶݎܥ ௭ andܨ ௭ ൌ ௭ݎܥ . 

A. Results for 10D 

The computational results (݂ሺݔ௦௧ሻ െ  ݂ሺכݔሻ) of UMOEAs 
for the 10D problems are shown in Table II.  From the 
results obtained, it was obvious that UMOEAs performed 
excellent in unimodal problems (F01:F03). For multimodal 
problems (F04:F16), UMOEAs was able to obtain the 
optimal solutions on six problems, while it was very close to 
the optimal solution for the rest. For hybrid functions (F17: 

TABLE II. RESULTS FOR 10D 
Best Worst Median Mean Std 

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F05 0.0000E+00 2.0148E+01 2.0051E+01 1.6895E+01 7.3603E+00 
F06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F08 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F09 9.9496E-01 9.9496E+00 3.9798E+00 4.6504E+00 1.9437E+00 
F10 6.2454E-02 3.6023E+00 1.8736E-01 6.3404E-01 1.1413E+00 
F11 3.5399E+00 6.8628E+02 1.2862E+02 1.5908E+02 1.6367E+02 
F12 0.0000E+00 1.5119E-02 0.0000E+00 8.8934E-04 3.5928E-03 
F13 2.8347E-03 2.2347E-02 8.4565E-03 9.4554E-03 5.0520E-03 
F14 1.8202E-02 1.9796E-01 8.1067E-02 8.3410E-02 3.3301E-02 
F15 3.2154E-01 1.2021E+00 6.6304E-01 6.5615E-01 2.0031E-01 
F16 2.0719E-01 2.7579E+00 1.5503E+00 1.5529E+00 6.4679E-01 
F17 0.0000E+00 9.2044E+01 1.6194E+00 9.8968E+00 1.6577E+01 
F18 0.0000E+00 3.9798E+00 9.9496E-01 9.9496E-01 9.5433E-01 
F19 1.9432E-02 1.0195E+00 5.6273E-02 1.5661E-01 2.5583E-01 
F20 5.9453E-05 1.4036E+00 2.1172E-01 2.9843E-01 2.8495E-01 
F21 3.8216E-05 8.2245E+00 3.3548E-01 5.5689E-01 1.1326E+00 
F22 8.3735E-06 6.4507E-01 2.6868E-01 2.3474E-01 1.9678E-01 
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F24 1.0000E+02 1.2118E+02 1.1231E+02 1.1253E+02 3.6055E+00 
F25 1.0000E+02 1.9855E+02 1.2529E+02 1.3194E+02 2.4292E+01 
F26 1.0001E+02 1.0007E+02 1.0002E+02 1.0002E+02 1.4847E-02 
F27 6.9818E-01 2.0000E+02 1.8837E+00 1.7345E+01 5.3817E+01 
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F29 1.0000E+02 2.2120E+02 2.0000E+02 2.0322E+02 2.1594E+01 
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
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TABLE III. RESULTS FOR 30D 
Best Worst Median Mean Std 

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F05 1.9998E+01 2.0437E+01 2.0000E+01 2.0050E+01 1.2597E-01 
F06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F08 0.0000E+00 3.9798E+00 9.9496E-01 1.3464E+00 1.1572E+00 
F09 3.9798E+00 1.5919E+01 8.9546E+00 8.8378E+00 2.7762E+00 
F10 1.2633E+00 1.2086E+02 5.7752E+00 8.9251E+00 1.6538E+01 
F11 1.3254E+02 3.2300E+03 1.3547E+03 1.4588E+03 7.9087E+02 
F12 0.0000E+00 9.0581E-03 1.8568E-03 2.5570E-03 2.3493E-03 
F13 1.4689E-02 8.3997E-02 5.5679E-02 5.4565E-02 1.5475E-02 
F14 1.3918E-01 3.2366E-01 2.0890E-01 2.0361E-01 4.0160E-02 
F15 2.2988E+00 4.8044E+00 3.1164E+00 3.2456E+00 5.2092E-01 
F16 8.0072E+00 1.1426E+01 1.0083E+01 9.9269E+00 7.4097E-01 
F17 2.7772E+01 1.5818E+03 9.6351E+02 9.7741E+02 3.6055E+02 
F18 3.9494E+00 5.9259E+01 1.9478E+01 2.1214E+01 1.0418E+01 
F19 2.1027E+00 4.9401E+00 3.5409E+00 3.5573E+00 6.8967E-01 
F20 4.1889E+00 2.3428E+01 9.7627E+00 1.1018E+01 4.4544E+00 
F21 6.7115E+00 8.8759E+02 3.0691E+02 3.3816E+02 2.1940E+02 
F22 7.8765E-01 2.7944E+02 5.3104E+01 9.5412E+01 8.0479E+01 
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F24 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F26 1.0003E+02 1.0015E+02 1.0007E+02 1.0008E+02 2.8264E-02 
F27 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F29 2.0000E+02 2.0909E+02 2.0601E+02 2.0480E+02 2.9796E+00 
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 

F22), UMOEAs was able to obtain the optimal solution in 
two occasions, and very close to the optimal solution for the 
rest test problems. However it trapped in local solutions for 
all the composition test instances (F23:F30). 

B. Results for 30D 

The computational results of the proposed algorithm for 
the 30D test problems are shown in Table III. 

From the results, UMOEAs was able to obtain the optimal 
solution on unimodal problems (F01:F03). For multimodal 
problems, UMOEAs was robust for F04, F06 and F07, while 
it was very close to the optimal solution for the rest 
problems. For hybrid functions, the best solutions obtained 
were close to the optimal; however it often trapped in local 
solutions. For the composition problems, UMOEAs got 
stuck in local solutions. 

C. Results for 50D 

UMOEAs’s computational results of the 50D test 
problems are shown in Table IV. 

From Table IV, UMOEAs was able to obtain the optimal 
solutions in unimodal problems (F01:F03). For multimodal 
problems, UMOEAs was robust in solving F07, efficient in 
solving F04, F06, F07 and F08, while it got stuck in local 
solutions for the rest test problems. This was also the 
situation for the hybrid and composition problems, although 
its performance in solving the hybrid problems is a little bit 
better than its performance in solving the composition 
problems. 

TABLE IV. RESULTS FOR 50D 
Best Worst Median Mean Std 

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F04 0.0000E+00 3.9866E+00 0.0000E+00 7.8169E-02 5.5824E-01 
F05 1.9999E+01 2.0484E+01 2.0008E+01 2.0116E+01 1.7971E-01 
F06 0.0000E+00 1.5764E+00 0.0000E+00 6.0329E-02 3.0164E-01 
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F08 0.0000E+00 1.2934E+01 3.9798E+00 4.2920E+00 3.0407E+00 
F09 1.0945E+01 2.6864E+01 1.8904E+01 1.9361E+01 3.6065E+00 
F10 2.9445E+00 3.6574E+02 1.4879E+01 7.5519E+01 9.4506E+01 
F11 5.1140E+01 7.2694E+03 4.2520E+03 3.9779E+03 1.9904E+03 
F12 0.0000E+00 3.5210E-03 8.3144E-04 1.1125E-03 9.0616E-04 
F13 5.1169E-02 1.4507E-01 1.0184E-01 9.8518E-02 2.0232E-02 
F14 1.5815E-01 2.9943E-01 2.2299E-01 2.2434E-01 3.3788E-02 
F15 1.9838E+00 7.3589E+00 5.4349E+00 5.4600E+00 9.6612E-01 
F16 1.7632E+01 2.0716E+01 1.9249E+01 1.9208E+01 7.2823E-01 
F17 1.2863E+03 3.6025E+03 2.4129E+03 2.4501E+03 4.5975E+02 
F18 1.7161E+01 2.3467E+02 7.3680E+01 9.0006E+01 6.1214E+01 
F19 7.2231E+00 1.9386E+01 1.1668E+01 1.1731E+01 2.0700E+00 
F20 2.4250E+01 1.6553E+02 6.3973E+01 7.0815E+01 2.9985E+01 
F21 6.1101E+02 2.1939E+03 1.4660E+03 1.4670E+03 3.9168E+02 
F22 2.8061E+01 7.1403E+02 3.4735E+02 3.6419E+02 1.7639E+02 
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F24 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F26 1.0005E+02 2.0000E+02 1.0015E+02 1.0406E+02 1.9575E+01 
F27 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F29 2.1044E+02 2.2230E+02 2.1628E+02 2.1638E+02 2.5214E+00 
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 

 

TABLE V. RESULTS FOR 100D 
Best Worst Median Mean Std 

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F04 2.1124E+01 2.6842E+01 2.2564E+01 2.3113E+01 1.4634E+00 
F05 2.0000E+01 2.0063E+01 2.0000E+01 2.0003E+01 1.0160E-02 
F06 0.0000E+00 2.7946E+00 5.7677E-01 8.5169E-01 8.7062E-01 
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
F08 7.9597E+00 8.6561E+01 2.2884E+01 2.4523E+01 1.0486E+01 
F09 4.0793E+01 6.6662E+01 5.3728E+01 5.3845E+01 6.6793E+00 
F10 1.3549E+02 5.4553E+03 3.0478E+03 2.9895E+03 1.5700E+03 
F11 5.2659E+03 1.0635E+04 7.9323E+03 7.8789E+03 1.4403E+03 
F12 8.4500E-05 2.5297E-03 6.0510E-04 6.7674E-04 4.1803E-04 
F13 1.3983E-01 2.9804E-01 1.9857E-01 2.0507E-01 3.3606E-02 
F14 1.8673E-01 2.7700E-01 2.2707E-01 2.2661E-01 2.1455E-02 
F15 8.9694E+00 1.5416E+01 1.1355E+01 1.1655E+01 1.4143E+00 
F16 3.9980E+01 4.3720E+01 4.2697E+01 4.2594E+01 7.7180E-01 
F17 3.1437E+03 6.6751E+03 5.2092E+03 5.2953E+03 7.9441E+02 
F18 2.6448E+02 7.2428E+02 4.0065E+02 4.0972E+02 1.0333E+02 
F19 1.6091E+01 6.9883E+01 6.0341E+01 5.8398E+01 8.7355E+00 
F20 1.9153E+02 4.6476E+02 3.1161E+02 3.1187E+02 6.6812E+01 
F21 2.1095E+03 1.0833E+04 4.1689E+03 4.4189E+03 1.5951E+03 
F22 5.8648E+01 1.6983E+03 9.5655E+02 9.2693E+02 3.2174E+02 
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F24 2.0000E+02 2.0001E+02 2.0000E+02 2.0000E+02 1.5050E-03 
F25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F26 1.0025E+02 2.0000E+02 2.0000E+02 1.9804E+02 1.3968E+01 
F27 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 
F29 2.2791E+02 2.7500E+02 2.5881E+02 2.5493E+02 1.1799E+01 
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00 

D. Results for 100D 

Table V presents the computational results for the 
100Dtest problems. From results obtained, UMOEAs 
performed well in solving unimodal problems. Furthermore, 
the algorithm performed well in F06 and F07 and could 
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reach near optimal solutions for many multi-modal 
problems, except F10 and F11. For the hybrid and 
composition problems, UMOEAs’s performance was not 
good enough. However, it was noticed that, for the 
composition problems, the algorithm was able to reach the 
same solutions as those obtained in30D and 50D. 

E. Computational Complexity 

To this end, the computational complexity of the proposed 
algorithm is calculated based on all problem dimensions.  A 
summary of the results is shown in Table V. 

TABLE V. COMPUTATIONAL COMPLEXITY 

 ࢀ ࢀ ࢀ 
ሺࢀ െ ࢀሻࢀ  

10D 
    0.1092 

0.935761 4.4822 32.4762 
30D 1.219444 5.8698 42.5858 
50D 1.483131 6.9143 49.7356 

V. CONCLUSIONS AND FUTURE WORK 

In the last decade, many EAs have been introduced to 
solve constrained optimization problems. Most of those 
algorithms were designed to use a single crossover and/or a 
single mutation operator. In this paper, we adopted the 
concept of multiple algorithms empowered by multiple 
operators, in which the initial population was divided into 
three subpopulations, and each subpopulation was 
independently evolved using its assigned multi-operator 
algorithm. After a predefined number of fitness evaluations, 
the best performing multi-operator continued to evolve its 
own subpopulation, while the other group of individuals was 
on hold. Then, after a few generations, information from the 
best performing subpopulation was used to update the some 
individuals in the worst performing subpopulations, and 
hence the three multi-operator algorithms were rerun in 
parallel again. The procedure was continued until a defined 
stage and then the best performing algorithm was selected to 
evolve its population and the worst one was totally 
disregarded.  

The algorithm was tested on the CEC2014 real-parameter 
benchmark problems, and showed good performance in 
many occasions. 

In the future work, to select the best EA during the 
evolution process, we wish to analyze the effect of using 
different statistical models to fit the performance of each 
EA. 
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