

Abstract—This paper puts forward a proposal for combining
multi-operator evolutionary algorithms (EAs), in which three
EAs, each with multiple search operators, are used. During the
evolution process, the algorithm gradually emphasizes on the
best performing multi-operator EA, as well as the search
operator. The proposed algorithm is tested on the CEC2014
single objective real-parameter competition. The results show
that the proposed algorithm has the ability to reach good
solutions.

Index Terms— evolutionary algorithms, multi-method
algorithms, multi-operator algorithms

I. INTRODUCTION

N optimization problem is an abstraction of the
problem of selecting the best possible alternative of a

vector from a set of candidate options[1]. Optimization is
used for problems arising in network design and operation,
finance, support vector machine, and many other
engineering areas. In unconstrained global optimization, the
objective functions may possess different properties, such as
linear and /or nonlinear, continuous or discontinuous, and
unimodal or multimodal, and their combination. In addition,
the presence of large number of variables associated with
such complex functions pose serious challenges to any
optimization algorithm. This makes such problems a
challenging research area in the evolutionary computation
field.

Over the last few decades, EAs have shown their ability to
successfully solve both constrained and unconstrained
optimization problems. The EAs family contains different
algorithms, such as the genetic algorithm (GA) [2],
differential evolution (DE) [3], evolution strategies (ES) [4]
and evolutionary programming (EP) [5]. Although there
have been many EAs introduced in the literature, no single
EA that performs consistently well for all types of problems.
For instance, GA was well suited to parallel computing, and
was able to solve noisy problems. However, their
convergence pattern was slow in comparison with that of
DE. Also, DE was suitable when the feasible patches were
parallel to the axes but it could become stuck in a local
optimum in multimodal functions, and the same is true for
many other EAs. Due to this fact, the concept of multi-
method EAs and multi-operator EAs have emerged.

The authors are with the School of Engineering and Information
Technology, University of New South Wales at Canberra, Australia, emails:
{s.elsayed, r.sarker, d.essam}@adfa.edu.au and noha.hamza@
student.adfa.edu.au

 The main idea of multi-method EAs is to utilize the
strength of different EAs in dealing with different types of
problems. Vrugt et al. [6] introduced an algorithm, known as
A Multi-ALgorithm Genetically Adaptive Multiobjective
(AMALGAM), that has been proven to be a powerful
approach for solving multiobjective problems. Later, Vrugt
et al. [7] extended their work for real valued function
optimization. As tested on a set of benchmark problems, the
algorithm obtained similar efficiencies as existing algorithms
on relatively simple problems, but it was increasingly
superior for more complex and higher dimensional
multimodal optimization problems.

In regard to multi-operator algorithms, Elsayed et al. [8]
proposed a mix of four different DE mutation strategies
within a single algorithm framework to solve COPs which
performed well for a set of constrained problems that was
further extended and improved in [9, 10]. Brest et al. [11]
proposed a DE algorithm which embedded a self-adaptation
mechanism for parameter control. In it, the population was
divided into sub-populations to apply more DE strategies,
and a population diversity mechanism was also introduced.
Yong et al. has recently proposed a composite DE algorithm
(CoDE) [12], in which the algorithm randomly combines
several trial vector generation strategies with a number of
control parameter settings at each generation to create new
trial vectors. Elsayed et al. [13] also proposed two novel DE
variants, each of which utilized the strengths of multiple
mutation and crossover operators, to solve 60 constrained
problems. The algorithm demonstrated superior
performances in comparison with the state-of-the-art
algorithms. Mallipeddi et al. [14] proposed an ensemble of
mutation strategies and control parameters with DE
(EPSDE), in which a pool of distinct mutation strategies,
along with a pool of values for each control parameter,
coexisted throughout the evolutionary process and competed
to produce offspring.. Also the idea of multi-population EA
was recently addressed in [15-18].

In this research, a united multi-operator EAs (UMOEAs) is
introduced. In it, three subpopulations are initiated with the
same individuals, but each subpopulation is then
independently evolved using a multi-operator algorithm. The
success rate of each multi-operator algorithm is recorded for
a certain number of generations and the better performing
multi-operator is used to evolve its own individuals for a
number of subsequent generations (known as a cycle), while
the other populations are kept on hold. After this cycle,
information from the best performing population is used to
update some individuals of the worst performing population,

Testing United Multi-Operator Evolutionary Algorithms on the
CEC2014 Real-Parameter Numerical Optimization

Saber M. Elsayed, Ruhul A. Sarker, Daryl L. Essam and Noha M. Hamza

A

1650

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

and subsequently all multi-operator algorithms rerun
independently in parallel. The process is continued up to a
predefined number of fitness function evaluations and then
the best performing multi-operator algorithm is selected to
evolve only its assigned population during the rest of the
evolution process.

The performance of the proposed algorithm is tested on a
well-known set of constrained problems[19], which contains
30 test problems, with different mathematical properties,
with 10, 30, 50 and 100 dimensions. From the results, the
proposed algorithm shows consistently ability to obtain good
solutions.

 This paper is organized as follows: after the introduction,
section II presents a brief overview on GA, DE and ES. In
section III, the design of the proposed algorithm is
discussed. The experimental results and analysis are
demonstrated in section IV. Finally, the conclusions and
future work are given in section V.

II. BASIC ALGORITHMS AND OPERATORS
The proposed framework can consider any number of

EAs. In this section, we describe the algorithms and the
operators considered in this research.

A. Differential Evolution

The basic search operators of DE are discussed here.

A.1. Mutation

In the basic mutation, DE/rand/1, a mutant vector (ሬܸԦ௭,௧ሻ is
generated by multiplying the amplification factor ܨ by the
difference of two random vectors, and the result is added to
another third random vector (equation 1). ݒԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ .ܨ ൫ݔԦ௥మ,௧ െ Ԧ௥య,௧൯ (1)ݔ

where ݎଵ, ,ଶݎ ଵݎ ,ଷ are random integer numbers [1, PS]ݎ ଶݎ് ് ଷݎ ് is a decision vector, PS is the population ݔ ,ݖ
size, t is the current generation and F is a positive control
parameter (amplification factor) for scaling the difference
vector.

The purpose of this operation is to explore the search
space and maintain diversity. For more strategies and their
details, readers are referred to Das and Suganthan [20].

A.2. Crossover

The DE family of algorithms uses two crossover schemes.
In this research, we use the binomial crossover, because it is
widely accepted and is superior to the exponential one [21].

This crossover type is performed on each of the ݆௧௛variables whenever a randomly picked number ∈ [0-1] is
less than or equal to a crossover rate (Cr). In this case, the
number of parameters inherited from the mutant vector has a
(nearly) binomial distribution ݑ௭௝,௧ ൌ ൜ݒ௭௝,௧, ݂݅ ሺ݀݊ܽݎ ൑ ൌ ݆ ݎ݋ ݎܥ ݆௥௔௡ௗሻݔ௭௝,௧, ݁ݏ݅ݓݎ݄݁ݐ݋ (2)

where ݀݊ܽݎ ∈ ሾ0,1ሿ, and ݆௥௔௡ௗ ∈ ሾ1, ሿ is a randomlyܦ
chosen index, which ensures trial vector ሺݑሬԦ௭,௧ሻ gets at least
one component from ݒԦ௭,௧.

The selection process then takes place, in which ݑሬԦ௭,௧ is
selected if it is better, based on the objective function, than
 .(Ԧ௭,௧ݔ)

B. Genetic Algorithms

 In this study, for GA, simulated binary crossover (SBX)
[22] with a non-uniform mutation (NU-M) [23] and MPC-
GA [24, 25] are used. The reason for choosing these
operators is that firstly GA-MPC has shown its superiority to
many other algorithms [24], and also because SBX with NU-
M outperformed nine GA variants, as reported in [26].

B.1. MPC-GA

In MPC-GA, first an initial population is randomly
generated, with size PS. Then an archive pool (ܣ௔௥௖௛) is
filled with the best m individuals (based on their constraint
violations and/or fitness function). Then a tournament
selection procedure, with size ܿݐ, takes place, from which
the best individual is chosen and saved in the selection pool.
For the crossover operation, with a crossover rate, for each
three consecutive individuals in the selection pool, three
offspring are generated as: ݕԦଵ ൌ Ԧଵݔ ൅ β ൈ ሺݔԦଶ െ Ԧଶݕ Ԧଷሻ (3)ݔ ൌ Ԧଶݔ ൅ β ൈ ሺݔԦଷ െ Ԧଷݕ Ԧଵሻ (4)ݔ ൌ Ԧଷݔ ൅ β ൈ ሺݔԦଵ െ Ԧଶሻ (5)ݔ

 On each generated ݕԦ௭, a diversity operator is applied to
escape from any local minima and to visit better regions in
the search space. In it, for each individual a uniform random
number ∈ [0, 1] is generated, if it is less than a predefined
probability, ݌, then ݕ௭௝ ൌ ௔௥௖௛௝ݔ . Subsequently, the
individuals from the archive pool are merged with all of the
offspring, and the best ܲܵ individuals are selected as a new
population for the next generation.

B.2. SBX

SBX is widely used in practice. The probability
distribution of β in SBX is similar to the probability
distribution of β in binary-coded crossover. From a pair of
parents ݔԦଵ ൌ ሺݔଵଵ, ,ଶଵݔ … , Ԧଶݔ ௡ଵሻ andݔ ൌ ሺݔଵଶ, ,ଶଶݔ … , ௡ଶሻ, twoݔ
offspring ݕԦଵ ൌ ሺݕଵଵ, ,ଶଵݕ … , Ԧଶݕ ௡ଵሻ andݕ ൌ ሺݕଵଶ, ,ଶଶݕ … , ௡ଶሻ areݕ
generated in the following manner:

1. Generate a uniform random number ݀݊ܽݎ ∈ ሾ0,1ሿ.
2. Generate a random number βത as follows:

ҧߚ ൌ ൞ ሺ2. ሻ݀݊ܽݎ భభశആ, ݀݊ܽݎ ൑ 0.5ቀ ଵଶሺଵି௥௔௡ௗሻቁ భభశആ (6) ݁ݏ݅ݓݎ݄݁ݐ݋ ,

3. Generate two offspring as follows: ݕ௝ଵ ൌ ଵଶ ൣሺ1 ൅ .ҧ൯ߚ ௝ଵݔ ൅ ሺ1 െ .ҧሻߚ ௝ଶሿ (7)ݔ

1651

௝ଶݕ ൌ ଵଶ ൣሺ1 െ .ҧ൯ߚ ௝ଵݔ ൅ ሺ1 ൅ .ҧሻߚ ௝ଶሿ (8)ݔ

SBX has been found to work well in many test problems
that have a continuous search space, when compared to other
real-coded crossover implementations. The SBX operator
can restrict child solutions to any arbitrary closeness to the
parent solutions, thereby not requiring any separate mating
restriction scheme for better performance. SBX is also useful
in problems where the bounds of the optimum point are not
known and where there are multiple optima [22].

The mutation operator is applied to maintain genetic
diversity from one generation to another. The non-uniform
mutation is well-known in the literature. In it, the step size is
decreased as the generations increase, thus making a uniform
search in the initial stage and very little at the later stages
[23]. Offspring ݔ௭′ ሺݐሻ ൌ ሺݔ௭,ଵ′ ሺݐሻ, ′௭,ଶݔ ሺݐሻ, … , ′௭,஽ݔ ሺݐሻሻ is
mutated according to: ݔ௭,௜′ ሺݐሻ ൌ ሻݐ௭,௜ሺݔ ൅ ሻ (9)ݐ௭,௜ሺߜ

using the random variation: ߜ௭,௝ሺݐሻ ൌቐቀݔҧ௝ െ ሻቁݐ௭,௜ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵି೟೅ሻ್ቁ ݀݊ܽݎ ݂݅ , ൑ 0.5ቀݔ௝ െ ሻቁݐ௭,௜ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵି೟೅ሻ್ቁ ݁ݏ݅ݓݎ݄݁ݐ݋ , (10)

where ݔҧ௝ and ݔ௝ are the upper and lower boundary of
individual ݔ௭,௝, respectively, ݀݊ܽݎሺݐሻ is a random number ∈ሾ0, 1ሿ, t is the generation number, T is the maximum number
of generations, and b is a parameter to control the speed at
which the step length decreases. This operator performs well
for problems when a solution only needs to be refined during
the later stages of the execution of an algorithm

C. Evolution Strategy

In this study, we consider only one ES variant, known
as: Covariance Matrix Adaptation-ES (CMA-ES), as it
showed its superiority to any other ES variants.

A.1. CMA-ES
CMA adapts a full covariance matrix of a normal search

(mutation) distribution [27]. CMA-ES uses the following
steps:

1- Create an initial population and evaluate the fitness
function.

2- The best ߤ஼ெ஺ individuals are selected as a parental
vector, and their centre is calculated according to: ݔԦ௪௧ ൌ ∑ ௞ఓ಴ಾಲ௞ୀଵݓ Ԧ௞, (11)ݔ

where

 ∑ ௭ݓ ൌ 1ఓ಴ಾಲ௭ୀଵ , ଵݓ ൒ ଶݓ ൒ ڮ ൒ ఓ಴ಾಲݓ ൒ 0 (12)

3- Updated population is created according to: ݔԦ௭ୀଵ:௉ௌ௧ାଵ ൌ Ԧ௪௧ݔ ൅ ௭ୀଵ:௉ௌ, (13)ܩ௧ܳ௧ܤ௧ߪ

where ܩ௞ୀଵ:௉ௌ are independent realizations of a D-
dimensional standard normal distribution with zero-mean

and a covariance matrix equal to the identity matrix I. These
base points are rotated and scaled by the eigenvectors ܤ௧ and
the square root of the eigenvalues ܳ௧ of the covariance
matrix ܥ௧. The ܥ௧, and the global step-size ߪ௧ are
continuously updated after each generation t [28]. Please
note that the CMA-ES version using in this paper is
available on https://www.lri.fr/~hansen/cmaes.m.

III. UNITED MULTI-OPERATOR EVOLUTIONARY
ALGORITHMS (UMOEAS)

In this section, the proposed algorithm is described as well
as the improvement measure used in this research is
elaborated.

A. UMOEAs

The pseudo-code of the proposed algorithm is given in
this Algorithm 1. To start with, all multi-operator algorithms
start with the same population, of a size ܲܵ, which is
randomly generated using a uniform distribution. Let us
name each subpopulations size as ܲ ଵܵ, ܲܵଶ and ܲܵଷ,
respectively. The solutions in the first population are
evolved by a multi-operator DE algorithm, while the second
and third subpopulations are evolved using a multi-operator
GA algorithm and a multi-operator ES algorithm,
respectively.

In the multi-operator DE algorithm, for each individual in ܲ ଵܵ a random number (݀݊ܽݎ ∈ ሾ0,1ሿ) is generated, if it is
less than a predefined probability (ܾ݋ݎ݌ଵ), a new individual
is generated using (14), otherwise it will be generated using
Ԧ௭,௧ݒ .(15) ൌ Ԧఝ,௧ݔ ൅ .௭ܨ ൫ݔԦ௥భ,௧ െ Ԧ௥మ,௧൯, (14)ݔ

where ߮ is a random integer number between 1 and ௉ௌభଶ . It is
worthy to mention here that ߮ is selected after ܲ ଵܵ is sorted,
based on the fitness function. ݒԦ௭,௧ ൌ Ԧ௜,௧ݔ ൅ .௭ܨ ቀ൫ݔԦ௥భ,௧ െ Ԧ௥మ,௧൯ݔ ൅ ൫ݔԦ௕௘௦௧,௧ െ Ԧ௜,௧൯ቁ (15)ݔ

Note also that the binomial crossover with a crossover rate
 is used to generate a final offspring. The reason for (௭ݎܥ)
using the binomial, in this paper, is due to its superiority to
the exponential one [21]. The vales of ܨ௭ and ݎܥ௭ are
adaptively calculated as will be shown in section IV.

If the new offspring is better (based on the fitness
function) than its parent, the success of the corresponding
mutation (ݏଵ or ݏଶ, respectively) is increased by one. After
each generation, ܾ݋ݎ݌ଵ is updated, such that ܾ݋ݎ݌ଵ ൌ ௦భ௦భା௦మ.

Following the same mechanism in the multi-operator GA,
to generate new individuals, a random number (݀݊ܽݎ ∈ሾ0,1ሿ) is generated, then if it is less than a predefined
probability (ܾ݋ݎ݌ଶ), three individuals are generated using
MPC-GA, otherwise two individuals are produced using
SBX-NU. MPC-GA uses an archive of individuals, as shown
in section II.B, once new ܲܵଶ individuals are generated,

1652

ALGORITHM I. UNITED MULTI-OPERATOR EVOLUTIONARY ALGORITHMS
PSEUDO-CODE

- Generate initial population of a size ܲܵ; each variable is generated within
its boundaries.

- set ܲܵ ൌ ܲ ଵܵ= ܲܵଶ= ܲܵଷ
- Initialize each algorithm’s parameters and set ݏ =݀݋݅ݎ݁݌ଵ= ݏଶ= ݏଷ=ݏସ=0; ܾ݋ݎ݌ଵ=ܾ݋ݎ݌ଶ=0.5;

while ݏܧܨܨ ൏ ݏܧܨܨݔܽ݉
- if ݏܧܨܨ & ܵܥ > ݀݋݅ݎ݁݌ ൑ ݁݃ܽݐܵݔ݅ܯ

 ;1+ ݀݋݅ݎ݁݌ = ݀݋݅ݎ݁݌ -
- evolve ܲ ଵܵ using multi-operator DE, such that

 if ݀݊ܽݎ ൏ ଵܾ݋ݎ݌
- generate a new solution vector using DE1
- if it is better than its parent, set ݏଵ ൌ ଵݏ ൅ 1;

 else
- generate a new solution vector using DE2
- if it is better than its parent, set ݏଶ ൌ ଶݏ ൅ 1;

 end
- update ܾ݋ݎ݌ଵ ൌ ,ሺ0.05ݔܽ݉ ௦భ௦భା௦మሻሻ

- evolve ܲܵଶ using multi-operator GA:
 if 2ܾ݋ݎ݌>݀݊ܽݎ

- generate new solutions vector using MPC-GA;
else

- generate new solutions vector using SBX-NUM
 end
- calculate the success of each GA and update ݏଷ and ݏସ
- update ܾ݋ݎ݌ଶ ൌ ,ሺ0.05ݔܽ݉ ௦య௦యା௦రሻሻ

- evolve ܲܵଷ using multi-operator ES:
- record ܾ ௧݂,ଵ, ܾ ௧݂,ଶ, ܾ ௧݂,ଷ

- end
- if ݉݀݋ሺ݀݋݅ݎ݁݌, ሻܵܥ ൌ 0

- Decide which multi-operator algorithm is the best (ܾ݁ܣܧ_ݐݏ), as
shown in III.B.

- end
- if (݀݋݅ݎ݁݌ ൐ ݀݋݅ݎ݁݌ & ܵܥ ൏ ݏܧܨܨ or (ܵܥ2 ൐ ݁݃ܽݐܵݔ݅ܯ

- if ܾ݁1== ܣܧ_ݐݏ
- evolve ܲ ଵܵ using multi-operator DE; else if ܾ݁2== ܣܧ_ݐݏ
- evolve ܲܵଶ using multi-operator GA; else
- evolve ܲܵଷ using multi-operator ES;

- end
- end
- if ܵܥ2 == ݀݋݅ݎ݁݌

- calculate the mean(ݔ) and standard deviation (ߪ) vector of the ߤ best individuals of the ܾ݁ܣܧ_ݐݏ, and replace the k-th individual
with ݔԦ௞ = ܰ(ߪ,ݔ), where ߢ is the second worst individual.

- replace the worst individuals in the worst performing multi-
operator algorithms by the best individual found so far.

- period= ݏଵ= ݏଶ= ݏଷ=ݏସ=0; ܾ݋ݎ݌ଵ=ܾ݋ݎ݌ଶ=0.5;
- end

 update FFEs; ݐ ൌ ݐ ൅ 1;
end

those individuals in the archive and the new ܲܵଶ are merged,
and the best ܲܵଶare passed on to the next generations. Next
that, the number of individuals generated by MPC-GA and
that passed on to the next generation is assigned to ݏଷ, while
those generated by SBX-NU and passed on to the next
generation are assigned to ݏସ. Consequently, ܾ݋ݎ݌ଶ is ௦య௦యା௦ర.

As mentioned earlier, CMA-ES was found the best ES
variant in the literature. Therefore, instead of losing its
search power, by using another ES variant, we decided to
use it only as a multi-operator ES.

The abovementioned process is repeated for ܵܥ generation
(named as a cycle). Then, the best performing multi-operator

is selected (as will be shown in III.B) to evolve only its
population for the subsequent ܵܥ generations, while the
other sub-populations are kept on hold. Once this step is
finished, all parameters (ݏଵ, ,ଶݏ ,ଷݏ ,ଷݏ ଶ) areܾ݋ݎ݌ and 1_ܾ݋ݎ݌
re-set to their initial values and an information scheme is
applied, such that:

• The worst individual in each subpopulation is replaced
with the best individual found so far, with a
confirmation that the solution is not redundant.

• For the best ߤ individuals in the successful population,
the mean and standard deviation vectors ሺݔ an݀ ߪ,
respectively) are calculated, as: ݔ௝ ൌ ∑ ௫೔,ೕഋ೔సభఓ (16)

௝ߪ ൌ ට∑ ሺ݅ݔ,݆െ݆ݔሻ2 ݅ߤൌ1 ఓ (17)

then the second worst individual in each sub-population,
which was on hold, is replaced by the a new solution
vector that is generated as: ݔ௭,௝ ൌ ܰሺݔ௝ߪ௝ሻ (18)

After passing information, each subpopulation is sorted
and the mean vector of CMA-ES is updated, if required,
using (11).

Note that the abovementioned procedure of using three
multi-operator algorithms is used up to a predefined level,
here it is ௠௔௫ிிா௦ଶ generations. After that level, the best
algorithm is used to evolve its population until an overall
stopping criterion is met.

B. Handling Bound Constraints

In this research, the bound constrains are handled as
follows ݔ௭,௝ ൌ ቊ݉ܽݔ ሺݔ௝, 2 ൈ ௝ݔ െ ௭,௝ݔ ௭,௝ሻݔ ൏ ,௝ݔ௝݉݅݊ ሺݔ 2 ൈ ௝ݔ െ ௭,௝ݔ ௭,௝ሻݔ ൐ ௝ݔ , (19)

where ݔ௝ and ݔ௝ are the lower and upper boundary of ݔ௝.

C. Deciding the Best Performing MOEA

To decide which multi-operator algorithm could be used
after every cycle. The following steps are conducted:

1- At each generation, record the absolute function error
of the best solution found and the optimal solution
obtained by each MOEA, such that: ܾ ௧݂௖௦,ࣜ ൌ|݂ሺݔ௕௘௦௧,ࣜሻ െ ݂ሺכݔሻ|, where ࣜ = 1, 2 and 3 and refers
to the multi-operator DE, multi-operator GA, and
multi-operator ES, respectively, while ݏܿݐ ൌ :2/ܵܥ ܵܥ
generations.

2- Fit an exponential model (ܽ݁௕௫) for each ܾ݂, and
generate the exponential model coefficients (ܽ and ܾ).

1653

3- Consequently, for each multi-operator, the expected
absolute error after subsequent ܵܥ generations is
calculated.

4- The algorithm with the minimum expected absolute
error is selected as the best multi-operator algorithm.

D. Discussion

Here, some issues, regarding the design of the proposed
algorithm, are discussed.

1- The reason for generating new individuals for the
worst performing multi-operator algorithm, instead of
directly copying them from the best performing one,
is to maintain diversity. However, it may not be
efficient in generating a totally random population, as
this may cost fitness evaluations without any valuable
outcome. Therefore, information from the best ߤ
individuals in the successful population is considered,
as shown in (16) - (17).

2- The reason for using three multi-operator algorithms
only up to ݁݃ܽݐܵݔ݅ܯ fitness evaluations (here equal
to ௠௔௫ிிா௦ଶ), and not for all the evolution process, is to
reduce the time complexity of the algorithm,
especially at this stage the decision of which multi-
operator algorithm performs best may be justifiably
made

3- The point behind reusing three multi-operator
algorithms, instead of one, after every 2ܵܥ
generation, is that passing good information for a
poor multi-operator algorithm may help it to reach
better solutions latter on.

4- It is important to mention here that a minimum
threshold to use an operator in each multi-operator
algorithm is set, i.e. 5%, to keep the benefit from
poorly performing operators as they may perform
better at later generations.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed algorithm
is discussed and analyzed by solving a set of problems
presented in the CEC2014 competition on real-parameter
optimization [19], which contains 30 test problems with 10,
30, 50 and 100 dimensions. The algorithm was run 51 times
for each test problem, where the stopping criterion was to
run for up to 10,000D FEs. The algorithm was coded using
Matlab R2012b, and was run on a PC with a 3.4 GHz Core
I7 processor with 16 GB RAM, and windows 7.

To begin with, all parameter values are provided in Table
I. To add to this, ݎܥ and ܨ are self-adaptively calculated, as
follows:

• At ݐ ൌ 1, each individual in ܲ ଵܵ is assigned with ܨሶ௭
and ݎܥሶ ௭, where ܨሶ௭ ൌ ܰሺ0.5,1ሻ and ݎܥሶ ௭ ൌ ܰሺ0.5,1ሻ. If
the value is less than 0.1 or larger than 1.0, it is
truncated to 0.1 and 1, respectively.

• Then, to generate a new solution, based on (14) or (15),
both parameters are calculated as follows:

TABLE I. DETAILS OF ALL PARAMETERS VALUES

General: ܲ ଵܵ ൌ ܲܵଶ ൌ ܲܵଷ ൌ ܵܥ ,100 ൌ 50, for 10D and 100 for all
other dimensions and ߤ ൌ 2.

DE: ߮ ∈ ሾ1, ௉ௌభଶ ሿ in (14) [29]. ܨ and ݎܥ are self-adaptively calculated as
shown in (20) and (21).

GA: ݌ ൌ ݄ܿݎܽ ,0.1 ൌ ௉ௌభଶ mutation rate = 0.1, tournament ,%100=ݎܥ ,
selection size is randomly 2 or 3, ߟ ൌ 3 and ܾ ൌ 5 [26].

CMA-ES: ߤ஼ெ஺ ൌ 0.5ܲܵ_3 1.5 = ߪ ,

௭ܨ ൌ ቊܨሶ௥భ ൅ ଵ݀݊ܽݎ ൈ ൫ܨሶ௥మ െ ଶ݀݊ܽݎሶ௥య൯, ݂݅ ሺܨ ൏ ߬ଵሻ݀݊ܽݎଷ ݁ݏ݅ݓݎ݄݁ݐ݋ (20)

௭ݎܥ ൌ ቊݎܥሶ ௥భ ൅ ସ݀݊ܽݎ ൈ ൫ݎܥሶ ௥మ െ ሶݎܥ ௥య൯, ݂݅ ሺ݀݊ܽݎହ ൏ ߬ଵሻ݀݊ܽݎ଺ ݁ݏ݅ݓݎ݄݁ݐ݋ (21)

where ݀݊ܽݎ୻ ∈ ሾ0,1ሿ for Γ ൌ 1,2 … ,6 and ߬ଵ ൌ 0.75.
If the value is less than 0.1 or larger than 1, it is
truncated to 0.1 and 1, respectively.

• If the new offspring is better than its parent, then ܨሶ௭ ൌ ሶݎܥ ௭ andܨ ௭ ൌ ௭ݎܥ .

A. Results for 10D

The computational results (݂ሺݔ௕௘௦௧ሻ െ ݂ሺכݔሻ) of UMOEAs
for the 10D problems are shown in Table II. From the
results obtained, it was obvious that UMOEAs performed
excellent in unimodal problems (F01:F03). For multimodal
problems (F04:F16), UMOEAs was able to obtain the
optimal solutions on six problems, while it was very close to
the optimal solution for the rest. For hybrid functions (F17:

TABLE II. RESULTS FOR 10D
Best Worst Median Mean Std

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F05 0.0000E+00 2.0148E+01 2.0051E+01 1.6895E+01 7.3603E+00
F06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F08 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F09 9.9496E-01 9.9496E+00 3.9798E+00 4.6504E+00 1.9437E+00
F10 6.2454E-02 3.6023E+00 1.8736E-01 6.3404E-01 1.1413E+00
F11 3.5399E+00 6.8628E+02 1.2862E+02 1.5908E+02 1.6367E+02
F12 0.0000E+00 1.5119E-02 0.0000E+00 8.8934E-04 3.5928E-03
F13 2.8347E-03 2.2347E-02 8.4565E-03 9.4554E-03 5.0520E-03
F14 1.8202E-02 1.9796E-01 8.1067E-02 8.3410E-02 3.3301E-02
F15 3.2154E-01 1.2021E+00 6.6304E-01 6.5615E-01 2.0031E-01
F16 2.0719E-01 2.7579E+00 1.5503E+00 1.5529E+00 6.4679E-01
F17 0.0000E+00 9.2044E+01 1.6194E+00 9.8968E+00 1.6577E+01
F18 0.0000E+00 3.9798E+00 9.9496E-01 9.9496E-01 9.5433E-01
F19 1.9432E-02 1.0195E+00 5.6273E-02 1.5661E-01 2.5583E-01
F20 5.9453E-05 1.4036E+00 2.1172E-01 2.9843E-01 2.8495E-01
F21 3.8216E-05 8.2245E+00 3.3548E-01 5.5689E-01 1.1326E+00
F22 8.3735E-06 6.4507E-01 2.6868E-01 2.3474E-01 1.9678E-01
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F24 1.0000E+02 1.2118E+02 1.1231E+02 1.1253E+02 3.6055E+00
F25 1.0000E+02 1.9855E+02 1.2529E+02 1.3194E+02 2.4292E+01
F26 1.0001E+02 1.0007E+02 1.0002E+02 1.0002E+02 1.4847E-02
F27 6.9818E-01 2.0000E+02 1.8837E+00 1.7345E+01 5.3817E+01
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F29 1.0000E+02 2.2120E+02 2.0000E+02 2.0322E+02 2.1594E+01
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00

1654

TABLE III. RESULTS FOR 30D
Best Worst Median Mean Std

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F05 1.9998E+01 2.0437E+01 2.0000E+01 2.0050E+01 1.2597E-01
F06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F08 0.0000E+00 3.9798E+00 9.9496E-01 1.3464E+00 1.1572E+00
F09 3.9798E+00 1.5919E+01 8.9546E+00 8.8378E+00 2.7762E+00
F10 1.2633E+00 1.2086E+02 5.7752E+00 8.9251E+00 1.6538E+01
F11 1.3254E+02 3.2300E+03 1.3547E+03 1.4588E+03 7.9087E+02
F12 0.0000E+00 9.0581E-03 1.8568E-03 2.5570E-03 2.3493E-03
F13 1.4689E-02 8.3997E-02 5.5679E-02 5.4565E-02 1.5475E-02
F14 1.3918E-01 3.2366E-01 2.0890E-01 2.0361E-01 4.0160E-02
F15 2.2988E+00 4.8044E+00 3.1164E+00 3.2456E+00 5.2092E-01
F16 8.0072E+00 1.1426E+01 1.0083E+01 9.9269E+00 7.4097E-01
F17 2.7772E+01 1.5818E+03 9.6351E+02 9.7741E+02 3.6055E+02
F18 3.9494E+00 5.9259E+01 1.9478E+01 2.1214E+01 1.0418E+01
F19 2.1027E+00 4.9401E+00 3.5409E+00 3.5573E+00 6.8967E-01
F20 4.1889E+00 2.3428E+01 9.7627E+00 1.1018E+01 4.4544E+00
F21 6.7115E+00 8.8759E+02 3.0691E+02 3.3816E+02 2.1940E+02
F22 7.8765E-01 2.7944E+02 5.3104E+01 9.5412E+01 8.0479E+01
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F24 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F26 1.0003E+02 1.0015E+02 1.0007E+02 1.0008E+02 2.8264E-02
F27 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F29 2.0000E+02 2.0909E+02 2.0601E+02 2.0480E+02 2.9796E+00
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00

F22), UMOEAs was able to obtain the optimal solution in
two occasions, and very close to the optimal solution for the
rest test problems. However it trapped in local solutions for
all the composition test instances (F23:F30).

B. Results for 30D

The computational results of the proposed algorithm for
the 30D test problems are shown in Table III.

From the results, UMOEAs was able to obtain the optimal
solution on unimodal problems (F01:F03). For multimodal
problems, UMOEAs was robust for F04, F06 and F07, while
it was very close to the optimal solution for the rest
problems. For hybrid functions, the best solutions obtained
were close to the optimal; however it often trapped in local
solutions. For the composition problems, UMOEAs got
stuck in local solutions.

C. Results for 50D

UMOEAs’s computational results of the 50D test
problems are shown in Table IV.

From Table IV, UMOEAs was able to obtain the optimal
solutions in unimodal problems (F01:F03). For multimodal
problems, UMOEAs was robust in solving F07, efficient in
solving F04, F06, F07 and F08, while it got stuck in local
solutions for the rest test problems. This was also the
situation for the hybrid and composition problems, although
its performance in solving the hybrid problems is a little bit
better than its performance in solving the composition
problems.

TABLE IV. RESULTS FOR 50D
Best Worst Median Mean Std

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F04 0.0000E+00 3.9866E+00 0.0000E+00 7.8169E-02 5.5824E-01
F05 1.9999E+01 2.0484E+01 2.0008E+01 2.0116E+01 1.7971E-01
F06 0.0000E+00 1.5764E+00 0.0000E+00 6.0329E-02 3.0164E-01
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F08 0.0000E+00 1.2934E+01 3.9798E+00 4.2920E+00 3.0407E+00
F09 1.0945E+01 2.6864E+01 1.8904E+01 1.9361E+01 3.6065E+00
F10 2.9445E+00 3.6574E+02 1.4879E+01 7.5519E+01 9.4506E+01
F11 5.1140E+01 7.2694E+03 4.2520E+03 3.9779E+03 1.9904E+03
F12 0.0000E+00 3.5210E-03 8.3144E-04 1.1125E-03 9.0616E-04
F13 5.1169E-02 1.4507E-01 1.0184E-01 9.8518E-02 2.0232E-02
F14 1.5815E-01 2.9943E-01 2.2299E-01 2.2434E-01 3.3788E-02
F15 1.9838E+00 7.3589E+00 5.4349E+00 5.4600E+00 9.6612E-01
F16 1.7632E+01 2.0716E+01 1.9249E+01 1.9208E+01 7.2823E-01
F17 1.2863E+03 3.6025E+03 2.4129E+03 2.4501E+03 4.5975E+02
F18 1.7161E+01 2.3467E+02 7.3680E+01 9.0006E+01 6.1214E+01
F19 7.2231E+00 1.9386E+01 1.1668E+01 1.1731E+01 2.0700E+00
F20 2.4250E+01 1.6553E+02 6.3973E+01 7.0815E+01 2.9985E+01
F21 6.1101E+02 2.1939E+03 1.4660E+03 1.4670E+03 3.9168E+02
F22 2.8061E+01 7.1403E+02 3.4735E+02 3.6419E+02 1.7639E+02
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F24 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F26 1.0005E+02 2.0000E+02 1.0015E+02 1.0406E+02 1.9575E+01
F27 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F29 2.1044E+02 2.2230E+02 2.1628E+02 2.1638E+02 2.5214E+00
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00

TABLE V. RESULTS FOR 100D
Best Worst Median Mean Std

F01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F04 2.1124E+01 2.6842E+01 2.2564E+01 2.3113E+01 1.4634E+00
F05 2.0000E+01 2.0063E+01 2.0000E+01 2.0003E+01 1.0160E-02
F06 0.0000E+00 2.7946E+00 5.7677E-01 8.5169E-01 8.7062E-01
F07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F08 7.9597E+00 8.6561E+01 2.2884E+01 2.4523E+01 1.0486E+01
F09 4.0793E+01 6.6662E+01 5.3728E+01 5.3845E+01 6.6793E+00
F10 1.3549E+02 5.4553E+03 3.0478E+03 2.9895E+03 1.5700E+03
F11 5.2659E+03 1.0635E+04 7.9323E+03 7.8789E+03 1.4403E+03
F12 8.4500E-05 2.5297E-03 6.0510E-04 6.7674E-04 4.1803E-04
F13 1.3983E-01 2.9804E-01 1.9857E-01 2.0507E-01 3.3606E-02
F14 1.8673E-01 2.7700E-01 2.2707E-01 2.2661E-01 2.1455E-02
F15 8.9694E+00 1.5416E+01 1.1355E+01 1.1655E+01 1.4143E+00
F16 3.9980E+01 4.3720E+01 4.2697E+01 4.2594E+01 7.7180E-01
F17 3.1437E+03 6.6751E+03 5.2092E+03 5.2953E+03 7.9441E+02
F18 2.6448E+02 7.2428E+02 4.0065E+02 4.0972E+02 1.0333E+02
F19 1.6091E+01 6.9883E+01 6.0341E+01 5.8398E+01 8.7355E+00
F20 1.9153E+02 4.6476E+02 3.1161E+02 3.1187E+02 6.6812E+01
F21 2.1095E+03 1.0833E+04 4.1689E+03 4.4189E+03 1.5951E+03
F22 5.8648E+01 1.6983E+03 9.5655E+02 9.2693E+02 3.2174E+02
F23 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F24 2.0000E+02 2.0001E+02 2.0000E+02 2.0000E+02 1.5050E-03
F25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F26 1.0025E+02 2.0000E+02 2.0000E+02 1.9804E+02 1.3968E+01
F27 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F28 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00
F29 2.2791E+02 2.7500E+02 2.5881E+02 2.5493E+02 1.1799E+01
F30 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00

D. Results for 100D

Table V presents the computational results for the
100Dtest problems. From results obtained, UMOEAs
performed well in solving unimodal problems. Furthermore,
the algorithm performed well in F06 and F07 and could

1655

reach near optimal solutions for many multi-modal
problems, except F10 and F11. For the hybrid and
composition problems, UMOEAs’s performance was not
good enough. However, it was noticed that, for the
composition problems, the algorithm was able to reach the
same solutions as those obtained in30D and 50D.

E. Computational Complexity

To this end, the computational complexity of the proposed
algorithm is calculated based on all problem dimensions. A
summary of the results is shown in Table V.

TABLE V. COMPUTATIONAL COMPLEXITY

 ෡૚ࢀ ૚ࢀ ૙ࢀ
ሺࢀ෡૚ െ ૙ࢀ૚ሻࢀ

10D
 0.1092

0.935761 4.4822 32.4762
30D 1.219444 5.8698 42.5858
50D 1.483131 6.9143 49.7356

V. CONCLUSIONS AND FUTURE WORK

In the last decade, many EAs have been introduced to
solve constrained optimization problems. Most of those
algorithms were designed to use a single crossover and/or a
single mutation operator. In this paper, we adopted the
concept of multiple algorithms empowered by multiple
operators, in which the initial population was divided into
three subpopulations, and each subpopulation was
independently evolved using its assigned multi-operator
algorithm. After a predefined number of fitness evaluations,
the best performing multi-operator continued to evolve its
own subpopulation, while the other group of individuals was
on hold. Then, after a few generations, information from the
best performing subpopulation was used to update the some
individuals in the worst performing subpopulations, and
hence the three multi-operator algorithms were rerun in
parallel again. The procedure was continued until a defined
stage and then the best performing algorithm was selected to
evolve its population and the worst one was totally
disregarded.

The algorithm was tested on the CEC2014 real-parameter
benchmark problems, and showed good performance in
many occasions.

In the future work, to select the best EA during the
evolution process, we wish to analyze the effect of using
different statistical models to fit the performance of each
EA.

REFERENCES

[1] S. P. Boyd and L. Vandenberghe, Convex optimization: Cambridge
university press, 2004.

[2] D. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. MA: Addison-Wesley, 1989.

[3] R. Storn and K. Price, “Differential Evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces,”
International Computer Science Institute Technical Report, Tech.
Rep. TR-95-012, 1995.

[4] I. Rechenberg, Evolutions strategie: Optimierung Technischer
Systeme nach Prinzipien der biologischen Evolution. Stuttgart:

Fromman-Holzboog, 1973.
[5] L. Fogel, J. Owens, and M. Walsh, Artificial Intelligence Through

Simulated Evolution. New York: John Wiley & Sons, 1966.
[6] J. A. Vrugt and B. A. Robinson, “Improved evolutionary optimization

from genetically adaptive multimethod search,” in proceeding
Proceedings of the National Academy of Sciences of the United States
of America (PNAS), 2007, pp. 708–711.

[7] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-Adaptive
Multimethod Search for Global Optimization in Real-Parameter
Spaces,” IEEE Transactions on Evolutionary Computation, vol. 13,
pp. 243-259, 2009.

[8] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator based
evolutionary algorithms for solving constrained optimization
Problems,” Computers and Operations Research, vol. 38, pp. 1877-
1896, 2011.

[9] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “On an evolutionary
approach for constrained optimization problem solving,” Applied Soft
Computing, vol. 12, pp. 3208-3227, 2012.

[10] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An Improved Self-
Adaptive Differential Evolution Algorithm for Optimization
Problems,” Industrial Informatics, IEEE Transactions on, vol. 9, pp.
89-99, 2013.

[11] J. Brest, B. Boskovic, A. Zamuda, I. Fister, and E. Mezura-Montes,
“Real Parameter Single Objective Optimization using self-adaptive
differential evolution algorithm with more strategies,” in proceeding
Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013, pp.
377-383.

[12] Y. Wang, Z. Cai, and Q. Zhang, “Differential Evolution With
Composite Trial Vector Generation Strategies and Control
Parameters,” IEEE Transactions on Evolutionary Computation, vol.
15, pp. 55-66, 2011.

[13] S. Elsayed, R. Sarker, and D. Essam, “Self-adaptive differential
evolution incorporating a heuristic mixing of operators,”
Computational Optimization and Applications, pp. 1-20, 2012.

[14] R. Mallipeddi, S. Mallipeddi, P. N. Suganthan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, pp. 1679-1696,
2011.

[15] S. Biswas, S. Kundu, D. Bose, S. Das, P. N. Suganthan, and B. K.
Panigrahi, “Migrating forager population in a multi-population
Artificial Bee Colony algorithm with modified perturbation
schemes,” in proceeding Swarm Intelligence (SIS), 2013 IEEE
Symposium on, 2013, pp. 248-255.

[16] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
method for constrained optimization problems,” Intelligent
Technologies–Theory and Application: New Trends in Intelligent
Technologies, vol. 76, pp. 214-220, 2002.

[17] D. Bose, S. Biswas, S. Kundu, and S. Das, “A Strategy Pool Adaptive
Artificial Bee Colony Algorithm for Dynamic Environment through
Multi-population Approach,” in Swarm, Evolutionary, and Memetic
Computing. vol. 7677, B. Panigrahi, et al., Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 611-619.

[18] G. Yue-Jiao, Z. Jun, H. S. Chung, C. Wei-Neng, Z. Zhi-Hui, L. Yun,
and S. Yu-Hui, “An Efficient Resource Allocation Scheme Using
Particle Swarm Optimization,” IEEE Transactions on Evolutionary
Computation, vol. 16, pp. 801-816, 2012.

[19] J. J. Liang, B.-Y. Qu, and P. N. Suganthan, “Problem Definitions and
Evaluation Criteria for the CEC 2014 Special Session and
Competition on Single Objective Real-Parameter Numerical
Optimization,” Computational Intelligence Laboratory and Nanyang
Technological University, China and Singapore, Tech. Rep. 201311,
2014.

[20] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the
State-of-the-Art,” IEEE Transactions on Evolutionary Computation,
vol. 15, pp. 4-31, 2011.

[21] E. Mezura-Montes, J. V. Reyes, and C. A. Coello Coello, “A
comparative study of differential evolution variants for global
optimization,” in proceeding the 8th annual conference on Genetic
and evolutionary computation, Seattle, Washington, USA, 2006, pp.
485-492.

[22] R. B. Agrawal, K. Deb, K. Deb, and R. B. Agrawal, “Simulated
Binary Crossover for Continuous Search Space,” Complex Systems,

1656

vol. 9, pp. 115–148, 1995.
[23] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. New York: Springer-Verlag, 1992.
[24] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “GA with a new multi-

parent crossover for solving IEEE-CEC2011 competition problems,”
in proceeding IEEE Congress on Evolutionary Computation, 2011,
pp. 1034-1040.

[25] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A new genetic
algorithm for solving optimization problems,” Engineering
Applications of Artificial Intelligence, vol. 27, pp. 57-69, 2014.

[26] S. Elsayed, R. Sarker, and D. Essam, “A Comparative Study of
Different Variants of Genetic Algorithms for Constrained
Optimization, Simulated Evolution and Learning.” vol. 6457, K. Deb,
et al., Eds., ed: Springer Berlin / Heidelberg, 2010, pp. 177-186.

[27] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix
adaptation,” in proceeding IEEE Congress onEvolutionary
Computation, 1996, pp. 312-317.

[28] N. Hansen and A. Ostermeier, “Completely Derandomized Self-
Adaptation in Evolution Strategies,” Evolutionary Computation, vol.
9, pp. 159-195, 2001.

[29] R. Sarker, S. Elsayed, and T. Ray, “Differential Evolution with
Dynamic Parameters Selection for Optimization Problems,”
Evolutionary Computation, IEEE Transactions on, vol. PP, pp. 1-1,
2013.

1657

