
Single- and Multi-Objective Genetic Programming: New Runtime
Results for SORTING

Markus Wagner and Frank Neumann

Abstract— In genetic programming, the size of a solution is
typically not specified in advance and solutions of larger size
may have a larger benefit. The flexibility often comes at the
cost of the so-called bloat problem: individuals grow without
providing additional benefit to the quality of solutions, and
the additional elements can block the optimisation process.
Consequently, problems that are relatively easy to optimise can
not be handled by variable-length evolutionary algorithms.

In this article, we present several new bounds for different
single- and multi-objective algorithms on the sorting problem,
a problem that typically lacks independent and additive fitness
structures.

I. INTRODUCTION

Genetic programming (GP) [11] is the most prominent
example of a variable-length evolutionary algorithm, as it
often evolves tree-like solutions for a given problem. Just
recently, the first computational complexity results on this
type of algorithm have been obtained, following the line of
successful research on evolutionary algorithms with fixed-
length representation (see the books by Auger and Doerr
[1], Neumann and Witt [16] for an overview). In general,
variable-length representations increase the search space
significantly, and it is desirable to better understand the
behaviour of algorithms using such representations from a
theoretical point of view.

For example, Cathabard, Lehre, and Yao [2] investigated
non-uniform mutation rates for problems with unknown
solution lengths. A simple evolutionary algorithm was used
to find a bitstring with an unknown number of leading ones
and although the bitstring had some predetermined maximum
length, only an unknown number of initial bits was used
by the fitness function. A simple tree-based genetic pro-
gramming algorithm was investigated by Durrett, Neumann,
and O’Reilly [5]. The tackled problems were separable,
with independent and additive fitness structures. Similarly,
Kötzing, Sutton, Neumann, and O’Reilly [10] analysed sim-
ple GP algorithms for the MAX problem. Recently, a new
form of GP called Geometric Semantic Genetic Programming
was investigated, with positive results for general classes of
traditional GP problems (see, e.g., [13]).

Many evolutionary algorithms that work with a variable-
length representation do not work (in their most basic variant)
with a form of bloat-control. One common way of dealing
with the bloat problem is inspired by Occam’s Razor: in the
case that two solutions are equal in quality, the solution of
lower complexity shall be preferred. Another common way

Frank Neumann and Markus Wagner are with the Optimisation and
Logistics Group, School of Computer Science, The University of Adelaide
(email: {frank.neumann, markus.wagner}@adelaide.edu.au).

of coping with the bloat problem, is to use a multi-objective
approach that uses a population representing the different
trade-offs according to the original goal function and the
complexity of a solution. This approach can be found even
in industrially used GP packages such as Datamodeller [6].
Both approaches of coping with the bloat problem have
recently been examined for different problems in the context
of genetic programming [14, 18, 23].

In this article, we will investigate the sorting problem,
which is one of the most basic problems in computer science.
It is also the first combinatorial optimisation problem for
which computational complexity results have been obtained
in the area of discrete evolutionary algorithms [4, 21]. In [21],
sorting is treated as an optimisation problem where the task
is to minimise the unsortness of a given permutation of
the input elements. To measure unsortness, different fitness
functions have been introduced in the past and studied with
respect to the difficulty of being optimised by permutation-
based evolutionary algorithms. Depending on the chosen
measure and in contrast to WORDER and WMAJORITY,
the sorting problem can typically not be split into subprob-
lems that can be solved independently. Consequently, the
dependencies between the subproblems can have a significant
impact on the time needed to solve the overall problem.

With our work, we continue the analyses started in [23],
which focussed on the advantages of a parsimonious algo-
rithm over a multi-objective one. Here, we present several
new bounds for a total of three single- and multi-objective
algorithms using five sortedness unmeasurements.

This article is organised as follows. We first introduce
the sorting problem in Section II. Afterwards, we present
the different genetic programming algorithms that we will
analyse in Section III. Then, in Section IV we investigate
the single-objective approach, in Section V the parsimony
approach, and in Section VI the multi-objective approach.
Our findings are summarised in the concluding Section VII.

II. PRELIMINARIES

Our goal is to investigate theoretically the differences
between bloat-control mechanisms for genetic programming.
In our investigations, we will treat the algorithms and prob-
lems analysed in [5, 14, 17, 18, 23]. We consider tree-
based genetic programming, where a possible solution is
represented by a syntax tree. The inner nodes of such a tree
are labelled by function symbols from a set F and the leaves
of the tree are labelled by terminals from a set T .

Even though many GP algorithms allow complex functions
for the inner nodes, we restrict the set of functions to the

125

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Algorithm 1: Derivation of F (X) for SORTING

1 Generate π by parsing X front to rear and adding an
element to π only if it is not yet in π;

2 Return F (π);

single binary function “join” J . Effectively, we use J’s to
achieve variable-length lists by concatenating leaf nodes.

The problem that we use as the basis for our investigations
is a classical problem from the computational complex-
ity analysis of evolutionary algorithms with fixed-length
representations, namely the sorting problem (SORTING).
Scharnow et al. [21] considered SORTING as an optimisa-
tion problem, where different fitness functions measure the
sortedness of a permutation of elements. It was discovered
that different fitness functions lead to problems of different
difficulties.

We will analyse our algorithms on different measures of
sortedness. The problem SORTING can be stated as follows.
Given a totally ordered set (of terminals) T = {1, . . . , n} of
n elements, the task is to find a permutation πopt of the
elements of T such that

πopt(1) < πopt(2) < . . . < πopt(n)

holds, where < is the order on T . Without loss of generality,
we assume πopt = id, i. e. πopt(i) = i for all i, throughout
our analyses.

The set of all permutations π forms a search space that
has already been investigated by Scharnow et al. [21] for
the analysis of permutation-based evolutionary algorithms.
The authors of that article investigate SORTING as an
optimisation problem where the goal is to maximise the
sortedness of a given permutation. We will consider the
following fitness functions measuring the sortedness of a
given permutation introduced in [21]:

• INV(π), measuring the number of pairs in correct order
(larger values are better),

• HAM(π), measuring the number of elements at correct
position, which is the number of indices i such that
π(i) = i (larger values are better),

• RUN(π), measuring the number of maximal sorted
blocks, which is the number of indices i such that
π(i+ 1) < π(i) plus one (smaller values are better),

• LAS(π), measuring the length of the longest ascending
subsequence (larger values are better),

• EXC(π), measuring the minimal number of pairwise
exchanges in π, in order to sort the sequence (smaller
values are better).

Given a tree X , we determine the permutation π that it
represents according to Algorithm 1. Once we have seen an
element during an inorder parse, we skip its duplicates. This
is necessary, as the resulting sequence of elements for which
we determine its sortedness should contain each element at
most once.

Note that EXC(π) can be computed in linear time, based
on the cycle structure of permutations. If the sequence is

sorted, it has n cycles. Otherwise, it is always possible to
increase the number of cycles by exchanging an element
that is not sitting at its correct position with the element
that is currently sitting there. For any given permutation π
consisting of n− k cycles, EXC(π) = k.

We will investigate the five listed measures for variable-
length evolutionary algorithms. Consequently, we might have
to deal with incomplete permutations as not all elements have
to be contained in a given individual. Most measures can also
be used for incomplete permutation, but we have to make
sure that complete permutations always obtain a better fitness
than incomplete ones, so that the sortedness measure guides
the algorithm from incomplete permutations to complete
ones. Therefore, we will use the sortedness measures as
above and use the following special fitness assignments that
enforce these properties:

• INV(π) is the number of pairs in order, except
INV(π) = 0 if |π| = 0, and INV(π) = 0.5 if |π| = 1,

• RUN(π) = n+1 if |π| = 0, otherwise RUN(π) = b+m
is the sum of the number of maximal sorted blocks b,
and the number of elements missing m = n− |π|,

• If |π| ≤ n then EXC(π) = e+m+ 1, else EXC(π) =
e, where e is the number of necessary exchanges, and
m = n− |π| the number of missing elements.

Note that e can be computed for incomplete permutations
as well, as only the order < on the expressed variables has to
be respected. This means that the permutations π1 = (1, 4)
and π2 = (1, 2, 3, 4) require no changes, but EXC(π1) 6=
EXC(π2), as the number of missing elements differs.

For example, for a tree X with π = (2, 3, 4, 5, 1, 6) and
n = 7, the sortedness results are HAM(X) = 1, RUN(X) =
1 + 1 = 2, and EXC(X) = 4 + 1 + 1 = 6.

MO-INV, MO-HAM, MO-RUN, MO-LAS and MO-EXC
are variants of the above-described problems. They take the
complexity C of a syntax tree (computed by the number
of leaves of the tree) as the second objective, e. g., MO-INV
(X) = (INV (X), C(X)). Optimisation algorithms can then use
this to cope with the bloat problem: if two solutions have the
same fitness value, then the solution of lower complexity can
be preferred.

III. ALGORITHMS

All GP algorithms that we analyse in this article only
use the mutation operator HVL-Prime to generate offspring.
HVL-Prime is an update of O’Reilly’s HVL mutation oper-
ator [19, 20]. It is motivated by minimality, rather than by
problem-specific operations. HVL-Prime produces a new tree
by making changes to the original tree via three basic oper-
ators: insertion, deletion and substitution (see Algorithm 2).
In each step of the algorithms, k mutations are applied to
the selected solution. For the single-operation variants of the
algorithms, k = 1 holds. For the multi-operation variants, the
number of operations performed is drawn each time from the
distribution k = 1 + Pois(1), where Pois(1) is the Poisson
distribution with parameter 1.

The algorithm (1+1)-GP* that we investigate first has no
explicit mechanism to control bloat whatsoever. The only

126

Algorithm 2: HVL-Prime mutation operator

1 Mutate Y by applying HVL-Prime k times: each time
randomly choose either insert, substitute or delete.

2 if Insert then
3 Choose a variable u ∈ L uniformly at random and

select a node v ∈ Y uniformly at random. Replace
v by a join node whose children are u and v, in
which their orders are chosen randomly.

4 if Substitute then
5 Replace a randomly chosen leaf v ∈ Y by a

randomly chosen leaf u ∈ L.

6 if Delete then
7 Choose a leaf node v ∈ Y randomly with parent p

and sibling u. Replace p by u and delete p and u.

Algorithm 3: (1+1)-GP*-single for maximisation

1 Choose an initial solution X;
2 repeat
3 Set Y := X;
4 Apply the mutation operator (given in Algorithm 2)

with k = 1 to Y;
5 if f(Y) > f(X) then set X := Y ;

feature that can potentially prevent the solution’s size to
become too large is that only strict fitness improvements
are accepted. Thus, the maximum solution size is limited
based on the size of the initial solution and by the number
of possible fitness improvements that can be performed.1

The single-objective variant called (1+1)-GP*-single (see
Algorithm 3) starts with an initial solution X , and produces
in each iteration a single offspring Y by applying the muta-
tion operator HVL-Prime given in Algorithm 2 with k = 1.
This means that it is a stochastic hill-climber that explores its
local neighbourhood. In the case of maximisation, Y replaces
X if f(Y) > f(X) holds. Minimisation problems are tackled
in the analogous way.

The single-objective variant called (1+1)-GP is identical to
the just described (1+1)-GP*, with the exception that, in the
case of maximisation, Y replaces X if f(Y) ≥ f(X) holds.
Again, minimisation problems are tackled in the analogous
way. As a consequence of the relaxed acceptance condition,
the complexity of the solution can increase as long as
the fitness does not decrease. Thus, (1+1)-GP truly has no
mechanism to prevent bloat whatsoever.

In order to introduce the parsimony pressure to (1+1)-GP,
where in case of identical fitnesses the solution of lower
complexity is preferred, we employ the multi-objective vari-
ants of the presented sortedness measures, e. g., MO-INV.
Without loss of generality, we assume that C is to be

1Note that the naming of our GP variants follows the conventions often
used in the computational complexity analysis of evolutionary algorithms:
an asterisk indicates that a strict fitness improvement over the old solution
is required in order for the new solution to replace the current solution.

Algorithm 4: SMO-GP

1 Choose an initial solution X;
2 Set P := {X};
3 repeat
4 Choose X ∈ P uniformly at random;
5 Set Y := X;
6 Apply mutation to Y;
7 if {Z ∈ P | Z � Y } = ∅ then set

P := (P \ {Z ∈ P | Z � Y }) ∪ {Y };

minimised and all fitness functions F , except RUN and EXC,
are maximised. In the parsimony approach, we optimise the
above-defined multi-criteria fitness functions MO-F(X) =
(F (X), C(X)) with respect to the lexicographic order, that
is, MO-F(X) ≥ MO-F(Y) holds iff F (X) > F (Y) ∨
(F (X) = F (Y) ∧ C(X) ≤ C(Y)) .

As the last algorithm, we consider the Simple Evolution-
ary Multi-Objective Genetic Programming (SMO-GP, see
Algorithm 4) algorithm introduced by Neumann [14] and
motivated by the SEMO algorithm for fixed-length represen-
tations by Laumanns, Thiele, and Zitzler [12]. Variants of
SEMO have been frequently used in the runtime analysis
of evolutionary multi-objective optimisation for fixed length
representations [see 7–9, 15, 16].

In this multi-objective variable-length algorithm, we treat
the two criteria F and C as equally important. In order
to compare two solutions, we consider the classical Pareto
dominance relations:

1) A solution X weakly dominates a solution Y (denoted
by X � Y) iff (F (X) ≥ F (Y) ∧ C(X) ≤ C(Y)).

2) A solution X dominates a solution Y (denoted by X �
Y) iff ((X � Y)∧(F (X) > F (Y) ∨ C(X) < C(Y)).

3) Two solution X and Y are called incomparable iff
neither X � Y nor Y � X holds.

A Pareto optimal solution is a solution that is not dominated
by any other solution in the search space. All Pareto optimal
solutions together form the Pareto optimal set, and the set of
corresponding objective vectors forms the Pareto front. The
classical goal in multi-objective optimisation is to compute
for each objective vector of the Pareto front a Pareto optimal
solution. Or, if the Pareto front is too large, the goal then is to
find a representative subset of the front, where the definition
of ‘representative’ depends on the choice of the conductor.

SMO-GP is a population-based approach that starts with
a single solution and it maintains a set of non-dominated
solutions obtained during the optimisation run. This set of
solutions constantly approximates the true Pareto front, i.e.
the set of optimal trade-offs between fitness and complexity.
In each iteration, it picks one solution uniformly at random
and produces one offspring Y by mutation. Y is introduced
into the population iff it is not weakly dominated by any other
solution in P . If Y is added to the population all individuals
that are dominated by Y are discarded.

Similar to the previously introduced algorithms, SMO-
GP-single uses the mutation operator HVL-Prime with k=1.

127

We also consider SMO-GP-multi that differs from SMO-GP-
single by choosing k according to 1 + Pois(1).

IV. STANDARD APPROACH WITHOUT BLOAT-CONTROL

The algorithm (1+1)-GP* (see Algorithm 3) that we inves-
tigate first has no mechanism to control bloat whatsoever. The
only feature that can potentially prevent the solution’s size
to become too large is that only strict fitness improvements
are accepted. Thus, the maximum solution size is limited
based on the size of the initial solution and by the number
of possible fitness improvements that can be performed.

A. Upper Bound

In this section we analyse the performance of our
(1+1)-GP* variants on one of the fitness functions introduced
in Section III.

We exploit a similarity between our variants and evolu-
tionary algorithms to obtain an upper bound on the time
needed to find an optimal solution. We use the method of
fitness-based partitions, which has originally been introduced
for the analysis of elitist evolutionary algorithms (see, e. g.,
[24]), where the fitness of the current search point can never
decrease. Although the used HVL-Prime operator is complex,
we can obtain a lower bound on the probability of making
an improvement considering fitness improvements that arise
from the HVL-Prime sub-operations insertion and substitu-
tion. In combination with fitness levels defined individually
for the used sortedness measures, this gives us the runtime
bounds in this section.

We denote by Tmax the maximal size of the tree during
the run of the algorithm and show the following theorem.

Theorem 1. The expected optimisation time is O(n3Tmax)
for the (1+1)-GP*-single and (1+1)-GP*-multi, using the
sortedness measure INV.

Proof. The proof is an application of the fitness-based parti-
tions method. Based on the observation that n · (n−1)/2+1
different fitness values are possible, we define the fitness
levels A0, . . . , An·(n−1)/2 with

Ai = {π |INV (π) = i} .

As there are at most n · (n− 1)/2 advancing steps between
fitness levels to be made, the total expected runtime is upper
bounded by the sum over all times needed to make such
steps.

We bound the times by investigating the case when only
a particular insertion of a specific leaf at its correct position
achieves an increase of the fitness.2 For this particular
insertion, we consider the lexicographically smallest pair
(i, j), i < j, that is currently incorrect: putting i directly
before j makes this pair correct. We now have to show
that this does not make any other pair which was previously
correct, incorrect. Assume there is a pair (k, l), k < l that

2For example, the tree with the sequence of leaves (when parsed inorder)
l = (n, n, 1, 2, . . . , n− 1) can only be improved (in a single HVL-Prime
step) by inserting a leaf labelled 1 at the leftmost position.

was previously correct and has become incorrect due to the
insertion of i. As only i is moved, l = i has to hold, but we
can show that this cannot be the case. k has to be smaller
than j, otherwise the pair cannot become incorrect. Thus,
k < i < j has to hold because k < l and i < j and
because of our assumption l = i. (k, j) was correct before
the insertion, so it has to be lexicographically smaller than
(i, j). Therefore k is before j in the list of expressed leaf
nodes. As i is placed directly before j and therefore after k,
(k, l) cannot become incorrect.

The probability for HVL-Prime to perform an insertion
is 1

3 , and the probability for the insertion to insert the new
leaf at the correct position of the introduced inner J-node is
at least 1

2 . This, together with the probability of selecting
the right element to add, which is bound by 1

n , and the
probability of adding it to the right position in the tree, which
is bound by 1

Tmax
, gives us a lower bound on the probability

for doing such an improvement in (1+1)-GP*-single3

1

3
· 1

2
· 1

n
· 1

Tmax
= Ω

(
1

nTmax

)
.

For the multi-operation variant, the probability for a single
mutation operation occurring (including the mandatory one)
is 1
e , which is a constant. Thus we have an improvement with

probability Ω
(

1
nTmax

)
in the multi-operation case as well.

Therefore, the expected optimisation time for both algorithms
is upper bounded by

n·(n−1)/2∑
k=0

O (nTmax) = O(n3Tmax).

B. Local Optima

In the following, we present several worst case examples
for HAM, RUN, LAS, and EXC that demonstrate that
(1+1)-GP* can get stuck during the optimisation process.
This shows that evolving a solution with this GP system is
much harder than working with the permutation-based EA
presented in [21], where only the sortedness measure RUN
leads to an exponential optimisation time.

We study worst case solutions that are hard to improve
by our algorithms. In the following, we write down such
solutions by the order of the leaves in which they are visited
by the inorder parse of the tree. We restrict ourselves to the
case where we initialise with a tree of size linear in n and
show that even this leads to difficulties for the mentioned
sortedness measures. Note, that a linear size is necessary to
represent a complete permutation of the given input elements.

For RUN and LAS, we investigate the initial solution Iw1

defined as
Iw1 = (n, n, . . . , n︸ ︷︷ ︸

n+1 instances of n

, 1, 2, 3, . . . , n)

and show that it can be hard to achieve an improvement.

3For example, for the new element to be inserted as the leftmost node of
the tree, insertion has to be chosen, then the old leftmost node has to be
chosen, and then the new node has to be placed as the left sibling of the
old leftmost node, not as it’s right sibling.

128

Theorem 2. Let Iw1 be the initial solution. Using the sort-
edness measures RUN and LAS, the expected optimisation
time of (1+1)-GP*-single and (1+1)-GP*-multi is infinite
and eΩ(n), respectively.

Proof. We consider (1+1)-GP*-single first. It is clear that
with a single HVL-Prime application, only one of the
leftmost ns can be removed. For an improvement in the
sortedness based on RUN or LAS, all leftmost n+ 1 leaves
have to be removed at once. Obviously, this cannot be done
by the (1+1)-GP*-single, resulting in an infinite runtime.

(1+1)-GP*-multi can only improve the fitness by removing
the leftmost n + 1 leaves. Hence, in order to successfully
improve the fitness, at least n + 1 sub-operations have to
be performed, assuming that we, in each case, delete one of
the leftmost ns. Because the number of sub-operations per
mutation is distributed as 1 + Pois(1), the Poisson random
variable has to take a value of at least n. This implies that
the probability for such a step is e−Ω(n) and the expected
waiting time for such a step is therefore eΩ(n).

Similarly, we consider the tree Iw2 defined as

Iw2 = (n, n, . . . , n︸ ︷︷ ︸
n+1 instances of n

, 2, 3, . . . , n− 1, 1, n)

and show that this is hard to improve the sortedness when
using the measures HAM and EXC.

Theorem 3. Let Iw2 be the initial solution. Using the sort-
edness measures HAM and EXC, the expected optimisation
time of (1+1)-GP*-single and (1+1)-GP*-multi is infinite
and eΩ(n), respectively.

Proof. We use similar ideas as in the previous proof. Again,
it is not possible for (1+1)-GP*-single to improve the fitness
in a single step, as all n + 1 leftmost leaves have to be
removed in order for the rightmost n to become expressed.
Additionally, a leaf labelled 1 has to be inserted at the
beginning, or alternatively, one of the n+1 leaves labelled n
has to be replaced by a 1. This results in a minimum number
of n+1 sub-operations that have to be performed by a single
HVL-Prime application, leading to the lower bound of eΩ(n)

for (1+1)-GP*-multi.

V. PARSIMONY APPROACH

In this section, we consider simple variable-length evo-
lutionary algorithms using the parsimony approach. The
single-objective variant called (1+1)-GP is identical to the
previously investigated (1+1)-GP*, with the exception that,
in the case of maximisation, Y replaces X if f(Y) ≥ f(X).

In [23] it was shown that the optimisation time of
(1+1)-GP-single on MO-EXC, MO-RUN and MO-HAM is
infinite, when initialised with specific solutions.

In the following, we add to these results by proving
polynomial runtime bounds for the other functions. The idea
behind the proof of the expected polynomial optimisation
time on MO-LAS is as follows. Given a tree T with its tree
size of Tinit, and its sortedness LAS(T) = k < n. For such
a tree, we always have at least one of the following two ways

to create a new tree that is accepted. First, we can improve
the sortedness by extending the longest ascending sequence.
Or second, we can reduce the size of the tree, if the tree
has more than k leaves. If the latter is the case, we can trim
the number of leaves down to k, thus eliminating blocking
elements and duplicates, and then we can build up the sought
permutation. Thus, we can now deal with trees such as Iw1

from Section IV-B, which have previously been problematic.

Theorem 4. The expected optimisation time of
(1+1)-GP-single on MO-LAS is O

(
Tinit + n2 log n

)
.

Proof. For the analysis, we consider two phases. First, we
show that we arrive at a tree with fitness k and k leaves
after O (Tinit + n log n) steps. Afterwards, we analyse the
time needed to get from there to the optimal solution.

1. Phase. Initially, let LAS(T) = k be the fitness of the
current tree T with s leaves. Then, the distance to the desired
tree size is d = s− k. As the probability for HVL-Prime to
perform a deletion is 1

3 , the probability to reduce the size via
a deletion in a single mutation step can be lower bounded
by

1

3
· s− k

s
=

1

3
· d

d+ k
≥ 1

3
· d

d+ n
.

Where the term s−k
s comes from the fact that we need to

select one of the redundant elements. Note that d cannot
increase as for d to increase, k would have to decrease, which
is impossible, as the primary objective is the maximisation of
the LAS-value. Alternatively, d could increase if s increases.
However, the tree size can only increase if the last accepted
step increased the sortedness as well. In a single step, if s
increases by 1, then k had to increase by 1 as well, which
leaves the distance s− k = d unchanged.

Now, with the fitness-based partitions method over the
distance d, we can bound the expected runtime for this first
phase:

Tinit∑
d=1

3
d+ n

d
= 3

n∑
d=1

d+ n

d
+ 3

Tinit∑
d=n+1

d+ n

d

≤ 3
n∑
d=1

d+ n

d
+ 3

Tinit∑
d=n+1

2

= O (n log n+ Tinit) .

2. Phase. Next, we investigate the time needed in the
second phase to arrive at the optimum. Therefore, we
again apply the above-described fitness-based partitions
method. We define the fitness levels A1, . . . , An with Ai =
{T |LAS(T) = i}. As there are at most n − 1 advancing
steps between fitness levels to be made, the total expected
runtime is upper bounded by the sum over all expected times
needed to make such steps.

After the initial trimming phase, we do not have any
blockages that prevent elements from being expressed at their
correct positions. Therefore, the existing longest ascending
sequence can be extended by inserting any of the n − k
unblocked elements that are missing in the sequence into

129

its correct position. The probability for a single of such an
insertion to happen is at least 1

3 ·
1
2 ·

1
n ·

n−k
n = 1

6 ·
n−k
n2 .

Thus, the expected runtime of the second phase can then be
bounded from above by

n−1∑
k=1

6
n2

n− k
= 6n

n−1∑
k=1

n

n− k
= O

(
n2 log n

)
.

Hence, the expected optimisation time of the algorithm is
upper bounded by O

(
Tinit + n2 log n

)
.

Theorem 5. The expected optimisation time of
(1+1)-GP-single on MO-INV is O

(
Tinit + n5

)
.

Proof. For our analysis, we draw upon results from the
Theorems 1 and 4. First, after O (n log n+ Tinit) steps, we
arrive at a non-redundant tree. Next, as we can have at
most n2 fitness-improving insertions, the maximum tree size
Tmax is bounded by O

(
n+ n2

)
after the initial trimming

phase. Consequently, the probability for a fitness-improving
mutation is bounded by Ω

(
1
n3

)
. Thus, we can now bound

the overall optimisation time by

O (n log n+ Tinit) +

n·(n−1)/2∑
k=0

O
(
n3
)

= O (n log n+ Tinit) +O(n5)

= O (Tinit) +O(n5)

Achieving a similar bound for the multi-mutation vari-
ant is not as easy, as the insertion of a missing element
(i.e. a fitness improvement), may be accompanied by the
insertion of many elements that are already present. Due to
the Poisson distributed number of operations performed by
HVL-Prime within (1+1)-GP-multi, the algorithm’s typical
local behaviour is difficult to predict.

Therefore, we take an alternate approach, by looking at a
sequence of steps t = poly(n). Let Tinit to be a tree with
size |Tinit| = poly(n). The failure probability for inserting
at most nε in a single HVL-Prime operation is e−Ω(nε).
Furthermore, given any initial tree, we can have at most n
improvements of the sortedness when the measurements LAS
and EXC are used. Now, we compute a bound of the tree
size. Looking at n mutations that increase the fitness, the
failure probability for adding at most nnε = n1+ε leaves in t
time steps is exponentially small: te−Ω(nε) = e−Ω(nε). Thus,
the tree size does not exceed Tmax = Tinit + n1+ε within
t = poly(n) time steps, with high probability.

Theorem 6. Let ε > 0 be a constant. The optimisation time
of (1+1)-GP-multi on MO-LAS is O

(
Tinit + n2 log n

)
, with

probability 1− o(1).

Proof. We will split the proof into two parts: first, we bound
the total time needed for deletions during a run, and second,
we investigate the time needed to perform the necessary
insertions to find the optimal solution.

First, given a solution where km elements have to be
removed in order to arrive at a non-redundant tree after the
m-th fitness-increasing insertion. In the following, let i be

the number of redundant elements in the tree, and let j be
the number of non-redundant elements in the tree.

Stage 1, i ≥ n+ 1.
As the probability for a single operation is 1

e , the proba-
bility for the deletion of a single redundant element at any
time is lower bounded by 1

3e
i
i+j ≥

1
3e

i
i+n ≥

1
3e

1
2 = 1

6e .

Then, the expected time to delete km elements is upper
bounded by 6ekm. Furthermore, as we know that we can
delete at most Tmax leaves over a full optimisation run,∑n
i=1 ki ≤ Tmax. Thus, we can bound the expected time

needed for all deletions (when i ≥ n+ 1) by 6eTmax.
Let X1, . . . , Xd be independent random variables taking

value 1 with Prob(Xi = 1) = 1
6e if an element is deleted

(in time step 1 ≤ t ≤ d), and 0 otherwise. With Chernoff’s
inequality4 (with δ = 1) we get that

Prob (X ≥ 12eTmax) = Prob
(
X ≥ 12e(Tinit + n1+ε)

)
≤ e−2e(Tinit+n

1+ε) ≤ e−Ω(n1+ε).

Stage 2, i ≤ n.
To bound the number of steps, we apply the technique

of multiplicative drift with tail bounds (see Definition 1 and
Theorem 1 in [3]).

In our case, Φ(x) = i is a feasible ν-drift function on
the number of redundant elements (with implicit constant
δ = 1). For the optimal solutions (”no redundant elements
left”) Φ(x) = 0 holds as required, Φ(x) ≥ 1 holds for
all non-optimal solutions, and E[Φ(xnew)] ≤

(
i− i

6en

)
=(

1− 1
ν(n)

)
Φ(x). Thus, ν(n) = 6en and δ = 1. Con-

sequently, we get that the time needed for all deletions
(when i ≤ n) during a run exceeds 6en(lnn + n lnn) with
probability at most n−c. As these deletion phases take place
at most n times, the resulting overall deletion time does not
exceed O(n2 log n) with probability 1− n−c+1 = 1− o(1).

Next, we consider the time necessary to perform the
insertions of the missing elements, once the insertion was
unblocked. We will again apply the multiplicative drift with
tail bounds, as used above. Note, that the situation is very
similar: instead of reducing the number of redundant ele-
ments, we are now reducing the number of missing elements.

Let j be the number of elements currently missing. As
the probability for a single operation is 1

e , the probability
for a single insertion of a missing element to happen at
the required position is lower bounded by 1

3e
1

2n
j
n = j

6en2 .
With E[Φ(xnew)] ≤

(
j − j

6en2

)
=
(

1− 1
ν(n)

)
Φ(x) we get,

ν(n) = 6en2 and δ = 1. Consequently, by applying Theorem
1 from [3]), we get that the time needed for all insertions
during a run exceeds 6en2(lnn + n lnn) with probability
at most n−c. Thus, the resulting overall time needed for
all insertions does not exceed O(n2 log n) with probability
1− n−c = 1− o(1).

4Let random variables X1, . . . , Xn be independent random variables
taking on values 0 or 1. Further, assume that P (Xi = 1) = pi. Then,
if we let X =

∑n
i=1Xi and E[X] be the expectation of X , then the

following bound holds: P (X ≥ (1+ δ)E[X]) ≤ e−E[X]δ2/3, 0 < δ ≤ 1

130

VI. MULTI-OBJECTIVE APPROACH

In this section, we consider the Simple Evolutionary Multi-
Objective Genetic Programming (SMO-GP, see Algorithm 4)
algorithm introduced by Neumann [14] and motivated by
the SEMO algorithm for fixed length representations by
Laumanns et al. [12]. We analyse the expected number of
iterations before the set of non-dominated solutions becomes
the true Pareto front. We call this the expected optimisation
time of SMO-GP algorithms.

The following lemma bounds the expected time until the
empty solution has been included into the population, when
considering an arbitrary optimisation problem:

Lemma 1 (Neumann [14]). Let Iinit be the size of the initial
solution and k be the number of different fitness values of
a problem F . Then the expected time until the population
of SMO-GP-single and SMO-GP-multi applied to MO-F
contains the empty solution is O (kIinit).

Theorem 7. The expected optimisation time of SMO-GP-
single and SMO-GP-multi is O(n2Iinit + n5) on MO-INV,
and O(nIinit + n3 log n) on MO-LAS.

Proof. First, as INV has n(n − 1) different fitness values,
using Lemma 1, the empty solution is produced after an
expected number of O

(
n2Iinit

)
steps. First, note that each

Pareto optimal solution with complexity 2i− 1 has an INV-
value of

∑i−1
1 i, if i ≥ 2.5

Second, as above, we will bound the time needed to
discover the whole Pareto front, once the empty solution is
introduced into the population. Let us assume that the popu-
lation contains all Pareto optimal solutions with complexities
2j−1, 1 ≤ j ≤ i. Then, a population that includes all Pareto
optimal solutions with complexities 2j−1, 1 ≤ j ≤ i+1, can
be achieved by producing a solution Y that is Pareto optimal
and that has complexity 2(i + 1) − 1. Y can be obtained
from a Pareto optimal solution X with C(X) = 2i − 1 by
inserting an element that increases the INV-value by i − 1.
This operation produces from a solution of complexity 2i−1
a solution of complexity 2(i+ 1)− 1 = 2i+ 1, as one leaf
node and one inner node are added.

Based on this idea we can bound the expected optimisation
time once we can bound the probability for such steps
to happen. Choosing X for mutation has probability at
least 1

n(n−1)/2+1 as the population size is upper bound by
n(n − 1)/2 + 1. Next, the mutation step carrying out just
one operation happens with at least 1/e, and the inserting
operation of HVL is chosen with probability 1/3. The
probability to select one of the missing elements can be
bounded by 1/n. However, the correct position for such
a randomly chosen element has to be chosen, in order to
produce the Pareto optimal solution of complexity i + 1.
This probability is at least 1/2 · 1/n, as the number of leaf
nodes is bound by n, and the probability to insert as the
correct child of the newly introduced inner node is at least

5For the sake of readability, we will omit in the following the special
cases for i = 0 and i = 1.

1/2. Thus, the total probability of such a generation can be
bounded by 1

n(n−1)/2+1 ·
1
3e ·

1
2n ·

1
n .

Thus, as there are only n Pareto-optimal improvements
possible once the empty solution is introduced into the pop-
ulation, the expected time until all Pareto optimal solutions
have been generated is:
n∑
i=0

(
1

n(n− 1)/2 + 1
· 1

3e
· 1

2n
· 1

n

)−1

= 6en5 = O(n5).

Similarly, we can prove an upper bound for MO-LAS.
First, note that each Pareto optimal solution with LAS-value
i represents a perfectly sorted permutation of i elements.
Next, as only n different LAS-values are possible, the empty
solution is produced after an expected number of O (nIinit)
steps. Just as above, let us assume that the population
contains all Pareto optimal solutions with complexities 2j−1,
1 ≤ j ≤ i. Then, a population that includes all Pareto optimal
solutions with complexities 2j − 1, 1 ≤ j ≤ i + 1, can be
achieved by inserting any of the missing n− i elements into
its correct position in the Pareto optimal individual X with
LAS(X) = C(X) = 2i− 1.

Thus, as there are only n Pareto-optimal improvements
possible once the empty solution is introduced into the pop-
ulation, the expected time until all Pareto optimal solutions
have been generated is:
n∑
i=0

(
1

n+ 1
· 1

3e
· 1

2n
· n− i

n

)−1

= 6en2(n+ 1) ·
n∑
i=0

1

n− i

= O(n3 log n).

VII. CONCLUSIONS

With this article, we contribute to the understanding of
variable-length algorithms with our theoretical investigations.
We show that parsimonious and multi-objective approaches
can help algorithms to solve problems that are otherwise
unsolvable.

Tables I and II summarise our theoretical findings, list ex-
isting bounds, and show open problems. As can be observed
from the tables, all bounds take into account tree sizes of
some kind: either the maximum solution size Tmax, or the
size of the initial solution Tinit. In particular, the runtime of
(1+1)-GP*, F(X) depends on the maximum tree size Tmax,
since the expected time to get to the optimal solution grows
larger and larger as the tree grows in size. The runtimes of
several MO-F(X) variants depend on the initial tree size Tinit
as often the first step of the proof involves deconstructing
the original solutions until a tree of size zero is found. A
comprehensive experimental investigation on the tightness of
the presented bounds (similar to the one done in [22]) will
be included in the journal version of this article.

In order to narrow the gap between theory and application
over the next couple of years, the investigated problems
need to resemble real-world problems more closely. One
direction that we might take is the analysis of variable-length
algorithms when they are used for symbolic regression,
which is one of the uses of genetic programming.

131

F(X)
(1+1)-GP*, F(X) (1+1)-GP, F(X)

single multi single/multi
INV O(n3Tmax) ? O(n3Tmax) ?

?
LAS ∞ ? Ω

((
n
e

)n)?
HAM ∞ ? Ω

((
n
e

)n)?
EXC ∞ ? Ω

((
n
e

)n)?
RUN ∞ ? Ω

((
n
e

)n)?
TABLE I

SUMMARY OF COMPUTATIONAL COMPLEXITY BOUNDS FOR

SINGLE-OBJECTIVE VARIANTS. THE QUESTION MARK INDICATES

COMBINATIONS FOR WHICH WE DO NOT KNOW ANY BOUNDS.
? INDICATES NEW BOUNDS PRESENTED IN THIS ARTICLE.

F(X)
(1+1)-GP, MO-F(X) SMO-GP, MO-F(X)
single multi single/multi

INV O(Tinit + n5) ? ? O
(
n2Tinit + n5

)
?

LAS O(Tinit + n2 logn) ?
O(Tinit+

n2 logn) †?
O(nTinit + n3 logn) ?

HAM ∞ ? O(nTinit + n4)

EXC ∞ ? O(nTinit + n3 logn)

RUN ∞ ? O(nTinit + n3 logn)

TABLE II
SUMMARY OF COMPUTATIONAL COMPLEXITY BOUNDS FOR

MULTI-OBJECTIVE VARIANTS. † INDICATES A BOUND THAT HOLDS WITH

PROBABILITY 1− o(1). QUESTION MARKS INDICATE COMBINATIONS

FOR WHICH WE DO NOT KNOW ANY BOUNDS. ? INDICATES NEW BOUNDS

PRESENTED IN THIS ARTICLE.

REFERENCES

[1] A. Auger and B. Doerr. Theory of Randomized
Search Heuristics: Foundations and Recent Develop-
ments. World Scientific, 2011.

[2] S. Cathabard, P. K. Lehre, and X. Yao. Non-uniform
mutation rates for problems with unknown solution
lengths. In FOGA, pp. 173–180. ACM, 2011.

[3] B. Doerr and L. A. Goldberg. Drift analysis with tail
bounds. In PPSN, pp. 174–183. Springer, 2010.

[4] B. Doerr and E. Happ. Directed trees: A powerful
representation for sorting and ordering problems. In
CEC, pp. 3606–3613. IEEE, 2008.

[5] G. Durrett, F. Neumann, and U.-M. O’Reilly. Computa-
tional complexity analysis of simple genetic programing
on two problems modeling isolated program semantics.
In FOGA, pp. 69–80. ACM, 2011.

[6] Evolved Analytics LLC. DataModeler 8.0. Evolved
Analytics LLC, 2010.

[7] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and
C. Witt. Approximating covering problems by ran-
domized search heuristics using multi-objective models.
Evolutionary Computation, 18:617–633, 2010.

[8] O. Giel. Expected runtimes of a simple multi-objective
evolutionary algorithm. In CEC, pp. 1918–1925, 2003.

[9] O. Giel and P. K. Lehre. On the effect of populations in
evolutionary multi-objective optimisation. Evolutionary
Computation, 18:335–356, 2010.

[10] T. Kötzing, A. M. Sutton, F. Neumann, and U.-M.
O’Reilly. The max problem revisited: the importance
of mutation in genetic programming. In GECCO, pp.
1333–1340. ACM, 2012.

[11] J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, 1992.

[12] M. Laumanns, L. Thiele, and E. Zitzler. Running
time analysis of multiobjective evolutionary algorithms
on pseudo-boolean functions. IEEE Transactions on
Evolutionary Computation, 8:170–182, 2004.

[13] A. Moraglio, A. Mambrini, and L. Manzoni. Runtime
analysis of mutation-based geometric semantic genetic
programming on boolean functions. In FOGA, pp. 119–
132. ACM, 2013.

[14] F. Neumann. Computational complexity analysis of
multi-objective genetic programming. In GECCO, pp.
799–806. ACM, 2012.

[15] F. Neumann and I. Wegener. Minimum spanning
trees made easier via multi-objective optimization. In
GECCO, pp. 763–770. ACM, 2005.

[16] F. Neumann and C. Witt. Bioinspired Computation
in Combinatorial Optimization - Algorithms and Their
Computational Complexity. Springer, 2010.

[17] F. Neumann, U.-M. OReilly, and M. Wagner. Compu-
tational complexity analysis of genetic programming -
initial results and future directions. In GPTP, pp. 113–
128. Springer, 2011.

[18] A. Nguyen, T. Urli, and M. Wagner. Single- and
multi-objective genetic programming: new bounds for
weighted order and majority. In FOGA, pp. 161–172.
ACM, 2013.

[19] U.-M. O’Reilly. An Analysis of Genetic Programming.
PhD thesis, Carleton University, 1995.

[20] U.-M. O’Reilly and F. Oppacher. Program search with
a hierarchical variable length representation: Genetic
programming, simulated annealing and hill climbing.
In PPSN, pp. 397–406. Springer, 1994.

[21] J. Scharnow, K. Tinnefeld, and I. Wegener. The analysis
of evolutionary algorithms on sorting and shortest paths
problems. Journal of Mathematical Modelling and
Algorithms, 3:349–366, 2004.

[22] T. Urli, M. Wagner, and F. Neumann. Experimental sup-
plements to the computational complexity analysis of
genetic programming for problems modelling isolated
program semantics. In PPSN, pp. 102–112. Springer,
2012.

[23] M. Wagner and F. Neumann. Parsimony pressure
versus multi-objective optimization for variable length
representations. In PPSN, pp. 133–142. Springer, 2012.

[24] I. Wegener. Methods for the analysis of evolutionary al-
gorithms on pseudo-Boolean functions. In Evolutionary
Optimization, pp. 349–369. Kluwer, 2002.

132

