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Abstract—Inspired by the temporal receding horizon control 
in control engineering, this paper reports a novel spatial receding 
horizon control (SRHC) strategy to partition the facility location 
optimization problem (FLOP), in order to reduce the complexity 
caused by the problem scale. Traditional problem partitioning 
methods can be viewed as a special case of the proposed SRHC, 
i.e., one-step-wide SRHC, whilst the method in this paper is a 
generalized N-step-wide SRHC, which can make a better use of 
global information of the route network where a given number of 
facilities need to be set up. With SRHC to partition the FLOP, 
genetic algorithm (GA) is integrated as optimizer to resolve the 
partitioned problem within each spatial receding horizon. On one 
hand, SRHC helps to improve the scalability of GA. On the other, 
the population feature of GA helps to reduce the shortsighted 
performance of SRHC. The effectiveness and efficiency of the 
reported SRHC and GA for the FLOP are demonstrated by 
comparative simulation results. 

Keywords—Genetic Algorithm, Spatial Receding Horizon 
Control, Facility Location Optimization, Problem Partitioning. 

I. INTRODUCTION  
Given a route network, a distribution of users and a set of 

optional locations, the facility location optimization problem 
(FLOP) is concerned with where to locate a specific number 
of facilities, so that the users can access the facilities the most 
efficiently [1], [2]. The FLOP has a broad real-world 
application background. For example, a supermarket company 
setting-up its store chain in a community [3], local 
government organizing earthquake shelters in a city [4], and a 
logistic company establishing its distribution stations in a 
country [5].    

To address the FLOP, researchers have already attempted 
many different methods [3]-[9]. In particular, in common with 
applications to many other NP-hard problems, evolutionary 
computation (EC) methods as large-scale parallel stochastic 
searching and optimization algorithms have demonstrated 
good potential in resolving the FLOP. However, the poor 
scalability of these reported methods largely hampers their 
applications in the large-scale FLOP, which may easily 

include millions of nodes. As a family member of population-
based algorithms, EC methods are generally very expensive in 
terms of memory demand and computational time in the case 
of large-scale problems [10], [11]. To address the scalability 
problem, decentralized and distributed versions of algorithms 
often need to be developed. Before such decentralized and 
distributed algorithms can be applied, a problem partitioning 
method has to be employed in order to divide a large-scale 
network into some sub-graphs of manageable size. This paper 
attempts to shed some more light on how to design an 
effective scalable EC method, to be more precise a genetic 
algorithm (GA), for the FLOP.  

In a conventional problem partitioning method (e.g., see [12], 
[13]), a large-scale problem is divided into a series of separate 
sub-problems. Then, each sub-problem is resolved in a rather 
isolated manner. After all sub-problems have been resolved 
independently their sub-solutions are integrated together to 
form a complete solution to the original large-scale problem. 
However, even though optimal sub-solutions to the sub-
problems can be found, the integrated complete solution to the 
original large-scale problem is often not optimal or even good. 
In other words, optimal sub-solutions to the sub-problems are 
often not optimal at all from a global point of view. A major 
cause of losing the global optimality is the 
independent/isolated way of resolving each sub-problem. 
Inspired by the temporal receding horizon control (TRHC) 
strategy in the area of control engineering [14], [15], we have 
recently proposed a novel spatial receding horizon control 
(SRHC) strategy to partition large-scale network coding 
problems in [16]. In the SRHC problem partitioning strategy, 
a large-scale problem is divided into many sub-problems, 
which compose a problem space, a spatial horizon is then 
defined which covers some sub-problems each time and will 
recede in the problem space. The spatial horizon is composed 
of several spatial steps. Each time the spatial horizon recedes 
by a spatial step. All sub-problems covered by a spatial 
horizon will be optimized as a whole, and only the sub-
solutions to the sub-problems within the first step of the 
spatial horizon will be saved and fixed, whilst others will be 
discarded and then recalculated in the next spatial horizon. 
With the SRHC strategy, a sub-problem will be optimized not 
in an independent/isolated manner, but by making use of its 
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neighboring information in the problem space. Simply 
speaking, the conventional problem partitioning strategy can 
be viewed as a one-step-wide SRHC, whilst the new method 
proposed here is a generalized N-step-wide SRHC. Clearly, by 
optimizing a sub-problem together with its neighboring sub-
problems, it is likely that the quality of the associated sub-
solution will be improved in terms of global optimality. The 
solution quality may be further improved by integrating a 
population based method into the SRHC strategy by setting up 
a solution pool for the sub-problems in those decided spatial 
steps. 

This paper particularly attempts to apply the SRHC strategy 
proposed in [16], and develops an effective GA to resolve the 
FLOP. As a new application study, the FLOP in this paper will 
further demonstrate the practicability of the SRHC in [16]. The 
remainder of this paper is organized as follows. Section 2 gives 
a mathematical description of FLOP. Section 3 explains the 
details of the SRHC strategy and the design of GA with SRHC 
for the FLOP. Some simulation results are discussed in Section 
4, and the paper ends with some conclusions and comments for 
future work in Section 5. 

II. PROBLEM DESCRIPTION OF FLOP 
We need a mathematical model of the FLOP. Suppose a 

route network G(V,E) is composed of node set V and a 
connection set E. V has NN different nodes which represent 
user and/or candidate facility locations (CFLs), and NL 
links/connections. In this study, there are two values 
associated with each node i,  (i=1,…,NN): one is the category 
of node i, denoted as C(i), and the other is the number of users 
at node i, denoted as U(i). Basically, there may be 4 categories 
of nodes: user location only, CFL only, both, and neither of 
them (e.g., just a route junction), and the associated C(i) can 
be valued as 1, 2, 3 and 0, respectively. Thus, for C(i)=2 or 0, 
we always have U(i)=0, while for C(i)=1 or 3, U(i)≥1. Based 
on node category, all nodes in the route network can be 
divided into 4 sets: Ω1, Ω2, Ω3 and Ω0, and set Ωm includes all 
nodes with C(i)=m, m=1, 2, 3 or 0. The route network can be 
recorded as an NN×NN adjacent matrix A. The matrix entry 
A(i,j)=1, i=1,…,NN and j=1,…,NN, defines a connection, i.e., a 
direct route link from node i to node j. Otherwise, A(i,j)=0 
means no direct route. We assume A(i,i)=0, i.e., no self-
connecting route is allowed. If A(i,j)=1, then the direct 
connection between node i to node j has a length L(i,j)>0.  

Suppose it is planned to set up NF facilities in the route 
network. Then, the FLOP aims to find the best NF locations 
among the sets Ω2 and Ω3, so that the overall distance from all 
nodes in Ω1 and Ω3 to access a facility (no matter which 
facility) is minimized. Let S be a solution to the FLOP. S is 
clearly a set of NF nodes, and  

        32 ΩΩ⊆ ∪S .                                 (1) 
For any node i in Ω1UΩ3, suppose the closest facility is 
located in node F(i), and 

        SiF ∈)( .                                       (2) 
Then, the FLOP can be mathematically described as the 
following minimization problem 
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where Dmin(i,F(i)) is the minimal distance from node i to node 
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where RCF,i denotes the shortest route from node i to its closest 
facility, i.e., node F(i), RCF,i(k)=n means node n is the kth node 
along the route RCF,i, k=1,…,NR2CF(i), and n=1,…,NN, and 
NR2CF,i tells how many nodes, including node i and its closest 
facility, are included in the route RCF,i. Fig.1 gives an example 
of route network for the FLOP. 
 

 
Fig.1 An example of facility location optimization problem (FLOP). 

Suppose there are N2U3 nodes in 
32 ΩΩ ∪ in total. Then the 
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Basically, a larger N2U3 and a larger NF mean a more 
complicated FLOP. For a given NF, if all nodes in the network 
are available to set up facility, i.e., N2U3=NN, then the FLOP 
has the maximal solution space, which makes the optimization 
the most difficult.  

To address the above FLOP, firstly, we need to resolve a 
many-to-many route optimization problem, where, for two 
given sets of nodes, one as sources and the other as 
destinations (e.g., set 

32 ΩΩ ∪ and set S), we must find the 
closest destination node for each source node. Fortunately, 
there are many mature and effective methods to resolve this 
problem (for example, see [17]), and they will not be discussed 
further in this paper. The difficulty in the FLOP is to find the 
best set of destinations for the many-to-many route 
optimization problem. This is obviously a combinatorial, NP-
hard problem, and therefore, evolutionary computation 
methods such as GA are highly appropriate. 

III. GA WITH SRHC FOR FLOP 

A. From TRHC to SRHC 
First of all, a brief review on the conventional receding 

horizon control (RHC) strategy in control engineering will be 
very useful. To distinguish it from the method proposed in this 
paper, the conventional RHC in dynamic control problems is 
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hereafter referred to as temporal receding horizon control 
(TRHC). TRHC, also known as model predictive control, has 
proved to be a highly effective online optimization strategy in 
the area of control engineering, and it exhibits many 
advantages with respect to other control strategies [14], [15]. 
It is easy for TRHC to handle complex dynamic systems with 
various constraints. It also naturally exhibits promising robust 
performance against uncertainties since the online updated 
information can be sufficiently used to improve the decision. 
Simply speaking, TRHC is an N-step-ahead online 
optimization strategy to deal with dynamic problems. In this 
framework, decision is made by looking ahead for N steps in 
terms of a given cost/criterion, and the decision is only 
implemented by one step. Then the implementation result is 
checked, and a new decision is made by taking updated 
information into account and looking ahead for another N 
steps.  

Fig.2 illustrates the basic idea of TRHC by comparing it 
with some other optimization strategies in an intuitive way. 
The offline optimization strategy, as shown in Fig.2.(a), is 
clearly not suitable for dynamic environments. The 
conventional dynamic optimization process, as shown in 
Fig.2.(b), is often criticized for its poor real-time properties 
and poor performance under disturbances and/or uncertainties 
in dynamic environments. As illustrated in Fig.2.(c), thanks to 
the idea of a temporal receding horizon, the TRHC strategy 
provides a possible solution to the problems confronted by the 
conventional dynamic optimization strategy. A properly 
chosen temporal receding horizon can effectively filter out 
most unreliable information and reduce the scale of the 
problem. The latter is especially important for complex 
systems and time-consuming algorithms to satisfy the time 
limit on the online optimization process. TRHC has now been 
widely accepted in the area of control engineering [14], [15]. 
Attention has also been paid to applications of TRHC to areas 
such as management and operations research [18], [19]. 
Particularly, the TRHC strategy has recently been reported to 
be successfully integrated into population-based algorithms to 
tackle various dynamic NP-hard optimization problems [20]-
[22]. 

 

 
Fig.2 Illustration of temporal receding horizon control (TRHC). 

Inspired by the fact that the success of the TRHC strategy 
largely results from decomposing a complex dynamic process 

into a serial of temporally associated sub-processes, here we 
are concerned with how to extend the basic idea of TRHC in 
order to decompose a large-scale static problem into a series 
of associated sub-problems (it should be noted that 
conventional partitioning methods decompose a static problem 
into a set of separated sub-problems). The question is then in 
what terms could sub-problems be associated in static 
environments? Basically, we need to create a problem-specific 
artificial space, project into the space all parts that compose a 
solution to the original static problem, and then design a 
spatial horizon which recedes in the space. As the spatial 
horizon recedes out, the value/status of each part will be 
optimized along together with all other parts that are within 
the current horizon scope. Once the values/statuses of all parts 
are optimized, a final solution to the original static problem is 
determined. Now, one can see that sub-problems will be 
spatially associated in the artificial space. Therefore, we call 
our new strategy for decomposing static problems as spatial 
receding horizon control (SRHC). 

After an artificial space is designed and all parts that 
compose a solution are projected into the space, it is crucial to 
design a spatial horizon receding process to decompose the 
original static problem into a serial of spatially associated sub-
problems. A basic spatial horizon receding process can be 
described as follows. Suppose a solution to a large-scale static 
problem is composed of M local parts.  The SRHC strategy 
makes use of spatial structure (where positions indicate 
strength of influence between parts of a solution) to move 
from purely local, part-by-part, optimization to using 
information from the neighboring, sub-global context. An 
optimization algorithm is applied many times to determine the 
M parts in a solution. Starting with a specified part, the 
algorithm calculates at each time step the N new parts (usually 
N<<M), which are the most associated with the decided parts, 
(i.e., parts which have already been optimized in the previous 
iterations). Although the algorithm will optimize N parts each 
time, only the part that is the most associated with the decided 
parts will be added to the list of decided parts. The other N-1 
parts will be discarded to be recalculated in later iterations. 
The algorithm keeps running until all M parts have been 
optimized. This leads to a general N-step-wide static problem 
partitioning method. Existing problem-partitioning methods 
may be considered as a one-step-wide SRHC strategy, i.e., 
each part of a solution is determined in an isolated manner; 
see for example [12]. In the generalized N-step-wide SRHC 
strategy, each part is calculated by referring to its most 
relevant surrounding parts. In other words, sub-global 
information is used in the determination of a local part. The 
extra information considered by the N-step-wide SRHC 
strategy can improve the quality of each part and that of the 
global solution. 

B. FLOP in the SRHC framework 
To apply the SRHC strategy to the FLOP, we need first to 

define the artificial space, spatial step and receding horizon for 
the FLOP. Fortunately, it is very straightforward in the case of 
FLOP. The artificial space is exactly the space where the route 
network of the FLOP is developed. Then we divide the 
artificial space into some equally sized rectangular areas, and 
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each of these is a spatial step. Then a receding horizon is 
composed of NHL spatial steps. Preferably, the spatial steps of 
a receding horizon should be NHL successive spatial steps in 
the artificial space. Actually, from the viewpoint of a 
separated local optimization (SLO) strategy, each spatial step 
defines a sub-problem. For the proposed SRHC strategy, a 
sub-problem is defined by the receding horizon. Suppose the 
original route network of the FLOP is divided into NSP spatial 
steps. Starting from a certain spatial step (e.g., the top-left 
spatial step), we assign a serial number to each spatial step 
according to successive relationships between spatial steps. 
Then the first receding horizon is composed of spatial steps 1 
to NHL, which together define the first sub-problem to be 
resolved. After the first sub-problem is resolved, the sub-
solution associated with the first spatial step is fixed (i.e., the 
first spatial step becomes a decided spatial step). Then the first 
spatial step is removed from the receding horizon, and a new 
spatial step (based on the serial number) is attached to the 
receding horizon, in order to compose a new receding horizon, 
and therefore defines a new sub-problem. In this way, the 
horizon is receding in the space of route network, until all 
spatial steps become decided spatial steps. Fig.3 illustrates 
how artificial space, spatial step and receding horizon are 
defined in a simplified FLOP, and how the FLOP is resolved 
as the horizon recedes spatial step by spatial step.         
 

 
Fig.3 Illustration of SRHC for the FLOP 

Now, we can mathematically reformulate the FLOP within 
the framework of SRHC. Under the SRHC strategy, the GA 
only needs to optimize the sub-problem defined by the current 
receding horizon. Let ΩCFL_RH and ΩU_RH be the set of CFL 
nodes and the set of user nodes covered by the current 
receding horizon, respectively, SRH be a sub-solution 
associated with the receding horizon, and SRH identifies NRH 
facility locations. Then the sub-problem that GA needs to 
resolve for the current receding horizon is the following 
minimization problem 

          ∑
Ω∈Ω⊆

×
RHURHCFLRH iS

iFiDiU
__

))(,()( minmin ,              (6) 

subject to Eq.(4) and 

        RHSiF ∈)( .                                       (7) 
Basically, the above minimization problem aims to choose 
NRH nodes as facility locations from the set ΩCFL_RH, so that all 
user nodes in the set ΩU_RH can access facilities most 
efficiently. Once a sub-problem is resolved, we then move the 
horizon back, i.e. update the receding horizon by removing its 
first spatial step and adding a new successive spatial step. The 
updated receding horizon represents a new sub-problem to be 
resolved. This process continues in the same vain and a series 
of minimization problems in the form defined by Eq.(6) is 
resolved, until a solution to the original FLOP is achieved.  

Compared with the SLO strategy, the SRHC strategy is less 
short-sighted because it considers some successive spatial 
steps when calculating the sub-solution to a certain single 
spatial step (i.e., the first spatial step in the receding horizon, 
which will become a decided spatial step after the calculation). 
However, it is still very difficult, if not impossible, to 
completely avoid short-sighted performance under the SRHC 
strategy. In other words, since the sub-solution to a decided 
spatial step will not change during subsequent calculations, 
once the sub-solution is not a part of the global optimal 
solution to the original FLOP (which is likely to happen), the 
performance of SRHC is doomed no matter how well all 
subsequent calculations are conducted.  

To further reduce short-sighted performance of SRHC, an 
effective measure is to dynamically develop a sub-solution 
pool for the decided spatial steps. In this pool, some quality 
sub-solutions for decided spatial steps during previous 
calculations are saved. Then, when resolving the sub-problem 
associated with the current receding horizon, besides choosing 
NRH nodes as facility locations from the set ΩCFL_RH, we also 
need to choose a sub-solution from the pool for decided spatial 
steps. Therefore, the problem defined by Eq.(6) needs to 
modified as follows. We set the pool size as NPS, i.e., there are 
NPS sub-solutions in the pool for decided spatial steps. Let 
ΩU_DSS be the set of user nodes covered by decided spatial 
steps, and SDSS(k) the kth sub-solution in the pool for decided 
spatial steps. Then the minimization problem GA needs to 
resolve for the current receding horizon is described as 
following: 
       ∑

ΩΩ∈Ω⊆=
×

DSSURHURHCFLRHPS iSNk
iFiDiU

___

))(,()( min
,,...,1

min
∪

      (8) 

subject to Eq.(4) and 
        )()( kSSiF DSSRH ∪∈ .                          (9) 

On one hand, the introduction of the sub-solution pool for 
decided spatial steps can effectively reduce short-sighted 
performance of SRHC, because the sub-solution for decided 
spatial steps are now changeable during subsequent 
calculations. On the other hand, the recalculation of sub-
solution for decided spatial steps is computationally cheap, 
because we do not need to re-choose nodes as facility 
locations in decided spatial steps, but directly choose from a 
pool of quality sub-solutions (actually simply choose a serial 
number in the pool). Regarding how to develop such a pool of 
quality sub-solutions for decided spatial steps, the population 
feature of GA gives a perfect solution. Every time after the 
calculation with GA, instead of choosing only the first best 
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sub-solution, we actually choose the first NPS best different 
sub-solutions to develop/update the pool for decided spatial 
steps.    

C. Design of GA with SRHC 
A general illustration of GA with SRHC is given in Fig.4, 

from which one can see that a major difference between the 
proposed GA with SRHC and traditional GA is that a sub-
solution pool for decided spatial steps needs to be developed 
and updated during the run of GA. The detailed descriptions 
of GA with SRHC can be found in [16]. In this sub-section, 
we mainly focus on how to design an effective GA with 
SRHC for the FLOP. 

 
Fig.4 Flowchart of GA with SRHC. 

 
Firstly, we need to decide on chromosome structure. Here 

we use an integer vector as chromosome as illustrated in Fig.5. 
The chromosome has NRH+1 genes, which are classified into 
two categories. Category I has only one gene, i.e., the first 
gene g(1), which indicates which sub-solution in the pool for 
decided spatial steps is chosen. The other NRH genes belong to 
Category II, and they record which NRH nodes in the set of 
ΩCFL_RH are chosen as facility locations in the current receding 
horizon. It should be noted that, in traditional GA, with either 
the global optimization (GO) strategy or the SLO strategy, a 

chromosome only has genes of Category II.    
One may wonder whether two different categories of genes 

in chromosome would make evolutionary operations more 
complicated. Actually, the chromosome structure as illustrated 
in Fig.5 imposes no difficulty in the design of evolutionary 
operations, i.e., mutation and crossover in GA.  

The mutation is simple. Firstly we choose a gene randomly. 
If the first gene is chosen, then we randomly reset its value 
between 1 to NPS. Otherwise, we choose for the gene a new 
node from the set ΩCFL_RH. Here a new node means it is not 
included in the current chromosome.  

 

 
Fig.5 Chromosome structure employed by the GA with SRHC for the FLOP. 
 

The crossover is also simple. For two given parent 
chromosomes, an offspring chromosome will randomly inherit 
their first genes. For other genes, we first sort out common 
nodes shared by parent chromosomes, and then pass them 
directly onto offspring. Suppose there are NCN common nodes. 
Then there are still NRH-NCN genes of Category II which need 
to be filled. Therefore, we randomly choose NRH-NCN nodes 
from the non-common nodes of parent chromosomes.  

IV. SIMULATION RESULTS 
In this section, we mainly compare the proposed SRHC 

strategy with the GO strategy and the separated local 
optimization (SLO) strategy (i.e., one-step-wide SRHC with 
no sub-solution pool for decided spatial steps), in order to 
assess how different optimization strategies will affect the 
performance of GA. The population of the GA is always set as 
NPOP=100 in this simulation. For GA with either the SLO 
strategy or the SRHC strategy, the number of evolved 
generations is set as NEG1=100. Suppose an original route 
network for the FLOP is divided into NSP sub-networks as 
spatial steps. Then the GA with the SLO strategy needs to run 
NSP times, in order to find a solution to the original FLOP. 
This means the GA with the SLO strategy will generate NPOP

×NEG1×NSP chromosomes. Similarly, one may deduce that 
the GA with the SRHC strategy will generate NPOP×NEG1×

(NSP-NHL+1) chromosomes before a solution to the original 
FLOP can be found. Since the GA with the GO strategy only 
needs to run once to get a solution to the original FLOP, to 
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make a fair comparison, in this simulation, the number of 
evolved generations in the GA with the GO strategy is set as 
NEG2=NEG1×NSP. It should be nother that we here fix the 
population size and allow the GA with the GO strategy to 
have more evolved generations, rather than fixing the number 
of evolved generations whilst allowing a larger population. 
This is because: (i) the FLOP is usually an off-line 
optimization problem, which means computational time is not 
the most important issue; (ii) a larger population size demands 
more computer memory, which might be restricted by 
available computing hardware resources. Therefore, we fix the 
population size and allow a larger number of evolved 
generations.     

 

     
(a) Grid network                                  (b) Random network 

Fig.6 Two examples of test cases. 
 

There are two categories of route networks used in the 
simulation: grid networks and random networks. In this study, 
every node in a network is both user location and CFL, and 
this makes the FLOP most complicated, because, according to 
Eq.(5), for a given NF, the solution space reaches the 
theoretical maximal size. In this study, each node has an 
average of 4 links to its neighbor nodes (just similar to a real-
world route network), and for the sake of simplicity, has only 
1 user. The reason for using a grid network is because the 
theoretical optimal solution for the FLOP can be easily 
deduced, and therefore the performances of different 
optimization strategies can be precisely assessed. For example, 
Fig.6.(a) gives a grid network of 144 nodes, which are evenly 
distributed in a rectangular area. Suppose we need to optimize 
the locations of 16 facilities in the network. Then, one can 
easily work out that the theoretical optimal locations are those 
red nodes in Fig.6.(a). Then by comparing with the outputs of 
different optimization strategies, we can clearly see how far 
such outputs are from the theoretical optimal solution. 
However, real-world route networks are far more than grid, 
and their node locations and links are rather random, just like 
illustrated in Fig.6.(b), which represent the second category of 
networks used in the simulation. In general, it is very difficult, 
if not impossible, to deduce the theoretical optimal solution in 
a network of the second category, i.e., a random network. The 
reason to use random networks is because they can give us a 
better clue regarding the applicability of different optimization 
strategies in a real-world environment. In the simulation, for 
each category of networks, there are 5 test scenarios with 
different NN, NL and NF values. Table 1 defines all test 
scenarios in the simulation. For each random test scenario, 
100 networks are randomly generated. For each network, GA 
with a certain optimization strategy is applied for 100 times. 
For the SLO strategy and the SRHC strategy to apply, we need 

to define spatial steps. In the simulation, each spatial step 
covers a rectangular area of 600×600 (spatial distance unit)2 
as used in Fig.6. Therefore, for instance, for either case in 
Fig.6, the network is divided into 16 spatial steps. Under the 
SLO strategy, the GA needs to run 16 times, and each time 
only considers those nodes located within a given spatial step. 
Under the SRHC strategy in this study, the horizon is set to 
have 3 spatial steps, it starts from the top-left spatial step, 
recedes to the right-hand side by one spatial step each time. 
When the horizon reaches the right-hand side, it goes down 
one spatial step, and then recedes to the left-hand side. The 
horizon keeps receding until it reaches the bottom-right spatial 
step.     

TABLE I 
DEFINITION OF TEST SCENARIOS 

Test scenario NN NL NF 
 

Grid 
network 

Grid1 36 60 4 
Grid2 144 264 16 
Grid3 324 612 36 
Grid4 576 1104 64 
Grid5 900 1740 100 

 
Random 
network 

Rand1 36 60 4 
Rand2 144 264 16 
Rand3 324 612 36 
Rand4 576 1104 64 
Rand5 900 1740 100 

 
Some relevant key average results are listed in Table 2 and 

Table 3 to assess and compare the performance. In Table 2 
and Table, LASR is the length of average shortest routes, and 
basically a smaller LASR means a better solution to the FLOP; 
RFTOS is the ratio for an optimization strategy to find the 
theoretical optimal solution based on its 100 runs, and RFTOS is 
only useful for grid network scenarios; Since for random 
network scenarios the theoretical optimal solution is not 
available, R5% is then used to indicate how many percentage of 
the first 5% best solutions (of all three strategies) are found by 
a certain strategy, and a larger R5% implies that a strategy is 
more advantageous. From Table 2 and Table 3, one may make 
the following observations: 

 Overall, SLO and SRHC are better than GO, particular in 
complicated test cases, no matter which category of 
networks used. 

 GO has the worst performance robustness against the 
change in the problem scale. No matter with which 
category of networks, the value of LASR grows very 
significantly as the problem scale increases. In the grid 
network scenarios, GO can barely find the theoretical 
optimal solution when the problem scale is large (e.g., in 
the cases Grid 3, Grid4 and Grid5). In the random 
network scenarios, when the problem scale is large, then 
almost all the first 5% best solutions are found by either 
SLO or SRHC. 

 SLO has a fairly stable performance, which might imply 
that for the FLOP, by nature, local optimality has a good 
relationship with the global optimality. In other words, 
the simulation results of SLO might suggest that, in the 
FLOP, as long as all sub-problems are optimized locally, 
then the global optimality may be achievable. 
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 SRHC achieves the best performance against the change 
in the problem scale, particularly in complicated cases 
such as Grid3 to Grid 5, Rand4 and Rand 5. This may 
suggest that GO sometimes still has short-sighted 
performance, while SRHC can effectively overcome 
such limited performance. 

  From the grid network scenarios, one may see that SLO 
and SRHC can both always effectively identify the 
theoretical optimal solution, and therefore both have very 
stable performance against the change in the problem 
scale. However, in the random network scenarios, the 
performance of either GO or SRHC degrades slightly 
and gradually. This suggests the random distribution of 
nodes complicates the problem, and therefore there is 
often a gap between the theoretical optimal solution and 
the found best solution.        

 
TABLE II 

TEST RESULTS WITH GRID NETWORKS 
 Grid1 Grid2 Grid3 Grid4 Grid5 

 
GO 

LASR Mean 242.4 244.8 251.2 289.5 348.1 
SD 0.0 2.2 25.6 35.1 48.3 

RFTOS 1.00 0.93 0.48 0.24 0.07 
 

SLO 
LASR Mean 242.4 242.4 242.4 242.4 242.4 

SD 0.0 0.0 0.0 0.0 0.0 
RFTOS 1.00 1.00 1.00 1.00 1.00 

 
SRHC 

LASR Mean 242.4 242.4 242.4 242.4 242.4 
SD 0.0 0.0 0.0 0.0 0.0 

RFTOS 1.00 1.00 1.00 1.00 1.00 
 

TABLE III 
TEST RESULTS WITH RANDOM NETWORKS 

 Rand1 Rand2 Rand3 Rand4 Rand5 
 

GO 
LASR Mean 236.0 241.4 262.9 284.7 366.3 

SD 0.0 4.6 19.9 29.8 52.7 
R5% 0.33 0.08 0.00 0.00 0.00 

 
SLO 

LASR Mean 236.0 238.1 240.2 243.8 252.1 
SD 0.0 3.8 9.2 13.7 13.5 

R5% 0.33 0.47 0.50 0.49 0.440 
 

SRHC 
LASR Mean 236.0 238.9 240.9 240.5 242.7 

SD 0.0 4.0 8.6 13.1 15.8 
R5% 0.33 0.45 0.50 0.51 0.56 

V.     CONCLUSION 
This paper describes an effective genetic algorithm (GA) for 

the facility location optimization problem (FLOP), where a 
given number of facilities need to be deployed in a route 
network, so that the users distributed in the network can 
access the facilities the most efficiently. This work includes 
two major contributions: (i) introduction of a novel spatial 
receding horizon control (SRHC) strategy to partition the 
FLOP; (ii) design of a GA within the SRHC framework to 
optimize facility locations. A preliminary simulation study 
shows that the SRHC and the GA are perfect matched to each 
other, and their combination delivers an effective and efficient 
method, which has a good potential of resolving the large 
scale FLOP. Future work may include: (i) Conducting more 
comprehensive simulation to analyze the influence of SRHC 
parameters on the performance of GA; (ii) Comparing with 

more other relevant methods for the FLOP; (iii) Extending the 
current preliminary results to some real-world FLOPs, such as 
distributing chain stores, organizing earthquake shelters, and 
distribution logistic stations; (iv) Investigating the 
generalization of the SRHC scheme, in order to that it applies 
to various large-scale problems in addition to the FLOP.  
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