
Genetic Algorithm with Spatial Receding Horizon
Control for the Optimization of Facility Locations

Xiao-Bing Hu
The State Key Laboratory of Earth Surface Processes and

Resource Ecology
Beijing Normal University

Beijing, China

Xiao-Bing Hu, Mark S Leeson
School of Engineering
University of Warwick

Coventry, UK

Abstract—Inspired by the temporal receding horizon control
in control engineering, this paper reports a novel spatial receding
horizon control (SRHC) strategy to partition the facility location
optimization problem (FLOP), in order to reduce the complexity
caused by the problem scale. Traditional problem partitioning
methods can be viewed as a special case of the proposed SRHC,
i.e., one-step-wide SRHC, whilst the method in this paper is a
generalized N-step-wide SRHC, which can make a better use of
global information of the route network where a given number of
facilities need to be set up. With SRHC to partition the FLOP,
genetic algorithm (GA) is integrated as optimizer to resolve the
partitioned problem within each spatial receding horizon. On one
hand, SRHC helps to improve the scalability of GA. On the other,
the population feature of GA helps to reduce the shortsighted
performance of SRHC. The effectiveness and efficiency of the
reported SRHC and GA for the FLOP are demonstrated by
comparative simulation results.

Keywords—Genetic Algorithm, Spatial Receding Horizon
Control, Facility Location Optimization, Problem Partitioning.

I. INTRODUCTION
Given a route network, a distribution of users and a set of

optional locations, the facility location optimization problem
(FLOP) is concerned with where to locate a specific number
of facilities, so that the users can access the facilities the most
efficiently [1], [2]. The FLOP has a broad real-world
application background. For example, a supermarket company
setting-up its store chain in a community [3], local
government organizing earthquake shelters in a city [4], and a
logistic company establishing its distribution stations in a
country [5].

To address the FLOP, researchers have already attempted
many different methods [3]-[9]. In particular, in common with
applications to many other NP-hard problems, evolutionary
computation (EC) methods as large-scale parallel stochastic
searching and optimization algorithms have demonstrated
good potential in resolving the FLOP. However, the poor
scalability of these reported methods largely hampers their
applications in the large-scale FLOP, which may easily

include millions of nodes. As a family member of population-
based algorithms, EC methods are generally very expensive in
terms of memory demand and computational time in the case
of large-scale problems [10], [11]. To address the scalability
problem, decentralized and distributed versions of algorithms
often need to be developed. Before such decentralized and
distributed algorithms can be applied, a problem partitioning
method has to be employed in order to divide a large-scale
network into some sub-graphs of manageable size. This paper
attempts to shed some more light on how to design an
effective scalable EC method, to be more precise a genetic
algorithm (GA), for the FLOP.

In a conventional problem partitioning method (e.g., see [12],
[13]), a large-scale problem is divided into a series of separate
sub-problems. Then, each sub-problem is resolved in a rather
isolated manner. After all sub-problems have been resolved
independently their sub-solutions are integrated together to
form a complete solution to the original large-scale problem.
However, even though optimal sub-solutions to the sub-
problems can be found, the integrated complete solution to the
original large-scale problem is often not optimal or even good.
In other words, optimal sub-solutions to the sub-problems are
often not optimal at all from a global point of view. A major
cause of losing the global optimality is the
independent/isolated way of resolving each sub-problem.
Inspired by the temporal receding horizon control (TRHC)
strategy in the area of control engineering [14], [15], we have
recently proposed a novel spatial receding horizon control
(SRHC) strategy to partition large-scale network coding
problems in [16]. In the SRHC problem partitioning strategy,
a large-scale problem is divided into many sub-problems,
which compose a problem space, a spatial horizon is then
defined which covers some sub-problems each time and will
recede in the problem space. The spatial horizon is composed
of several spatial steps. Each time the spatial horizon recedes
by a spatial step. All sub-problems covered by a spatial
horizon will be optimized as a whole, and only the sub-
solutions to the sub-problems within the first step of the
spatial horizon will be saved and fixed, whilst others will be
discarded and then recalculated in the next spatial horizon.
With the SRHC strategy, a sub-problem will be optimized not
in an independent/isolated manner, but by making use of its

This work was supported in part by the Seventh Framework Programme
(FP7) of the European Union under Grant PIOF-GA-2011-299725, and the
Scientific Research Foundation for the Returned Overseas Chinese Scholars,
State Education Ministry, China.

903

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

neighboring information in the problem space. Simply
speaking, the conventional problem partitioning strategy can
be viewed as a one-step-wide SRHC, whilst the new method
proposed here is a generalized N-step-wide SRHC. Clearly, by
optimizing a sub-problem together with its neighboring sub-
problems, it is likely that the quality of the associated sub-
solution will be improved in terms of global optimality. The
solution quality may be further improved by integrating a
population based method into the SRHC strategy by setting up
a solution pool for the sub-problems in those decided spatial
steps.

This paper particularly attempts to apply the SRHC strategy
proposed in [16], and develops an effective GA to resolve the
FLOP. As a new application study, the FLOP in this paper will
further demonstrate the practicability of the SRHC in [16]. The
remainder of this paper is organized as follows. Section 2 gives
a mathematical description of FLOP. Section 3 explains the
details of the SRHC strategy and the design of GA with SRHC
for the FLOP. Some simulation results are discussed in Section
4, and the paper ends with some conclusions and comments for
future work in Section 5.

II. PROBLEM DESCRIPTION OF FLOP
We need a mathematical model of the FLOP. Suppose a

route network G(V,E) is composed of node set V and a
connection set E. V has NN different nodes which represent
user and/or candidate facility locations (CFLs), and NL
links/connections. In this study, there are two values
associated with each node i, (i=1,…,NN): one is the category
of node i, denoted as C(i), and the other is the number of users
at node i, denoted as U(i). Basically, there may be 4 categories
of nodes: user location only, CFL only, both, and neither of
them (e.g., just a route junction), and the associated C(i) can
be valued as 1, 2, 3 and 0, respectively. Thus, for C(i)=2 or 0,
we always have U(i)=0, while for C(i)=1 or 3, U(i)≥1. Based
on node category, all nodes in the route network can be
divided into 4 sets: Ω1, Ω2, Ω3 and Ω0, and set Ωm includes all
nodes with C(i)=m, m=1, 2, 3 or 0. The route network can be
recorded as an NN×NN adjacent matrix A. The matrix entry
A(i,j)=1, i=1,…,NN and j=1,…,NN, defines a connection, i.e., a
direct route link from node i to node j. Otherwise, A(i,j)=0
means no direct route. We assume A(i,i)=0, i.e., no self-
connecting route is allowed. If A(i,j)=1, then the direct
connection between node i to node j has a length L(i,j)>0.

Suppose it is planned to set up NF facilities in the route
network. Then, the FLOP aims to find the best NF locations
among the sets Ω2 and Ω3, so that the overall distance from all
nodes in Ω1 and Ω3 to access a facility (no matter which
facility) is minimized. Let S be a solution to the FLOP. S is
clearly a set of NF nodes, and

 32 ΩΩ⊆ ∪S . (1)
For any node i in Ω1UΩ3, suppose the closest facility is
located in node F(i), and

 SiF ∈)(. (2)
Then, the FLOP can be mathematically described as the
following minimization problem

 ∑
ΩΩ∈ΩΩ⊆

×
3132

))(,()(minmin
∪∪ iS

iFiDiU , (3)

where Dmin(i,F(i)) is the minimal distance from node i to node
F(i), and is calculated as

∑
−

=

+=
1)(

1
,,min

2

))1(),(())(,(
iN

k
iCFiCF

CFR

kRkRLiFiD , (4)

where RCF,i denotes the shortest route from node i to its closest
facility, i.e., node F(i), RCF,i(k)=n means node n is the kth node
along the route RCF,i, k=1,…,NR2CF(i), and n=1,…,NN, and
NR2CF,i tells how many nodes, including node i and its closest
facility, are included in the route RCF,i. Fig.1 gives an example
of route network for the FLOP.

Fig.1 An example of facility location optimization problem (FLOP).

Suppose there are N2U3 nodes in
32 ΩΩ ∪ in total. Then the

size of solution space for the FLOP is

∏

∏

=

−

=

−
=

F

F

F
N

i

N

iN
N

i

iN

2

1

0
32)(

C
32

∪

∪
. (5)

Basically, a larger N2U3 and a larger NF mean a more
complicated FLOP. For a given NF, if all nodes in the network
are available to set up facility, i.e., N2U3=NN, then the FLOP
has the maximal solution space, which makes the optimization
the most difficult.

To address the above FLOP, firstly, we need to resolve a
many-to-many route optimization problem, where, for two
given sets of nodes, one as sources and the other as
destinations (e.g., set

32 ΩΩ ∪ and set S), we must find the
closest destination node for each source node. Fortunately,
there are many mature and effective methods to resolve this
problem (for example, see [17]), and they will not be discussed
further in this paper. The difficulty in the FLOP is to find the
best set of destinations for the many-to-many route
optimization problem. This is obviously a combinatorial, NP-
hard problem, and therefore, evolutionary computation
methods such as GA are highly appropriate.

III. GA WITH SRHC FOR FLOP

A. From TRHC to SRHC
First of all, a brief review on the conventional receding

horizon control (RHC) strategy in control engineering will be
very useful. To distinguish it from the method proposed in this
paper, the conventional RHC in dynamic control problems is

904

hereafter referred to as temporal receding horizon control
(TRHC). TRHC, also known as model predictive control, has
proved to be a highly effective online optimization strategy in
the area of control engineering, and it exhibits many
advantages with respect to other control strategies [14], [15].
It is easy for TRHC to handle complex dynamic systems with
various constraints. It also naturally exhibits promising robust
performance against uncertainties since the online updated
information can be sufficiently used to improve the decision.
Simply speaking, TRHC is an N-step-ahead online
optimization strategy to deal with dynamic problems. In this
framework, decision is made by looking ahead for N steps in
terms of a given cost/criterion, and the decision is only
implemented by one step. Then the implementation result is
checked, and a new decision is made by taking updated
information into account and looking ahead for another N
steps.

Fig.2 illustrates the basic idea of TRHC by comparing it
with some other optimization strategies in an intuitive way.
The offline optimization strategy, as shown in Fig.2.(a), is
clearly not suitable for dynamic environments. The
conventional dynamic optimization process, as shown in
Fig.2.(b), is often criticized for its poor real-time properties
and poor performance under disturbances and/or uncertainties
in dynamic environments. As illustrated in Fig.2.(c), thanks to
the idea of a temporal receding horizon, the TRHC strategy
provides a possible solution to the problems confronted by the
conventional dynamic optimization strategy. A properly
chosen temporal receding horizon can effectively filter out
most unreliable information and reduce the scale of the
problem. The latter is especially important for complex
systems and time-consuming algorithms to satisfy the time
limit on the online optimization process. TRHC has now been
widely accepted in the area of control engineering [14], [15].
Attention has also been paid to applications of TRHC to areas
such as management and operations research [18], [19].
Particularly, the TRHC strategy has recently been reported to
be successfully integrated into population-based algorithms to
tackle various dynamic NP-hard optimization problems [20]-
[22].

Fig.2 Illustration of temporal receding horizon control (TRHC).

Inspired by the fact that the success of the TRHC strategy
largely results from decomposing a complex dynamic process

into a serial of temporally associated sub-processes, here we
are concerned with how to extend the basic idea of TRHC in
order to decompose a large-scale static problem into a series
of associated sub-problems (it should be noted that
conventional partitioning methods decompose a static problem
into a set of separated sub-problems). The question is then in
what terms could sub-problems be associated in static
environments? Basically, we need to create a problem-specific
artificial space, project into the space all parts that compose a
solution to the original static problem, and then design a
spatial horizon which recedes in the space. As the spatial
horizon recedes out, the value/status of each part will be
optimized along together with all other parts that are within
the current horizon scope. Once the values/statuses of all parts
are optimized, a final solution to the original static problem is
determined. Now, one can see that sub-problems will be
spatially associated in the artificial space. Therefore, we call
our new strategy for decomposing static problems as spatial
receding horizon control (SRHC).

After an artificial space is designed and all parts that
compose a solution are projected into the space, it is crucial to
design a spatial horizon receding process to decompose the
original static problem into a serial of spatially associated sub-
problems. A basic spatial horizon receding process can be
described as follows. Suppose a solution to a large-scale static
problem is composed of M local parts. The SRHC strategy
makes use of spatial structure (where positions indicate
strength of influence between parts of a solution) to move
from purely local, part-by-part, optimization to using
information from the neighboring, sub-global context. An
optimization algorithm is applied many times to determine the
M parts in a solution. Starting with a specified part, the
algorithm calculates at each time step the N new parts (usually
N<<M), which are the most associated with the decided parts,
(i.e., parts which have already been optimized in the previous
iterations). Although the algorithm will optimize N parts each
time, only the part that is the most associated with the decided
parts will be added to the list of decided parts. The other N-1
parts will be discarded to be recalculated in later iterations.
The algorithm keeps running until all M parts have been
optimized. This leads to a general N-step-wide static problem
partitioning method. Existing problem-partitioning methods
may be considered as a one-step-wide SRHC strategy, i.e.,
each part of a solution is determined in an isolated manner;
see for example [12]. In the generalized N-step-wide SRHC
strategy, each part is calculated by referring to its most
relevant surrounding parts. In other words, sub-global
information is used in the determination of a local part. The
extra information considered by the N-step-wide SRHC
strategy can improve the quality of each part and that of the
global solution.

B. FLOP in the SRHC framework
To apply the SRHC strategy to the FLOP, we need first to

define the artificial space, spatial step and receding horizon for
the FLOP. Fortunately, it is very straightforward in the case of
FLOP. The artificial space is exactly the space where the route
network of the FLOP is developed. Then we divide the
artificial space into some equally sized rectangular areas, and

905

each of these is a spatial step. Then a receding horizon is
composed of NHL spatial steps. Preferably, the spatial steps of
a receding horizon should be NHL successive spatial steps in
the artificial space. Actually, from the viewpoint of a
separated local optimization (SLO) strategy, each spatial step
defines a sub-problem. For the proposed SRHC strategy, a
sub-problem is defined by the receding horizon. Suppose the
original route network of the FLOP is divided into NSP spatial
steps. Starting from a certain spatial step (e.g., the top-left
spatial step), we assign a serial number to each spatial step
according to successive relationships between spatial steps.
Then the first receding horizon is composed of spatial steps 1
to NHL, which together define the first sub-problem to be
resolved. After the first sub-problem is resolved, the sub-
solution associated with the first spatial step is fixed (i.e., the
first spatial step becomes a decided spatial step). Then the first
spatial step is removed from the receding horizon, and a new
spatial step (based on the serial number) is attached to the
receding horizon, in order to compose a new receding horizon,
and therefore defines a new sub-problem. In this way, the
horizon is receding in the space of route network, until all
spatial steps become decided spatial steps. Fig.3 illustrates
how artificial space, spatial step and receding horizon are
defined in a simplified FLOP, and how the FLOP is resolved
as the horizon recedes spatial step by spatial step.

Fig.3 Illustration of SRHC for the FLOP

Now, we can mathematically reformulate the FLOP within
the framework of SRHC. Under the SRHC strategy, the GA
only needs to optimize the sub-problem defined by the current
receding horizon. Let ΩCFL_RH and ΩU_RH be the set of CFL
nodes and the set of user nodes covered by the current
receding horizon, respectively, SRH be a sub-solution
associated with the receding horizon, and SRH identifies NRH
facility locations. Then the sub-problem that GA needs to
resolve for the current receding horizon is the following
minimization problem

 ∑
Ω∈Ω⊆

×
RHURHCFLRH iS

iFiDiU
__

))(,()(minmin , (6)

subject to Eq.(4) and

 RHSiF ∈)(. (7)
Basically, the above minimization problem aims to choose
NRH nodes as facility locations from the set ΩCFL_RH, so that all
user nodes in the set ΩU_RH can access facilities most
efficiently. Once a sub-problem is resolved, we then move the
horizon back, i.e. update the receding horizon by removing its
first spatial step and adding a new successive spatial step. The
updated receding horizon represents a new sub-problem to be
resolved. This process continues in the same vain and a series
of minimization problems in the form defined by Eq.(6) is
resolved, until a solution to the original FLOP is achieved.

Compared with the SLO strategy, the SRHC strategy is less
short-sighted because it considers some successive spatial
steps when calculating the sub-solution to a certain single
spatial step (i.e., the first spatial step in the receding horizon,
which will become a decided spatial step after the calculation).
However, it is still very difficult, if not impossible, to
completely avoid short-sighted performance under the SRHC
strategy. In other words, since the sub-solution to a decided
spatial step will not change during subsequent calculations,
once the sub-solution is not a part of the global optimal
solution to the original FLOP (which is likely to happen), the
performance of SRHC is doomed no matter how well all
subsequent calculations are conducted.

To further reduce short-sighted performance of SRHC, an
effective measure is to dynamically develop a sub-solution
pool for the decided spatial steps. In this pool, some quality
sub-solutions for decided spatial steps during previous
calculations are saved. Then, when resolving the sub-problem
associated with the current receding horizon, besides choosing
NRH nodes as facility locations from the set ΩCFL_RH, we also
need to choose a sub-solution from the pool for decided spatial
steps. Therefore, the problem defined by Eq.(6) needs to
modified as follows. We set the pool size as NPS, i.e., there are
NPS sub-solutions in the pool for decided spatial steps. Let
ΩU_DSS be the set of user nodes covered by decided spatial
steps, and SDSS(k) the kth sub-solution in the pool for decided
spatial steps. Then the minimization problem GA needs to
resolve for the current receding horizon is described as
following:
 ∑

ΩΩ∈Ω⊆=
×

DSSURHURHCFLRHPS iSNk
iFiDiU

))(,()(min
,,...,1

min
∪

 (8)

subject to Eq.(4) and
)()(kSSiF DSSRH ∪∈ . (9)

On one hand, the introduction of the sub-solution pool for
decided spatial steps can effectively reduce short-sighted
performance of SRHC, because the sub-solution for decided
spatial steps are now changeable during subsequent
calculations. On the other hand, the recalculation of sub-
solution for decided spatial steps is computationally cheap,
because we do not need to re-choose nodes as facility
locations in decided spatial steps, but directly choose from a
pool of quality sub-solutions (actually simply choose a serial
number in the pool). Regarding how to develop such a pool of
quality sub-solutions for decided spatial steps, the population
feature of GA gives a perfect solution. Every time after the
calculation with GA, instead of choosing only the first best

906

sub-solution, we actually choose the first NPS best different
sub-solutions to develop/update the pool for decided spatial
steps.

C. Design of GA with SRHC
A general illustration of GA with SRHC is given in Fig.4,

from which one can see that a major difference between the
proposed GA with SRHC and traditional GA is that a sub-
solution pool for decided spatial steps needs to be developed
and updated during the run of GA. The detailed descriptions
of GA with SRHC can be found in [16]. In this sub-section,
we mainly focus on how to design an effective GA with
SRHC for the FLOP.

Fig.4 Flowchart of GA with SRHC.

Firstly, we need to decide on chromosome structure. Here

we use an integer vector as chromosome as illustrated in Fig.5.
The chromosome has NRH+1 genes, which are classified into
two categories. Category I has only one gene, i.e., the first
gene g(1), which indicates which sub-solution in the pool for
decided spatial steps is chosen. The other NRH genes belong to
Category II, and they record which NRH nodes in the set of
ΩCFL_RH are chosen as facility locations in the current receding
horizon. It should be noted that, in traditional GA, with either
the global optimization (GO) strategy or the SLO strategy, a

chromosome only has genes of Category II.
One may wonder whether two different categories of genes

in chromosome would make evolutionary operations more
complicated. Actually, the chromosome structure as illustrated
in Fig.5 imposes no difficulty in the design of evolutionary
operations, i.e., mutation and crossover in GA.

The mutation is simple. Firstly we choose a gene randomly.
If the first gene is chosen, then we randomly reset its value
between 1 to NPS. Otherwise, we choose for the gene a new
node from the set ΩCFL_RH. Here a new node means it is not
included in the current chromosome.

Fig.5 Chromosome structure employed by the GA with SRHC for the FLOP.

The crossover is also simple. For two given parent
chromosomes, an offspring chromosome will randomly inherit
their first genes. For other genes, we first sort out common
nodes shared by parent chromosomes, and then pass them
directly onto offspring. Suppose there are NCN common nodes.
Then there are still NRH-NCN genes of Category II which need
to be filled. Therefore, we randomly choose NRH-NCN nodes
from the non-common nodes of parent chromosomes.

IV. SIMULATION RESULTS
In this section, we mainly compare the proposed SRHC

strategy with the GO strategy and the separated local
optimization (SLO) strategy (i.e., one-step-wide SRHC with
no sub-solution pool for decided spatial steps), in order to
assess how different optimization strategies will affect the
performance of GA. The population of the GA is always set as
NPOP=100 in this simulation. For GA with either the SLO
strategy or the SRHC strategy, the number of evolved
generations is set as NEG1=100. Suppose an original route
network for the FLOP is divided into NSP sub-networks as
spatial steps. Then the GA with the SLO strategy needs to run
NSP times, in order to find a solution to the original FLOP.
This means the GA with the SLO strategy will generate NPOP

×NEG1×NSP chromosomes. Similarly, one may deduce that
the GA with the SRHC strategy will generate NPOP×NEG1×

(NSP-NHL+1) chromosomes before a solution to the original
FLOP can be found. Since the GA with the GO strategy only
needs to run once to get a solution to the original FLOP, to

907

make a fair comparison, in this simulation, the number of
evolved generations in the GA with the GO strategy is set as
NEG2=NEG1×NSP. It should be nother that we here fix the
population size and allow the GA with the GO strategy to
have more evolved generations, rather than fixing the number
of evolved generations whilst allowing a larger population.
This is because: (i) the FLOP is usually an off-line
optimization problem, which means computational time is not
the most important issue; (ii) a larger population size demands
more computer memory, which might be restricted by
available computing hardware resources. Therefore, we fix the
population size and allow a larger number of evolved
generations.

(a) Grid network (b) Random network

Fig.6 Two examples of test cases.

There are two categories of route networks used in the
simulation: grid networks and random networks. In this study,
every node in a network is both user location and CFL, and
this makes the FLOP most complicated, because, according to
Eq.(5), for a given NF, the solution space reaches the
theoretical maximal size. In this study, each node has an
average of 4 links to its neighbor nodes (just similar to a real-
world route network), and for the sake of simplicity, has only
1 user. The reason for using a grid network is because the
theoretical optimal solution for the FLOP can be easily
deduced, and therefore the performances of different
optimization strategies can be precisely assessed. For example,
Fig.6.(a) gives a grid network of 144 nodes, which are evenly
distributed in a rectangular area. Suppose we need to optimize
the locations of 16 facilities in the network. Then, one can
easily work out that the theoretical optimal locations are those
red nodes in Fig.6.(a). Then by comparing with the outputs of
different optimization strategies, we can clearly see how far
such outputs are from the theoretical optimal solution.
However, real-world route networks are far more than grid,
and their node locations and links are rather random, just like
illustrated in Fig.6.(b), which represent the second category of
networks used in the simulation. In general, it is very difficult,
if not impossible, to deduce the theoretical optimal solution in
a network of the second category, i.e., a random network. The
reason to use random networks is because they can give us a
better clue regarding the applicability of different optimization
strategies in a real-world environment. In the simulation, for
each category of networks, there are 5 test scenarios with
different NN, NL and NF values. Table 1 defines all test
scenarios in the simulation. For each random test scenario,
100 networks are randomly generated. For each network, GA
with a certain optimization strategy is applied for 100 times.
For the SLO strategy and the SRHC strategy to apply, we need

to define spatial steps. In the simulation, each spatial step
covers a rectangular area of 600×600 (spatial distance unit)2
as used in Fig.6. Therefore, for instance, for either case in
Fig.6, the network is divided into 16 spatial steps. Under the
SLO strategy, the GA needs to run 16 times, and each time
only considers those nodes located within a given spatial step.
Under the SRHC strategy in this study, the horizon is set to
have 3 spatial steps, it starts from the top-left spatial step,
recedes to the right-hand side by one spatial step each time.
When the horizon reaches the right-hand side, it goes down
one spatial step, and then recedes to the left-hand side. The
horizon keeps receding until it reaches the bottom-right spatial
step.

TABLE I
DEFINITION OF TEST SCENARIOS

Test scenario NN NL NF

Grid
network

Grid1 36 60 4
Grid2 144 264 16
Grid3 324 612 36
Grid4 576 1104 64
Grid5 900 1740 100

Random
network

Rand1 36 60 4
Rand2 144 264 16
Rand3 324 612 36
Rand4 576 1104 64
Rand5 900 1740 100

Some relevant key average results are listed in Table 2 and

Table 3 to assess and compare the performance. In Table 2
and Table, LASR is the length of average shortest routes, and
basically a smaller LASR means a better solution to the FLOP;
RFTOS is the ratio for an optimization strategy to find the
theoretical optimal solution based on its 100 runs, and RFTOS is
only useful for grid network scenarios; Since for random
network scenarios the theoretical optimal solution is not
available, R5% is then used to indicate how many percentage of
the first 5% best solutions (of all three strategies) are found by
a certain strategy, and a larger R5% implies that a strategy is
more advantageous. From Table 2 and Table 3, one may make
the following observations:

 Overall, SLO and SRHC are better than GO, particular in
complicated test cases, no matter which category of
networks used.

 GO has the worst performance robustness against the
change in the problem scale. No matter with which
category of networks, the value of LASR grows very
significantly as the problem scale increases. In the grid
network scenarios, GO can barely find the theoretical
optimal solution when the problem scale is large (e.g., in
the cases Grid 3, Grid4 and Grid5). In the random
network scenarios, when the problem scale is large, then
almost all the first 5% best solutions are found by either
SLO or SRHC.

 SLO has a fairly stable performance, which might imply
that for the FLOP, by nature, local optimality has a good
relationship with the global optimality. In other words,
the simulation results of SLO might suggest that, in the
FLOP, as long as all sub-problems are optimized locally,
then the global optimality may be achievable.

908

 SRHC achieves the best performance against the change
in the problem scale, particularly in complicated cases
such as Grid3 to Grid 5, Rand4 and Rand 5. This may
suggest that GO sometimes still has short-sighted
performance, while SRHC can effectively overcome
such limited performance.

 From the grid network scenarios, one may see that SLO
and SRHC can both always effectively identify the
theoretical optimal solution, and therefore both have very
stable performance against the change in the problem
scale. However, in the random network scenarios, the
performance of either GO or SRHC degrades slightly
and gradually. This suggests the random distribution of
nodes complicates the problem, and therefore there is
often a gap between the theoretical optimal solution and
the found best solution.

TABLE II

TEST RESULTS WITH GRID NETWORKS
 Grid1 Grid2 Grid3 Grid4 Grid5

GO

LASR Mean 242.4 244.8 251.2 289.5 348.1
SD 0.0 2.2 25.6 35.1 48.3

RFTOS 1.00 0.93 0.48 0.24 0.07

SLO
LASR Mean 242.4 242.4 242.4 242.4 242.4

SD 0.0 0.0 0.0 0.0 0.0
RFTOS 1.00 1.00 1.00 1.00 1.00

SRHC

LASR Mean 242.4 242.4 242.4 242.4 242.4
SD 0.0 0.0 0.0 0.0 0.0

RFTOS 1.00 1.00 1.00 1.00 1.00

TABLE III
TEST RESULTS WITH RANDOM NETWORKS

 Rand1 Rand2 Rand3 Rand4 Rand5

GO
LASR Mean 236.0 241.4 262.9 284.7 366.3

SD 0.0 4.6 19.9 29.8 52.7
R5% 0.33 0.08 0.00 0.00 0.00

SLO

LASR Mean 236.0 238.1 240.2 243.8 252.1
SD 0.0 3.8 9.2 13.7 13.5

R5% 0.33 0.47 0.50 0.49 0.440

SRHC
LASR Mean 236.0 238.9 240.9 240.5 242.7

SD 0.0 4.0 8.6 13.1 15.8
R5% 0.33 0.45 0.50 0.51 0.56

V. CONCLUSION
This paper describes an effective genetic algorithm (GA) for

the facility location optimization problem (FLOP), where a
given number of facilities need to be deployed in a route
network, so that the users distributed in the network can
access the facilities the most efficiently. This work includes
two major contributions: (i) introduction of a novel spatial
receding horizon control (SRHC) strategy to partition the
FLOP; (ii) design of a GA within the SRHC framework to
optimize facility locations. A preliminary simulation study
shows that the SRHC and the GA are perfect matched to each
other, and their combination delivers an effective and efficient
method, which has a good potential of resolving the large
scale FLOP. Future work may include: (i) Conducting more
comprehensive simulation to analyze the influence of SRHC
parameters on the performance of GA; (ii) Comparing with

more other relevant methods for the FLOP; (iii) Extending the
current preliminary results to some real-world FLOPs, such as
distributing chain stores, organizing earthquake shelters, and
distribution logistic stations; (iv) Investigating the
generalization of the SRHC scheme, in order to that it applies
to various large-scale problems in addition to the FLOP.

REFERENCES
[1] N. Megiddo and K. Supowit, “On the complexity of some common

geometric location problems”, SIAM J. Comput. 13(1), 182-196, 1984.
[2] M. T. Gastner and M.E.J. Newman, “Optimal design of spatial distribution

networks”, Physical Review E, 74, 016117, 2006.
[3] D.S. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS,

Boston, 1997.
[4] F.Y. Hu, W. Xu and X. Li, “A modified particle swarm optimization

algorithm for optimal allocation of earthquake emergency shelters”,
International J. Geogr. Infor. Sci., 26(9), 1643-1666, 2012.

[5] J. Aerts and G.B. M. Heuvelink, “Using simulated annealing for resource
allocation”, International J. Geogr. Infor. Sci., 16, 571–587. 2002.

[6] J. W. Billheimer and P. Gray, “Network design with fixed and variable
cost elements”, Transp. Sci. 7, 49, 1973.

[7] M. Los and C. Lardinois, “Combinatorial programming, statistical
optimization and the optimal transportation network problem”, Transp.
Res., Part B: Methodol. 16, 89, 1982.

[8] N.M. Bradford and R. Sen, “Multi parameter assessment guide for
emergency shelters: disaster relief applications”. Journal of Performance
of Constructed Facilities, 19, 108–116, 2005.

[9] X.W. Chen, J.W. Meaker, and F.B. Zhen, “Agent-based modeling and
analysis of hurricane evacuation procedures for the Florida Keys”,
Natural Hazards, 38, 321–338, 2006.

[10] D. Thierens,“Scalability Problems of Simple Genetic Algorithms”,
Evolutionary Computation, vol. 7, no. 4, pp. 331–352, 1999.

[11] E. Cantu-Paz and D.E. Goldberg, “On the Scalability of Parallel Genetic
Algorithms”, Evolutionary Computation, vol. 7, no. 4, pp. 429–449, 1999.

[12] G. Colombo and S.M. Allen, “Problem decomposition for Minimum
Interference Frequency Assignment”, Proc. of the IEEE Congress in and
Evolutionary Computation, Singapore, 2007.

[13] S. Tsutsui, Y. Fujimoto and A. Ghosh, “Forking Genetic Algorithms:
GAs with Search Space Division Schemes”, Evolutionary Computation,
vol. 5, no. 1, pp. 61–80, 1997.

[14] D.W. Clarke, Advances in Model-based Predictive Control, Oxford
University Press, 1994.

[15] J.M. Maciejowski, Predictive control with constraints. Marlow: Personal
Education Limited, 2002.

[16] X.B Hu and M.S Leeson, "Evolutionary Computation with Spatial
Receding Horizon Control to Minimize Network Coding Resources ",
The Scientific World Journal, in press, 2014.

[17] E.J. Taft and Z. Nashed, Dynamic Programming: Foundations and
Principles, 2nd Edition, CRC Press, Taylor & Francis Group, 2011.

[18] S. Chand, V.N. Hsu, and S. Sethi, “Forecast, solution, and rolling
horizons in operations management problems: a classified bibliography”,
Manufacturing & Service Operations Management, vol.4, no.1, pp.25-43,
2002.

[19] B.De Schutter and T. Van Den Boom, “Model predictive control for
max-plus-linear discrete event systems”, Automatica, vol.37, no.7, pp.
1049-1056, 2001.

[20] X.B. Hu and W.H. Chen, “Genetic Algorithm Based on Receding
Horizon Control for Arrival Sequencing and Scheduling”, Engineering
Applications of Artificial Intelligence, 18, 633-642, 2005.

[21] X.B. Hu, W.H. Chen, and E. Di Paolo, “Multi-Airport Capacity
Management: Genetic Algorithm with Receding Horizon”, IEEE
Transaction on Intelligent Transportation System, 8, 254-263, 2007.

[22] Z.H. Zhan, J. Zhang, Y. Li, O. Liu, S.K. Kwok, W.H. IP and O.
Kaynak, “An efficient Ant Conoly System Based on Receding Horizon
Control for Aircraft Arrival Sequencing and Scheduling Problem”, IEEE
Transaction on Intelligent Transportation System, 11, 399-412, 2010.

909

