
  

  

Abstract—Due to the specificity and complexity of the 
dynamic optimization problems (DOPs), those excellent static 
optimization algorithms cannot be applied in these problems 
directly. So some special algorithms only for DOPs are needed. 
There is a multi-swarm algorithm with a better performance 
than others in DOPs, which utilizes a parent swarm to explore 
the search space and some child swarms to exploit promising 
areas found by the parent swarm. In addition, a static 
optimization algorithm OLPSO is so attractive，which utilize 
an orthogonal learning (OL) strategy to utilize previous search 
information (experience) more efficiently to predict the 
positions of particles and improve the convergence speed. In 
this paper, we bring the essence of OLPSO called OL strategy 
to the multi-swarm algorithm to improve its performance 
further. The experimental results conducted on different 
dynamic environments modeled by moving peaks benchmark 
show that the efficiency of this algorithm for locating and 
tracking multiple optima in dynamic environments is 
outstanding in comparison with other particle swarm 
optimization models, including MPSO, a similar particle 
swarm algorithm for dynamic environments. 

I. INTRODUCTION 
Many real-word optimization problems are dynamic in 

which global optimum and local optima change over time. 
This requires an algorithm to not only find the global 
optimal solution under a specific environment but also track 
the trajectory of the changing optima over dynamic 
environments.But most research on evolutionary algorithms 
(EAs) focuses on static optimization problems. So 
optimization methods that are able to continuously adapt to 
a changing environment are needed. 

Particle swarm optimizer (PSO) is a versatile population 
based stochastic optimization technique. The standard 
particle swarm optimization algorithms and its variants [5], 
[6] have been performed well for static environment.  

But in the standard PSO for static environment, particles 
in the swarm will usually congregate to local or global 
                                                           
This work was supported by the National Natural Science Foundation of C
hina (Nos. 61373111, 61272279, 61103119 and 61203303); the Fundamen
tal Research Funds for the Central Universities (Nos. K50511020014, K50
51302084, K50510020011, K5051302049, and K5051302023); the Fund f
or Foreign Scholars in University Research and Teaching Programs (the 11
1 Project) (No. B07048);and the Program for New Century Excellent Tale
nts in University (No. NCET-12-0920). 

All authors are with the Key Laboratory of Intelligent Perception and 
Image Understanding of Ministry of Education of China, Institute of 
Intelligent Information Processing, Xidian University, Xi’an 710071, 
China. (email: rcliu@ieee.org). 

optima on a few peaks in the landscape and lose its ability 
to find new peaks after several successive iterations, which 
is required after the environment changes. This 
phenomenon is called diversity loss. When a change occurs 
and the optima in the search space moves, the best location 
obtained in the past and its corresponding fitness may no 
longer be valid to give the particle a sufficient exploration 
ability to track new optima. This memory of the particles is 
the so called outdated memory.  

For the reasons above, these algorithms cannot be 
directly applied into dynamic environments. Dynamic 
environment requires an algorithm not only to find the 
global optimal solution under a specific environment but 
also to track the trajectory of the changing optima over 
dynamic environments. In order to have these capabilities, 
two important problems: outdated memory and diversity 
loss [7] should be solved for designing a particle swarm 
optimization algorithm for DOPs. 

Several PSO algorithms have been recently proposed to 
address DOPs [7], [23], [24], of which using multi-swarms 
seems a good technique. The multi-swarm method can be 
used to enhance the diversity of the swarm, with the aim of 
maintaining multiple swarms on different peaks. Outdated 
memory problem is usually solved in one of these two ways: 
re-evaluating the memory [22] or forgetting the memory 
[25]. 

A new multi-swarm algorithm (MPSO) for dynamic 
environments has been proposed by Masoud Kamosi [18], 
which introduce two types of swarm to address the diversity 
loss problema. A parent swarm is applied to explore the 
whole search space to find promising area containing local 
optima and several child swarms, each of which is 
nocn-overlapping and responsible for exploiting a 
promising area found by the parent swarm to get the optima. 
Inspired by this idea, we proposed OLMPSO which contain 
the same idea of multi-swarm in [18]. Parent swarm uses 
the standard PSO [10] with the local neighborhood (lbest) 
[11], in which a particle is only affected by the best 
experience of its own swarm rather than of all particles in 
the environment. The main difference between OLMPSO 
and the algorithm in [18] is that orthogonal learning particle 
swarm optimization (OLPSO)[12] has been used to get 
faster PSO convergence speed and higher solution accuracy. 
Owing to the orthogonal experimental design (OED) 
orthogonal test ability and prediction ability, the orthogonal 
learning OL strategy [12], which is utilized in OLPSO, 
could construct a guidance exemplar with an ability to 
predict promising search directions toward the global 
optimum. And this modified variant PSO will be described 

A Multi-swarm Particle Swarm Optimization with Orthogonal 
Learning for Locating and Tracking Multiple Optimization in 

Dynamic Environments 

Ruochen Liu, Member, IEEE, Xu Niu, Licheng Jiao IEEE Senior, Member，Jingjing Ma, Member, IEEE 

754

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



  

in detail later. Moreover, for tracking the changing local 
optima, particles in every child swarm performs a random 
search around the previous best position of that child swarm 
after a change is detected in the environment. And 
experiments show that for all tested dynamic environments 
the proposed algorithm OLMPSO outperforms in the vast 
majority of all tested PSO algorithms, including MPSO [18], 
with which shares the idea of utilizing a parent swarms and 
child swarms. 

The rest of this paper is outlined as follows. Section II 
describes the background of Multi-Swarm Strategy, 
orthogonal experimental design (OED), orthogonal learning 
(OL) strategy used in this paper and the modified PSO 
applied in child swarms in detail. The proposed algorithm is 
presented in section III. The experimental results of the 
proposed algorithm along with comparison with alternative 
approaches from the literature are given in Section IV. 
Finally, Section V concludes this paper with discussions on 
relevant future work. 

II. RELATED BACKGROUND 

A. Particle Swarm Optimization (PSO) 
The particle swarm optimization (PSO) was first 

introduced by Kennedy and Eberhart [1], which was 
inspired by the social behavior of bird flocking. In PSO, a 
potential solution for a problem is considered as a bird, 
which is named particle here, flies through a D-dimensional 
search space and adjusts its position according to the 
previous best position found by its neighborhood and the 
previous best position found by itself. Corresponding to two 
different kinds of the neighborhood, there are two main 
models of the PSO algorithm, called gbest (global best) and 
lbest (local best), respectively. In gbest model, the 
neighborhood of a particle consists of the particles in the 
whole swarm. But in the lbest model, the neighborhood of a 
particle is defined by several fixed particles. 

Several major versions of the PSO algorithm have been 
developed due to its property of fast convergence for many 
academic and real world problems with promising results 
since PSO was first introduced [2]. Each particle i is 
represented by a position vector X୧ and a velocity vector V୧, 
which are updated in the version of PSO with an inertia 
weight [3] as follows: v୧ᇱௗ = ωv୧ୢ + cଵݎଵ൫p୧ୢ െ x୧ୢ ൯ + cଶݎଶ(p୥ୢ െ x୧ୢ )     (1) x୧ᇱୢ = x୧ୢ + v୧ᇱୢ      (2) 

where ω is the inertial weight, and cଵand cଶ are positive 
acceleration coefficients used to scale the contribution of 
cognitive and social components, respectively. v୧ᇱௗ and v୧ୢ  
represent the current and previous position in the dth 
dimension of particle i. p୧ୢ  and p୥ୢ  is the best position that 
particle i has been visited and found by all particles in the 
swarm in the dth dimension. ݎଵ and ݎଶ are uniform random 
variables in range [0,1]. 

In the standard PSO, both gbest model and lbest model, 
the information of a particle’s best experience and its 
neighborhood’s best experience is utilized in a simple way, 

where the flying is adjusted by a simple learning summation 
of the two experiences which will be given in (1) in Section 
I. But one exemplar may have good values on some 
dimensions of the solution vector while the other exemplar 
may have good values on some other dimensions. So the 
particle may suffer from the “two steps forward, one step 
back” phenomenon [13]. In all, this simple way is not 
efficient to make the best use of the search information in 
these two experiences.  

Earlier studies have shown that orthogonal experimental 
design (OED) offers an ability to discover the best 
combination for different factors with a small number of 
experimental samples [14], [15]. In this paper, the OED is 
used to construct a promising learning exemplar, i.e. 
orthogonal learning (OL) strategy, which is used to discover 
the best combination of a particle’s best historical position 
and its neighborhood’s best historical position. 

B. Multi-Swarm Strategy 
The multi-swarm approach is a considerable technique 

for maintaining the swarm diversity to address the 
convergence problem of PSO for dynamic optimal 
problems. The multi-swarm method can be used to maintain 
multiple swarms on different peaks, which are referred to as 
the optima in this paper, with the purpose of tracking 
different local optima in dynamic optimal problems. For the 
multi-swarm method to work, the whole search space can 
be divided into several sub-regions. Each sub-region might 
contain one or more than one peak and each sub-swarm 
covers one sub-region and exploits it. So many researchers 
have considered multi-populations as a means of enhancing 
the diversity of EAs to address dynamic optimal problems 
[8, 9]. 

III. OLPSO 
Using the OED method, the original PSO can be 

modified as an OLPSO with an OL strategy. In this section, 
the OED method and implementation of the OL strategy are 
presented. The complete OLPSO algorithms are derived at 
the end of the section. 

A. Orthogonal Experimental Design (OED) 
Scientific experiment usually involves three or more 

factors, which requires multi-factor analysis. Multi-factor 
experiments include full factorial design and fractional 
factorial design. Full factorial design tests all possible 
combinations of factors. For a full factorial experiment with 
10 factors and 3 levels, the number of trials is 3ଵ଴= 59,049, 
which is so large that it is difficult to be implemented.  

An efficient way to study the effect of several factors 
simultaneously is to use the OED with both the OA and the 
factor analysis，which selects representative points from full 
factorial experiment in a way that the points are distributed 
uniformly within the test range and thus can represent the 
overall situation. So the OED is highly efficient for the 
arrangement of multi-factor experiment with optimal 
combination levels.  

755



  

In order to illustrate how to use the OED, a simple 
example is shown in Table I, which is a maximization 
problem. The objective function is given as follows: 

Maximize y(ݔଵ, ,ଶݔ ଵݔଷ)=100ݔ െ ଶݔ10 െ ଵݔ ଷ)     (3)ݔ א ሼ1,2ሽ, ଶݔ א ሼ3,4ሽ, ଷݔ א ሼ5,6ሽ 

This example of maximization problem shows that three 
factors, which will affect maximizing results, are the xଵ, xଶ 
and  xଷ , denoted as factors A, B, and C, respectively. 
Moreover, there are two levels (different choices) involved 
in each factor. Thus, there are in total 2ଷ= 8 combinations 
of experimental designs. However, with the help of OED, 
one can obtain or predict the best combination by testing 
only few representative experimental cases. 

For the example (3), the Lସ(2ଷ) OA given by (4) is 
suitable [15]. 

1)  Orthogonal Array:  
The OED method works on a predefined table called an 

orthogonal array (OA), which is a fractional factorial array. 
An OA with N factors and Q levels per factor is always 
denoted by LM(QN), where L denotes the orthogonal array 
and M is the number of combinations of test cases.  

=ସ(2ଷ)ܮ

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

122
212
221
111

                  (4) 

The OA in (4) has 3 columns, meaning that it is suitable 
for the problems with at most 3 factors. For example, the 
three columns in the first row is [1, 1, 1], meaning that in 
this experiment, the first factor (xଵ), the second factor (xଶ), 
and the third factor (xଷ) are all designed to the first level, 
that is, 1, 3, and 5 as given in Table I. Similarly, 
combination of [1, 2, 2] is used in the second experiment, 
and so on. The total of four experiments specified by the Lସ(2ଷ) are presented in Table I. 

TABLE I 
Deciding the Best Combination Levels of the Maximization  

Problem Factors Using an OED Method 
Combinations A: ࢞૚ B: ࢞૛ C: ࢞૜ Results 

1 (1) 1 (1) 3 (1) 5 ଵܻ=65 

2 (1) 1 (2) 4 (2) 6 ଶܻ=54 

3 (2) 2 (1) 3 (2) 6 ଷܻ=164 

4 (2) 2 (2) 4 (1) 5 ସܻ=155 
Levels Factor Analysis 

L1 (Y1+Y2)/2=59.5 (Y1+Y3)/2=114.5 (Y1+Y4)/2=110  
L2 (Y3+Y4)/2=159.5 (Y2+Y4)/2=104.5 (Y2+Y3)/2=109  

OED Results A2 B1 C1 

2) Factor analysis:  
After evaluation of the combinations, the summarized 

data are analyzed using factor analysis to rank the most 
effective factors, and discover the best combination of 
levels for each factor such that the function is optimized. 
The FA results are shown in Table I and the process is 
described as follows. 

Let ym denote the experimental result of the mth (1 ≤ m 
≤M) combination and define the main effect of factor n 

with qth (1 ≤ q ≤Q) level as Snq. The calculation of Snq is to 
add up all the ym in which the level is q in the nth factor, 
and then divide the total count of zmnq, as shown in (5) 
where zmnq is 1 if the mth experimental test is with the qth 
level of the nth factor, otherwise, zmnq is 0 ܵ௡௤ = ∑ ௬೘ൈ௭೘೙೜ಾ೘సభ∑ ௭೘೙೜ಾ೘సభ                                   (5) 

For the example shown in Table II, when we calculate 
the effect of level 1 on factor A, denoted by element A1, the 
experimental results of C1, and C2 are summed up firstly 
for (5) because only these two combinations are involved in 
level 1 of factor A. Then, the sum divides the combination 
number (2 in this case) to yield Snq. With all the Snq 
calculated, the level of each factor that provides the 
highest-quality Snq will be selected to be the best 
combination of the levels. For maximization problem, the 
larger the Snq is, the better the qth level on factor n will be. 
Otherwise, vice versa. As in the maximization example 
shown in Table II, the best result is the combination of A2, 
B1, and C1, which does not exist in the four combinations 
tested, but discovered by the FA process. 

B. Orthogonal Learning (OL) Strategy 
Using the OED method, the original PSO can be 

modified as an OLPSO with an OL strategy that combines 
information of ௜ܲ  and ௡ܲ  to form a better guidance 
vector ଴ܲ. The particle’s flying velocity is not the same as 
in (1) and changed as ௜ܸௗ = ߱ ௜ܸௗ + crୢ(p଴ୢ െ x୧ୢ)         (6) 
where ω is the same as in (1) and c is fixed to be 2.0, the 
same as ܿଵ and ܿଶ , and ௗݎ  is a random value uniformly 
generated within the interval [0, 1]. 

The guidance vector ଴ܲis constructed for each particle i, 
from ௜ܲ  and ௡ܲ as ଴ܲ = ଴ܲ ْ ௡ܲ                 (7) 
where the symbol ⊕ stands for the OED operation. 
Therefore, the value ଴ܲis the combination of ௜ܲ  and ௡ܲ as 
the construct result of OED. In order to avoid the guidance 
changing the direction frequently, before the vector ଴ܲ 
cannot lead the particle to a better position any more, it will 
not be used as the exemplar for a certain number of 
generations. For example, if the personal best position ௜ܲ  
has not been improved for G generations, then particle i will 
reconstruct a new ଴ܲby using ௜ܲ  and ௡ܲ [12].  

The construction process of ଴ܲ is described as the 
following six steps.  
Step 1) An OA is generated as ெ(2஽)ܮ where 

M=2ہ௟௢௚మ(஽ାଵ)ۂ, using the procedure as given in 
Appendix. 

Step 2) Make up M tested solutions   ௝ܺ(1 ≤ j ≤ M) by          
selecting the corresponding value from ௜ܲ  ore ௡ܲ  
according to the OA. Here, if the level value in the 
OA is 1, then the corresponding factor (dimension) 
selects ௜ܲ; otherwise, selects ௡ܲ. 

756



  

Step 3) Evaluate each tested solution  ௝ܺ  (1 ≤ j ≤ M), and 
record the best (with best fitness) solution ܺ௕. 

Step 4)  Calculate the effect of each level on each factor 
and determine the best level for each factor using 
(5). 

Step 5) Derive a predictive solution  ܺ௣  with the levels 
determined in Step 4 and evaluate ܺ௣. 

Step 6) Compare ݂( ܺ௕)  and  ݂( ܺ௣) and the level 
combination of the better solution is used to 
construct the vector ଴ܲ. 

In the above process, the factors are the dimensions of 
the problem and the levels of each dimension (factor) are 
the two choices of a particle’s best position value and its 
neighborhood’s best position value on this corresponding 
dimension. 

C. Orthogonal Learning Particle Swarm Optimization 
(OLPSO) 

The OL strategy has a strong ability to construct a 
guidance exemplar to predict promising search directions 
toward the global optimum because of the OEDs orthogonal 
prediction ability. The OL strategy is expected to bring 
better learning efficiency to PSO, as well as faster PSO 
convergence speed, higher solution accuracy and better 
global optimization performance. This learning strategy can 
be applied to both GPSO and LPSO. In this paper, the 
orthogonal learning particle swarm optimization (OLPSO) 
[12] is used only in child swarms to process precise 
exploiting in its own promising area. The OLPSO algorithm 
is as easy to understand as the traditional PSO and retains 
the simplicity of PSO.  

The framework of OLPSO is given in Algorithm 1. 

IV. THE MULTI-SWARM PARTICLE WARM OPTIMIZATION 
WITH ORTHOGONAL LEARNING 

A. Framework of the OLMPSO for DOPs 
To address the essential requirements for dynamic 

environment, multi-swarm methods and orthogonal learning 
(OL) strategy are introduced in the proposed multi-swarm 
algorithm, i.e. OLMPSO, which consists of a parent swarm 
and some child swarms. The parent swarm is responsible 
for finding promising area in the search space while a child 
swarm updated with orthogonal learning particle swarm 
optimization (OLPSO) is created to exploit the new found 
promising area. The framework of OLMPSO is given in 
Algorithm 2. 

Algorithm 1. OLPSO 
1: Generate the initial swarm by randomly generating the position  ௜ܺand velocity  ௜ܸ for particle i. Then evaluate the fitness of 

each particle; 
2:Calculate ௜ܲ  and ௡ܲ; Set gen=0, ω=0.9,c=2.0; 
3: For each particle, construct the learning exemplar ܲ0 through ܲ݅ 

and ௡ܲ 
4:while gen < GENERATION, i.e. stop criteria is not satisfied do 
5:   update ω= 0.9-0.5×gen/GENERATION 
6:   for each particle i in the swarm do 
7:     update particle i according to eq. (6) and eq. (2). 

8:     evaluate the fitness of particle i 
9:     if ݂( ௜ܺ) < ݂( ୧ܲ) 
10:     P௜ = ௜ܺ; ݁ݐܽ݊݃ܽݐݏ௜=0 
11:      if ݂( ௜ܲ) <  ݂( ୬ܲ) 
12:        ୬ܲ = ௜ܲ  
13:      else continue 
14:      end-if 
15:    else 
 ௜+1݁ݐܽ݊݃ܽݐݏ=௜݁ݐܽ݊݃ܽݐݏ      :16
17:      if ݁ݐܽ݊݃ܽݐݏ௜> G 
18:        construct the learning exemplar ଴ܲ through ܲ݅ and ௡ܲ; ݁ݐܽ݊݃ܽݐݏ௜=0

 19:      else continue 
20:      end-if 
21:     end-if 
22： end-for 
23:end-while 
 

Algorithm 2. OLMPSO 
1:  Initialization the parent swarm 
2:  while stop criteria is not satisfied do 
3:   for each particle i in the parent swarm do 
4:    update particle i according to eq. (1) and eq. (2). 
5:    update pbest௜ 
6:    for each swarm c do 
7:     if distance(p௜, cbest௖) < r  then 
8：     if  f (p୧) > f (cbestୡ)  then 
9：       cbestୡ = p୧ 
10：    end-if  
11：    reinitialize particle i 
12：   end-if  
13：  end-for  
14： end-for 
15:   update cbest୮ୟ୰ୣ୬୲ (the gbest in the parent swarm) 
16:   if cbest୮ୟ୰ୣ୬୲is updated then   
17:     cbest୴ =cbest୮ୟ୰ୣ୬୲ 
18:    for each particle i in parent swarm do 
19:     if distance(p௜, cbest௖) < r 
20:      if  |ν | < π   then 
21:       move particle i to the child swarm ν 
22:      end-if  
23:      initialize particle i 
24:     end-if  
25:    end-for 
26:    while |ν| < π   
27:     Create a new particle in the child swarm ν within a radius 

r/3 centered at ࢉܜܛ܍܊܋ 
28:    end-while  
29:   end-if 
30:   for child swarm c  do  
31:    for each particle i in the child swarm c do 
32:     update particle i according to eq. (3) and eq. (2)  
33:     update pbest௜  
34:    end-for  
35:   Set ࢉܜܛ܍܊܋ to the best position found by the particles in 

child swarm c 
36:   end-for 
37:   for each pair of child swarms (k , l), k≠l do 
38:    if distance(cbest௞ , cbest௟) < r௘௫௖௟  then 
39:     destroy the child swarm whose cbest has a less fitness 

value. 

757



  

40:    end-if  
41：  end-for 
42:  if a change is detected in the environment then 
43:   for each particle i in the parent swarm do 
44:    pbest௜= p୧ 
45:   end-for  
46:   update cbest୮ୟ୰ୣ୬୲ 
47:   for each child swarm c do  
48:    for each particle i in the child swarm c do 
ܚ࢙ a random position in a hyper-sphere with a radius =ܑܘ     :49  

centered at cbest஼  
50:     pbest௜= p୧ 
51:    end-for  
52:    Set  ࡯ܜܛ܍܊܋ to the best position found by the particles in 

child swarm c 
53:   end-for  
54:  end-if 

B. Updating the Particle of Parent Swarm 
There is only one parent swarm in OLMPSO. After 

initializing this parent swarm, the particles in the parent 
swarm begin searching in the search space. At each 
iteration, the velocity (ݒ୧) and position (݌୧) of a particle i in 
the parent swarm is updated according to (1) and (2) with 
its best personal position (ݐݏܾ݁݌୧) and the best position 
found by the parent swarm (ܾܿ݁ݐݏ௣௔௥௘௡௧), respectively. If 
the fitness of the new position of particle i is better than its 
best personal position (ݐݏܾ݁݌୧), ݐݏܾ݁݌୧ will be updated to 
the new position.  

C. Creating New Child Swarm 
When all particles in the parent swarm are updated, the 

distance between particle i and the best position found by a 
child swarm c (ܾܿ݁ݐݏ௖ ), i.e. the attractor of each child 
swarm c, is calculated. If the distance between particle i and ܾܿ݁ݐݏ௖  is less than r, ܾܿ݁ݐݏ௖  will be updated to the 
position of particle i, and particle i will be reinitialized. 
Afterwards, the best position found in the parent swarm 
௣௔௥௘௡௧ݐݏܾ݁ܿ will be updated. If (௣௔௥௘௡௧ݐݏܾ݁ܿ)  is improved, 
a new child swarm will be created with ܾܿ݁ݐݏ௣௔௥௘௡௧  as its 
attractor. At the same time, the particles whose distances to 
the attractor of the newly created child swarm are less than r 
will be moved to the newly created swarm and a 
corresponding quantity of new particles will be created and 
initialized in the parent swarm. If the number of particles 
moved to the newly created child swarm (m) is less than the 
number of particles required for a child swarm (π), π-m 
particles will be created and initialized in a hyper-sphere 
within a radius r/3 centered at the cbestୡ  in the child 
swarm. After this, the velocities and positions of all 
particles in every child swarm will be updated with the 
OLPSO optimization according to (3) and (2), respectively. 
Then, the personal best position (pbest) for all child 
particles and the child swarms’ best position (cbest) will be 
updated. 

D. Overlapping Check Scheme 
There is an overlapping check scheme in the next 

procedure. At the end of each iteration, the distance 
between every two child swarm is computed to check 

whether they are searching in the same area or not, for the 
reason that searching a local area with more than one child 
swarm is not very useful and the limited computation 
resources may be wasted. If the Euclidian distance between 
their attractors is less than a specified threshold  ݈ܿݔ݁ݎ, two 
child swarms are searching in the same area. Once this 
happen, the worse child swarm whose attractor have a 
worse fitness than the other, will be destroyed. 

E. Coping Mechanism for Environment Change 
At the end of the proposed algorithm, there is a coping 

mechanism to be triggered when an environment change is 
detected. Once environment changes, particles in the parent 
swarm will re-evaluate their fitness with their positions 
current and reset their best personal positions to these 
positions. Different from the parent swarm, the particles in 
the child swarms will set their new positions to a random 
position in a hyper-sphere with a radius r௦ centered at their 
swarm’s attractor. Then they will reset their best personal 
positions to their new positions and update their child 
swarms attractors. 

V. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
1) Moving Peaks Benchmark (MPB) Problem:  

The MPB problem proposed by Branke [16] has been 
widely used as dynamic benchmark problems in the 
literature to evaluate the performance of optimization 
algorithms in dynamic environments. Within the MPB 
problem, the optima can be varied with time by three 
features, the location (X (t)), height (H (t)), and width of 
peaks (W(t)). For the D dimensional landscape, the problem 
is defined as follows: F(xሬԦ, t) = max୧ୀଵ,…୮ H౟(୲)ଵାW౟(୲) ∑ (୶౟(୲)ିX౟ౠ(୲))మDౠసభ      (8) 
where ܪ௜(ݐ),  ௜ܹ(ݐ) and ௜ܺ௝(ݐ) are the height, the width 
and the jth dimension of the location of peak i at time t, 
respectively. There are p independently specified peaks in 
total which are blended together by the “max” function. The 
location of each peak is varied in a direction by a random 
vector ݒపሬሬሬԦ(ݐ) of a distance s (the shift length), and the 
random vector ݒపሬሬሬԦ(ݐ) is defined as follows: vనሬሬሬԦ(t)= ୱ|୰ሬԦା୴ഠሬሬሬԦ(୲ିଵ)| ((1 െ λ)rԦ + λ vనሬሬሬሬԦ(t െ 1))        (9)  
where the shift vector ݒపሬሬሬԦ(ݐ) is a linear combination of a 
random vector ݎԦ and the previous shift vector ݒపሬሬሬԦ(ݐ) and is 
normalized to the shift length s. The correlated parameter λ 
is set to 0, which implies that the peak movements are 
uncorrelated. 

More formally, a change of a single peak can be 
described as follows: H୧(t) = H୧(t െ 1) + height_severity * σ       (10) W୧(t) = W୧(t െ 1) + width_severity * σ       (11) XనሬሬሬԦ(t) = XనሬሬሬԦ( t െ 1) + vనሬሬሬԦ(t)                   (12) 

758



  

2) Experimental Settings:  
In this paper, unless stated otherwise, the default settings 

and definition of the benchmark used can be found in Table 
II, which are the same as in all the involved algorithms. In 
Table II, the term “change frequency (U)” means that 
environment changes every U fitness evaluations, S denotes 
the variable moves in the range of [0,100], and I denotes the 
initial height of every peak. The height of peaks is shifted 
randomly in the range H= [30, 70] and the width of peaks is 
shifted randomly in the range W= [1, 12].  

The performance measure used is the offline error, which 
is defined as follows: 

µ = ܭ1   ෍(݄௞ െ ௞݂)௄
௞ୀଵ                                      (13) 

where ௞݂ is the best solution obtained by an algorithm just 
before the kth environmental change, ݄௞ is the optimum 
value of the kth environment, µ is the average of all 
differences between ݄௞  and ௞݂  over the environmental 
changes, and K is the total number of environments. For 
each run, there were K= 50 environments, which result in 
5ൈ 10ହ  fitness evaluations. All the results reported are 
based on the average over 100 independent runs. 

TABLE II 
Default Settings for the MPB Problem 

Parameter Value 
Number of peaks, p  
Change frequency, U          
Height severity  
Width severity  
Peak shape 
Basic function  
Shift length, s  
Number of dimensions, D  
Correlation coefficient, λ  
S  
H  
W  
I  

10 
5000 
7.0 
1.0 

Cone 
No 
1.0 
5 
0 

[0, 100] 
[30.0, 70.0] 

[1, 12] 
50.0 

B. Different Algorithm Settings  
For OLMPSO, the acceleration coefficients c1 and c2 are 

set to 1.496180 and the inertial weight ω  is set to 
0.729844 [17]. The number of particles in the parent swarm 
and the child swarms (π) are set to 2 and 7 particles, 
respectively. The radius of the child swarms (r), the 
minimum allowed distance between two child swarm (rୣ୶ୡ୪) 
and the radius of quantum particles (rୱ) are set to 30.0, 30.0, 
and 0.5, respectively. The proposed algorithm is compared 
with MPSO [18], mQSO [7], FMSO [11], and cellular PSO 
[19, 20]. For MPSO, the configurations are almost the same 
as OLMPSO, except for the number of particles in the 
parent swarm and the child swarms, which are set to 5 and 
10 particles [18]. For mQSO, we adapt a configuration 
10(5+5௤) which creates 10 swarms with 5 neutral (standard) 
particles and 5 quantum particles with rୡ୪୭୳ୢ =0.5 and rୣ୶ୡ୪=rୡ୭୬୴=31.5, as suggested in [7, 21]. For FMSO, there 

are at most 10 child swarms each has a radius of 25.0. The 
size of the parent and the child swarms are set to 100 and 10 
particles, respectively [11]. For cellular PSO, a 
5-Dimensional cellular automaton with 10ହ cells and 
Moore neighborhood with radius of two cells is embedded 
into the search space. The maximum velocity of particles is 
set to the neighborhood radius of the cellular automaton and 
the radius for the random local search (r) is set to 0.5 for all 
experiments. The cell capacity θ is set to 10 particles for 
every cell [19, 20]. 

C. Comparison of OLMPSO With Peer Algorithms 
In this experiment, we compare the performance of 

OLMPSO with MPSO, mQSO10, FMSO, and Cellular PSO 
on the MPB problems with different number of peaks and 
different value of change frequency. The average offline 
error and 95% confidence interval are taken for 100 runs. 
Offline error of the algorithm above for different dynamic 
environment is presented in table III and table VI. For each 
environment, result of the best performing algorithm(s) 
with 95% confidence is printed in bold.  

TABLE III 
OFFLINE ERROR ± STANDARD ERROR FOR f=5000 

m OLMPSO MPSO mQSO10 FMSO Cellular 
PSO 

1 1.9e-6±0.8e-6  0.56±0.04 3.82±0.35  3.44±0.11 2.55±0.12 
5 0.07±0.11    1.06±0.06 1.90±0.08  2.94±0.07 1.68±0.11
10 0.99±0.43    1.51±0.04 1.91±0.08 3.11±0.06 1.78±0.05 
20 1.67±0.40    1.89±0.04 2.56±0.10  3.36±0.06 2.61±0.07 
30 1.83±0.51    2.03±0.06 2.68±0.10  3.28±0.05 2.93±0.08 
40 1.94±0.55   2.04±0.06 2.65±0.08  3.26±0.04 3.14±0.08 
50 2.26±0.54    2.08±0.02 2.63±0.08  3.22±0.05 3.26±0.08 

TABLE IV 
OFFLINE ERROR ± STANDARD ERROR FOR f=10000 

m OLMPSO MPSO mQSO10 FMSO Cellular 
PSO 

1 9.3e-12±5e-11 0.27±0.02 1.90±0.18  1.90±0.06 1.53±0.12 
5 0.02±0.001 0.70±0.10 1.03±0.06  1.75±0.06 0.92±0.10
10 0.48±0.20 0.97±0.04 1.10±0.07  1.91±0.04 1.19±0.07 
20 0.43±0.22 1.34±0.08 1.84±0.08  2.16±0.04 2.20±0.10 
30 0.64±0.38 1.43±0.05 2.00±0.09  2.18±0.04 2.60±0.13 
40 0.65±0.30 1.47±0.06 1.99±0.07  2.21±0.03 2.73±0.11 
50 0.64±0.28 1.47±0.04 1.99±0.07  2.60±0.08 2.84±0.12 

As depicted in table III, i.e. the change frequency f = 
5000, the result of OLMPSO is slightly worse than the 
result of MPSO when the number of peaks exceeds 40, but 
they are also much better than the other three algorithms 
results. In addition, if the value of the change frequency 
increase, OLMPSO can achieve much better results, which 
can be seen in table IV, the proposed algorithm (OLMPSO) 
outperforms all the other tested PSO algorithms. Such an 
outstanding performance this algorithm to have is due to the 
application of OLPSO in the child swarms. And this is also 
the main difference between OLMPSO and the next best 
algorithm, i.e. MPSO, because MPSO only applies the 
standard PSO. With OLPSO, a particle can fly more 

759



  

promisingly toward the global optimum because the OL 
strategy could construct a guidance exemplar with an ability 
to predict promising search directions toward the global 
optimum. So OLPSO can quickly find better solutions than 
other algorithms after a change occurs in the environment. 
Furthermore, in OLMPSO the number of child swarms 
converges to the number of peaks in the environment, 
which is the same as MPSO. This will help OLMPSO to 
track the changes more effectively. 

D. Effect of Varying the Size of the Parent Swarm 
This set of experiments investigates the effect of the size 

of the parent swarm, i.e. the number of particles in the 
parent swarm, on the performance of OLMPSO. The 
number of particles in the child swarms (π) is set to 7 
particles, and the number of particles in the parent swarm is 
varied as the X coordinate axis in Fig. 1 and Fig. 2. As the 
results depicted in Fig. 1 and Fig. 1, when there are few  

 
Fig.1. The effect of the size of the parent swarm on the 
offline error 

 
Fig.2.The effect of the size of the parent swarm on the 

offline error 

peaks in the environment (peak=1 or peak=5) or when the 
environment changes slowly (f=7500 or f=10000) the size 
of the parent swarm does not affect offline error 
significantly. But for other environments, i.e. the more 
peaks exist in the environment or the more frequently the 
changes occur, offline error escalates and be affected 
significantly by increasing the size of the parent swarm. It 
also can be seen in Fig.1 that the offline error slightly 
increases when the size of the parent swarm increases from 
2 to 4 and then decreases from 4 to 7. So we set the size of 
the parent swarm to 2 in the former experiment to compare 
OLMPSO with peer algorithms on the condition that the 
number of peaks varying. 

E. Effect of Varying the Size of the Child Swarms 
This set of experiments investigates the effect of the size 

of the child swarms (π), i.e. the number of particles in the 
child swarm, on the performance of CPSO. The number of 
particles in the parent swarms is set to 2 particles, and the 
number of particles in the child swarm is varied as the X 
coordinate axis in Fig. 3 and Fig. 4. As depicted in Fig. 3 
and Fig. 4, when there are few peaks in the environment 
(peak=1 or peak=5) or when the environment changes 
slowly (f=7500 or f=10000) the size of the child swarm 
does not affect offline error significantly, which have the 
same tendency as the former experiment shown in Fig. 1 
and Fig.2. Furthermore, when the number of particles in the 
child swarms is 7, the offline error is the least in all 
different environments, i.e. the optimal value for the size of 
the child swarms is 7. The reason is that too many particles 
in the child swarms does not help the particles to find better 
solutions, but consumes precious function evaluations at the 
same time. Conversely, when there are too few particles in 
the child swarms, there is no enough resource to quickly 
find the peaks, so the offline error increases. 

 
Fig. 3.The effect of the number of particles in each child 
swarm on the offline error 

760



  

 
Fig. 4.The effect of the number of particles in each child 
swarm on the offline error 

VI. CONCLUSIONS 
In this paper, we proposed a new multi-swarm PSO 

algorithm for dynamic environments. This algorithm 
(OLMPSO) comprises three main parts, which are a parent 
swarm to explore the search space, some child swarms to 
exploit promising areas found by the parent swarm and an 
orthogonal learning (OL) strategy to utilize previous search 
information (experience) more efficiently in these child 
swarms to improve the convergence speed. The worse child 
swarms will be removed to improve the search performance, 
when the search areas of two child swarms overlap. 
Moreover, in order to quickly track the changes in the 
environment, all particles in a child swarm perform a 
random local search around the best position found by the 
child swarm after a change in the environment is detected. 
The experimental results show that the efficiency of 
OLMPSO for locating and tracking multiple optima in 
dynamic environments is outstanding in comparison with 
other particle swarm optimization models, including MPSO, 
a previously presented multi-swarm algorithm with the 
similar approach. 

As the results show in table 2 and 3, the offline error of 
OLMPSO are the least in comparison with other particle 
swarm optimization models. But we cannot get good 
standard error as offline error, the big values of standard 
error show that the performance of OLMPSO is not as 
stable as other wick algorithm. So this is a shortcoming of 
this algorithm, and we will concentrate on solving it in the 
future work. 

REFERENCES 
[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in 

Proc. IEEE Int. Conf. Neural Netw., vol. 4. 1995, pp. 1942–1948. 
[2] P. Riccardo, J. Kennedy, and T Blackwell, "Particle swarm 

optimization." Swarm intelligence 1.1 (2007): 33-57.  

[3] Y. H. Shi, R. C. Eberhart, "A modified particle swarm optimizer." 
Evolutionary Computation Proceedings, 1998. IEEE World Congress 
on Computational Intelligence., The 1998 IEEE International 
Conference on. IEEE, 1998.  

[4] P.C. Cosman., R. M. Gray, and M. Vetterli, "Vector quantization of 
image subbands: A survey." Image Processing, IEEE Transactions 
on 5.2 (1996): 202-225. 

[5] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. 
Hernandez, and R. G. Harley, “Particle swarm optimization: Basic 
concepts, variants and applications in power system,”IEEE Trans. 
Evol. Comput., vol. 12,no. 2, pp. 171–195, Apr. 2008  

[6] A. B. Hashemi, R. M. Mohammad, "A note on the learning automata 
based algorithms for adaptive parameter selection in PSO." Applied 
Soft Computing 11.1 (2011): 689-705.  

[7] T. Blackwell, and J. Branke, "Multiswarms, exclusion, and 
anti-convergence in dynamic environments." Evolutionary 
Computation, IEEE Transactions on 10.4 (2006): 459-472.  

[8] J. Kennedy, "Stereotyping: improving particle swarm performance 
with cluster analysis Stereotyping: improving particle swarm 
performance with cluster analysis." Evolutionary Computation, 2000. 
Proceedings of the 2000 Congress on. Vol. 2. 2000.  

[9] C. H. Li, S. X. Yang, "A clustering particle swarm optimizer for 
dynamic optimization." Evolutionary Computation, 2009. CEC'09. 
IEEE Congress on. IEEE, 2009. 

[10] R. C. Eberhart, R. Dobbins, P. Simpson: Evolutionary Computation 
Implementations. Computational Intelligence PC Tools, pp. 212–226. 
Morgan Kaufmann, San Francisco (1996)  

[11] C. H. Li, S. X. Yang, "Fast multi-swarm optimization for dynamic 
optimization problems." Natural Computation, 2008. ICNC'08. 
Fourth International Conference on. Vol. 7. IEEE, 2008.  

[12] Z. H. Zhan, J. Zhang, Y Li, Y. H.  Shi, "Orthogonal learning 
particle swarm optimization." Evolutionary Computation, IEEE 
Transactions on 15.6 (2011): 832-847.  

[13] Y. K. Kim and J. B. Ra, “Adaptive learning method in 
self-organizing map for edge preserving vector quantization,” IEEE 
Trans. Neural Networks, 1995, 6:278-280. 

[14] D. C. Montgomery, Design and Analysis of Experiments, 5th ed. 
New York: Wiley, 2000. 

[15] Math. Stat. Res. Group, Chinese Acad. Sci., Orthogonal Design (in 
Chinese). Beijing, China: People Education Pub., 1975. 

[16] J. Branke, “Memory enhanced evolutionary algorithms for changing 
optimization problems,” in Proc. Congr. Evol. Comput., vol. 3. 1999, 
pp. 1875–1882. 

[17] F. Van Den Bergh, “An analysis of particle swarm optimizers”, 
University of Pretoria, 2006.  

[18] M. Kamosi, A. B. Hashemi, and M. R. Meybodi, "A new particle 
swarm optimization algorithm for dynamic environments." Swarm, 
evolutionary, and memetic computing. Springer Berlin Heidelberg, 
2010. 129-138.  

[19] A. B. Hashemi, M. R. Meybodi, "Cellular PSO: A PSO for dynamic 
environments." Advances in computation and intelligence. Springer 
Berlin Heidelberg, 2009. 422-433.  

[20] A. B. Hashemi, M. R. Meybodi, "A multi-role cellular PSO for 
dynamic environments." Computer Conference, 2009. CSICC 2009. 
14th International CSI. IEEE, 2009.  

[21] T. Blackwell, J. Branke, and X. D.  Li, "Particle swarms for 
dynamic optimization problems." Swarm Intelligence. Springer 
Berlin Heidelberg, 2008. 193-217.  

[22] A. Carlisle, G. Dozier, "Adapting particle swarm optimization to 
dynamic environments." Proceedings of the International 
Conference on Artificial Intelligence. Vol. 1. Athens, GA, USA: 
CSPlEA Press, 2000.  

[23] S. Janson, and M. Middendorf, "A hierarchical particle swarm 
optimizer for dynamic optimization problems." Applications of 
evolutionary computing. Springer Berlin Heidelberg, 2004. 513-524.  

[24] S. Janson, and M. Middendorf, "A hierarchical particle swarm 
optimizer and its adaptive variant." Systems, Man, and Cybernetics, 
Part B: Cybernetics, IEEE Transactions on 35.6 (2005): 1272-1282.  

[25] R. C. Eberhart, Y. H. Shi. "Tracking and optimizing dynamic systems 
with particle swarms." Evolutionary Computation, 2001. Proceedings 
of the 2001 Congress on. Vol. 1. IEEE, 2001.  

 

761




