

Abstract— This work proposes a set of modifications to the
Differential Evolution algorithm in order to make it more
efficient in solving a particular category of problems, the so
called Constrained Sampling problems. In this type of
problems, which are usually related to the on-line real-world
application of evolution, it is not always straightforward to
evaluate the fitness landscapes due to the computational cost it
implies or to physical constraints of the specific application. The
fact is that the sampling or evaluation of the offspring points
within the fitness landscape generally requires a decoding phase
that implies physical changes over the parents or elements used
for sampling the landscape, whether through some type of
physical migration from their locations or through changes in
their configurations. Here we propose a series of modifications
to the Differential Evolution algorithm in order to improve its
efficiency when applied to this type of problems. The approach
is compared to a standard DE using some common real-coded
benchmark functions and then it is applied to a real constrained
sampling problem through a series of real experiments where a
set of Unmanned Aerials Vehicles is used to find shipwrecked
people.

I. INTRODUCTION

volutionary Algorithms (EAs) have demonstrated a
strong capacity for solving a large number of hard

optimization problems, showing complicated fitness
landscapes, that are difficult to address using more traditional
and non-stochastic techniques. However, unlike other
algorithms, such as Swarm Intelligence based strategies, they
are usually relegated to off line optimization and are hardly
ever used on-line in the case of real time real world
applications. That is, they are seldom used as an intrinsic part
of the operation of a real system, but rather as optimizers of
the parameters of the system that has to work in real time and
hardly ever used in applications where the fitness evaluation
is not straightforward or where it is very expensive in terms
of computational time.

Some inroads have been made by several authors when
considering the problem of costly evaluations. Examples of
these are to use surrogate models [1], which are
approximations to the fitness functions using coarser models
with lower computational requirements. Several techniques
to approximate fitness such as approximation levels,
approximate model management schemes or model
construction techniques [2] have been analyzed for
application to problems where the calculation of the fitness is
extremely expensive, as in the case of, for instance, structural

All authors are with the Integrated Group for Engineering Research,

University of A Coruña, Ferrol, Spain (phone: +34981337400, e-mail:
{gvarela, pcsobrino, felix.orjales, adeibe, flop, richard}@ udc.es).

This work was partially funded by the Spanish MICINN and European
Regional Development Funds through project TIN2011-28753-C02-01.

design optimization [1], protein structure prediction [3] or
protein design and drug design [4].

Nevertheless, these techniques are quite specific to off-line
modeling and evolution, and only address the problem of
costly evaluations through approximations. There are other
types of problems where the bottleneck is not really the
evaluation of the individuals but rather their decoding
(usually taken as part of the evaluation phase). In general, all
EAs assume that every point of the search space can be
directly, or almost directly, decoded, i.e., it is possible to
create the instance of the solution represented by the
individual in a reasonably easy way and, thus, it is possible to
easily measure the fitness of any point in the fitness
landscape.

There are, however, problems where this is not the case,
especially when addressing real world problems for which
evolutionary algorithms could be a good tool to be used as a
part of the operation of the system that has to solve them. Just
to name one, we could think of a system that needs to
determine the area with the highest plankton content in the
Pacific Ocean. This problem would require measuring or
sampling the plankton at different points and depths in the
ocean and using a strategy (perhaps evolutionary) to
determine the next points to sample in order to be able to
efficiently find the point with the highest plankton level. This
is basically an optimization problem over a real fitness
landscape and EAs are not very efficient in these situations as
the points that should be sampled are usually far from the
points over which the sampler is located after measuring the
previous fitness value. Here, the decoding phase involves
moving the sampler to a physical position of the solution
space. In other words, in order to obtain the fitness of an
offspring, its decoding is only possible through a series of
transformations (in this case motions) from the decoded
version of one of the parents or from that of another
individual in the parent population.

It seems obvious that this poses the same requirements as
exploring unknown search or solution spaces in optimization
problems in order to find their optimum or optima. The only
difference is the fact that in real time real world problems,
this exploration is carried out by a set of real units or devices.
Thus, as such, they are constrained by the limitations of
reality in terms of their own physical structure and the
physics of the real world (they cannot be omnipresent,
change positions instantaneously, or perform certain
maneuvers). The consequence of these limitations is that they
are constrained in terms of what can be sampled from the
environment at a given point in time or in a given interval of
time. Here we are going to denote the type of problems where

Differential Evolution in Constrained Sampling Problems

Gervasio Varela, Pilar Caamaño, Felix Orjales, Alvaro Deibe, Fernando Lopez-Pena
Richard J. Duro

E

2375

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the sampling of the search space is limited by the physics of
reality as Constrained Sampling (CS) problems.

Thus, strictly speaking, Constrained Sampling Problems
(CS-Problems) are problems in which the constraints do not
correspond to areas of the search space that are forbidden, but
rather, to the fact that the entity that has to sample the points
only has access to a limited neighborhood of its current
position each instant of time. That is, they can be described as
search or optimization problems in which it is necessary to
physically reach a specific point of the solution space through
a series of transformations from the decoded version of a
previous point in order to be able to produce a fitness value.
Physically reaching a point in the solution space may involve,
in some cases, moving a sensor to that point or, in others,
constructing a physical entity. The key to this process is that
it is not instantaneous, it takes time and requires following a
trajectory that leads to the solution point that needs to be
evaluated (either through the motion of a sensing entity or
through a series of construction or transformation steps) from
the decoded version of a previous individual. Thus, in
general, a CS-Problem implies a bottleneck in the application
of the EA induced by the, sometimes very long times
required for decoding the individuals, that is, for getting to a
position or configuration that allows evaluating them. Many
problems can be included in this category, most of them
involving real world applications. Examples are coordinated
search in unknown environments [5] which imply physically
moving sensors in order to evaluate points; the evolution of
modular robots [6], in which, every time an individual has to
be evaluated, a new robot needs to be constructed (usually
from pieces that were used in a previous instance and that
must be disassembled); or Facility Layout Problems (FLPs)
[7], in which the individuals of the population represent the
configuration of production plants and, in order to measure
the fitness of each one, a simulation model has to be
constructed.

Several authors have proposed and tested certain types of
modern evolutionary algorithms that have been shown to be
very adequate in complex and rugged fitness landscapes or in
flat fitness landscapes that provide little information for
evolution; examples are CMA-ES [8], DE [9], and many
others. However, as indicated before, they assume that
reaching any point in the solution space is simple and
immediate and thus impose no restriction within their
operation on how the points to be sampled or evaluated next
should be chosen. This leads to very inefficient behaviors in
CS problems as they ignore information about the landscape
that could be gathered during the decoding phase, as each
step produces a new solution. Consequently, these problems
have usually been addressed using other types of
metaheuristics such as Particle Swarm Optimization (PSO)
[11, 5]. EAs have only been used indirectly in these cases by
some authors that concentrated on the off-line evolution of
control strategies for the samplers that were able to use
information from the environment for real-time
improvements [12, 13].

To solve the efficiency problems of EAs in general, and
the Differential Evolution algorithm in particular, the
approach followed in this paper has been to adapt it to the CS
nature of the problem. Specifically, we present a new version
of the traditional Differential Evolution (DE) Algorithm.
This version of the algorithm has been called the Constrained
Sampling Differential Evolution Algorithm (CS-DE).

The approach is compared to a standard DE using some
common real-coded benchmark functions and then it is
applied to a real constrained sampling problem through a
series of real experiments where a set of UAVs is used to find
shipwreck survivors in the open sea and its efficiency
compared to a traditional swarm optimization method.

The remainder of the paper is structured as follows.
Section 2 describes the implementation and details of the
constrained sampling Differential Evolution algorithm
(CS-DE). It first considers a general presentation of
Constrained Sampling Evolutionary Algorithms and then
particularizes it to the Differential Evolution algorithm.
Section 3 is devoted to testing the CS-DE over a set of
benchmark functions and providing a comparison of its
performance with respect to a standard DE. In Section 4 we
provide an example of the application of CS-DE as an
intrinsic part of the control of a set of Unmanned Aerial
Vehicles (UAVs) that must perform a collaborative search
operation. Finally, Section 5 provides some conclusions to
this work.

II. ALGORITHMS FOR CONSTRAINED SAMPLING PROBLEMS

In order to describe the approach presented here, we are
going to consider the general case of any EA in the initial
description and then particularize it to the Differential
Evolution algorithm.

A. General Approach: CS-EA

The CS-EA (Constrained Sampling Evolutionary
Algorithm) is designed as a series of modifications over a
standard EA to intrinsically deal with the sampling
constraints induced by CS-problems. Thus, a base EA, i.e. the
Differential Evolution algorithm (DE), undergoes
modifications in the way it handles its populations.

Thus, the execution cycle of any EA requires an offspring
population (P’(t), where t is the current generation) to be
evaluated and compared to the parent population (P(t)) in
order to produce the next generation parent population
(P(t+1)). As indicated in the introduction, CS problems
usually entail following lengthy and constrained trajectories
(sequences of transformations) in solution space from the
individuals in P(t) to those in P’(t) before the individuals in
the latter population can be evaluated. Thus, P’(t) can be
taken as the target of the trajectories and in what follows we
will denote it as T(t), that is, the target population. The main
idea underlying this proposal is to use the information that
can be gathered when moving along these trajectories in
solution space as additional information for the EA in order
to make it more efficient. We will say that the individuals
following the trajectories towards their targets are evaluating

2376

the points along the trajectory (think of a plankton
measurement unit that is moving towards a target point and is
evaluating all the points it traverses in that direction). Thus,
two additional populations of individuals are considered by
the CS-EA:

 A population that includes all the points of the search
space that have been evaluated up to that point. That is,
not only the target points determined by the EA, but also
those that different individuals have evaluated as they
were moving towards their targets. These will be
denoted as the evaluated population (hereafter, E(t)).

 A population of evaluating entities: these elements are
the successive transformations of the individuals in P(t)
when moving towards T(t) and they can be used to
measure the fitness of the landscape points they go
through and send the measurements to the evaluated
population. Each evaluating entity (Ԧܿ) has an associated
individual from the target population (ݐԦ) that guides its
transformation along a trajectory (basically, the current
individual changes by moving towards the target). We
must point out that the number of evaluating entities is
independent of the base-EA population size.

In addition to these two populations, the CS-EA also
implies changes with respect to regular EAs in the way the
fitness landscape is covered. The following elements are
necessary for this objective:

 A strategy to select the target individual assigned to each
evaluating entity, hereafter the target selection strategy
(τ). In other words, it is necessary to provide a way to
decide how the target towards which a given evaluating
entity moves is chosen.

߬: Թ ൈ Թൈ → Թ, ߬൫ Ԧܿ, ܶሺݐሻ൯ ൌ 	 ,Ԧᇱݐ Ԧᇱݐ ∈ ܶሺݐሻ (1)
where n is the problem size and m is the target population
size.
 A definition of the rules that determine the modifications

allowed over the parameters of the current individual of

the evaluating entities. They always adapted to the
specific application and are denoted as the application
rules (ߪ).

Թ:ߪ ൈԹ → Թ, ሺߪ Ԧܿ, Ԧሻݐ 	ൌ 	 ܿ′ሬሬԦ, ห Ԧܿ 	െ 	 Ԧหݐ ቚܿ′ሬሬԦ 	െ Ԧቚ (2)ݐ	

The only requirement in the definition of the application
rules is the following:
ሺߪ Ԧܿሻ ൌ 	 ,Ԧݐ ݅	 ∈ Գ, ݅ ൏ ∞ (3)

The execution cycle of CS-EAs is quite similar to that of
regular EAs. The main difference is the inclusion of the two
new populations within the structure of the algorithm.

First, it is usually the case that we want a minimum size for
the evaluated population before applying any evolutionary
operator. For the sake of simplicity, this size, N, generally
corresponds to the population size parameter of the base-EA.
Thus, the algorithm usually waits until there are, at least, N
evaluated individual and the parent population of the
base-EA is then filled with the first N individuals of the
evaluated population. At this point, the CS-EA starts running
the operators corresponding to a generation of the EA; the
selection phase is executed to select the individuals from the
parent population that will be reproduced and the
reproduction operators are used to generate a new offspring
population that will be stored as the target population.

After this, the evaluating entities start to follow a trajectory
from the current parent population to the target population,
providing fitness values for the points along the way and
sending them to the evaluated population. Once the
evaluated population has, again, at least N evaluated
individuals, the replacement operators compare the parent
population to the evaluated individuals selected from the
evaluated population, creating the new parent population
that leads to a new generation of the CS-EA. The flowchart of
Fig. 1 represents the sequence of steps followed by the
CS-EA each generation.

As previously mentioned, due to the computational cost or
to physical constraints of the applications, the individuals of
the base-EA cannot directly measure the fitness of the
solutions proposed by the target population. The evaluating
entities go through the fitness landscape following a
trajectory guided by the individuals of the target population.

Fig. 1. Constrained Sampling EA flow chart.

Fig. 2. Evaluating entities behavior flowchart.

2377

Each instant of time, the current individuals of the evaluating
entities are modified according to the application rules. The
evaluating entities measure the fitness of their new positions
in search space and send them to the evaluated population.
Note that this fitness value is not necessarily that of the target,
but that of a point closer to the target than the initial value.
Finally, according to the target selection strategy, a new
target individual is assigned to the evaluating entity. The
behavior of the evaluating entities is represented in the
flowchart of Fig. 2.

Summarizing, the target population generated using the
CS-EA operators guides the motion of the evaluating entities
along the landscape towards areas that the CS-EA considers
promising. However, this target population cannot be used to
guide the evolutionary process due to the fact that it is usually
impossible to evaluate the fitness value (sensed value) for
these positions within the time interval assigned, that is, there
is usually no evaluating entity close enough (either in
distance or in configuration) to be able to make the
measurement. However, as the evaluating entities move
throughout the fitness landscape, they are evaluating
positions in the direction of the target positions and these
evaluations can be used as evaluated individuals in the
CS-EA.

B. Particularization to Differential Evolution

As previously indicated, the evolutionary approach
proposed here could be coupled to any EA. This work
concentrates on the modification of a Differential Evolution
(DE) algorithm [9]. It has been chosen due to its exploration
capabilities and to the fact that it has shown the best average
performance in the most popular algorithm competitions of
the field [14, 15]. Thus, the base-EA in this case is
Differential Evolution algorithm.

For application to constrained sampling problems, the DE
must undergo a series of changes. On one hand, it must
consider the two new populations mentioned above, but that
is completely straightforward. On the other, a target selection
strategy and a set of application rules need to be defined.

Regarding the target selection strategy, in this work two
very different strategies were considered and they were
compared in the experimental section. The first one, which
we have called random, selects a random individual from the
target population for each evaluating entity. The second one,
which we have labeled as closest, chooses the individual
from the target population that is closest to the current
configuration (position in the fitness landscape) of each
evaluating entity.

The target selection strategy is also responsible for
determining when the target is changed. When working with
standard EAs, the target is only changed when the evaluating
entities reach it, as it is mandatory to measure its fitness in
order to obtain the fitness of the offspring that, in standard
EAs, constitute the evaluated population. This is not the case
of the CS-EA due to the fact that the evaluating entities fill
the evaluated population as they move along the search space
and there are many more evaluated individuals than just the

targets. In fact, the targets may not even be in the evaluated
population, as they often cannot be reached in time.
To finish with the configuration of the algorithm, the
application rules need to be defined. The application rules
are completely problem dependent and will be different for
each problem considered. A description of the ones chosen
for the two types of problems considered in the experimental
section will be provided there.

A basic DE scheme, with the best or random mutation
strategy, is adequate for the optimization of functions that
present only one global optimum. However, there are
scenarios in which a CS-DE would be appropriate where the
possibility of locating several optima is required. To this end
a commonly used approach in the EA field is inspired by the
biological concept of niching [16]. Taking advantage of this
concept, the EAs preserve the diversity of the population
through the formation of niches or sub-populations that
explore different and spread-out promising areas of the
search space. This allows the algorithm to simultaneously
converge to several solutions of the function in the same run.
EA niching techniques that can be found in the literature
include crowding, fitness sharing, clearing, clustering,
parallelization or speciation. In this work we have considered
the DE variant for multimodal problems presented in [17] as
our base algorithm for multiple optima problems because of
its successful performance in solving the most commonly
used multimodal benchmark functions. It takes advantage of
the clustering behavior of the random mutation strategy and
incorporates the concept of vicinity by using the information
of the closest individual of the population to generate the
mutated individual. More specifically, for each individual of
the populationݔ ; ݅ ൌ 1, 2,… ,ܰܲ , where NP is the total
number of individuals in the population and g indicates the
generation, the trial vector is generated according to the
DE/nrand/2/bin scheme. Where nrand is the mutation
strategy that generates the mutant vector ݒାଵ

 as follows:

ାଵݒ
 ൌ ݔ

ேே ݔ൫ܨ
భ െ ݔ

మ൯ ݔ൫ܨ
య െ ݔ

ర൯ (4)

where ݔ
ேே is the closest individual to the current one ݔ ,

,ଵݎ ,ଶݎ ,ଷݎ ସݎ ∈ ሼ1,… , ܰܲሽ/ሼ݅ሽ are mutually different random
integers excluding the current index i and F is a real
parameter called scaling factor. The trial vector is obtained
through the application of the common binomial crossover
operator to the mutant and target vector as follows. For each
parameter of the individuals j, where j = 1…n, the trial vector
ାଵݑ)

) is generated as follows:

ݑ
 ൌ ቊ

ݒ
	݂݅	݀݊ܽݎሺ0,1ሻ ൏ ݆	ݎ	ܴܥ ൌ ݇

	ݔ
 ݁ݏ݅ݓݎ݄݁ݐ	

 (5)

where CR is the crossover rate and k is a random integer value
in [0, n) which ensures that at least one parameter of the
mutant vector is inherited.

III. EXPERIMENTS OVER BENCHMARK FUNCTIONS

In this section, we are going to compare the performance
of a CS-DE algorithm to that of a standard DE over a
well-known set of benchmark functions. Due to space

2378

limitations, only five benchmark functions will be presented
in this paper. The selected functions are the Sphere Model
(f1), and Ackelys’s (f2), Rastrigin’s (f3), Rosenbrock’s (f4)
and Schwefel’s (f5) functions. The first one is unimodal,
being the other four functions multimodal with different
optima distributions. Their analytical expressions and
characteristics may be found in [15].

A. Experimental Setup

The algorithms are compared in terms of efficiency,
effectiveness and precision using the speedup, the absolute
error and the genotypic error [18], respectively. To ensure
that the results are statistically significant, 50 independent
runs of each experimental setup configuration were run.
Their stop criterion, as in the most popular algorithm
competitions, was based on the maximum number of
function evaluations (FEs). Here this value was set to	݊ ∙ 10ହ,
where n is the dimension of the problem.

To fairly compare and analyze the results, an
implementation of DE with the same configuration will be
used as the standard DE. In [18], the authors analyzed the
performance of DE over different optimization functions
including the five used in this work. The configuration of the
algorithms in this paper is the same as that of [18]. The

population size was set to 50 individuals and the
dimensionality of the functions was set to 2 in all cases.

The CS-DE does not need to reach the targets in order to
fill up the evaluated population. These targets can thus be
changed even when they have not been evaluated, that is,
before the evaluating entities have reached them. However,
to compare the algorithms more evenly in these tests, the
targets of the CS-DE approach will only be modified when
the evaluating entities reach them. Notice that this decision is
unfair to the CS-DE because its exploration capabilities
decrease when forced to reach the targets, reducing its
performance with respect to when it changes targets freely.

To analyze the influence of the number of evaluating
entities on the performance of the two algorithms, the tests
were carried out using 5, 10 and 20 evaluating entities for the
CS-DE. Again, to incorporate the constraints imposed by
CS-problems, when evaluating the standard DE we also
assumed a limitation in the number of evaluating entities.
This means that the offspring population was evaluated, as in
the case of any CS-problem, by using the number of samplers
available (5, 10 or 20) until the whole offspring population
had been covered. Our initial hypothesis is that the larger the
number of evaluating entities, the less time required for
completing the task. Also, increasing the number of
evaluating entities improves the exploration capabilities of
the algorithm and, consequently, the absolute and genotypic
error should decrease.

To finish with the adaptation of the algorithm to the
problem, the application rules need to be defined. In these
experiments, we simulate a target-finding problem where the
target is the optimum of the benchmark function. Thus, the
evaluating entities will be moved throughout the search space
like physical samplers with the same physical constraints,
i.e., their movements are limited by a maximum step length,
here set to 0.01 units, which represents 0.35% of the search
space.

B. Results

After executing the experiments described above, the first
thing that must be mentioned is that all the runs were solved
successfully. They all produced absolute errors below 1.0e-6,
except for some of the runs over Schwefel’s function. In
these cases, even though the random target selection strategy
led to higher absolute errors (see Table 1) the results in terms
of distance to the optimum (Genotypic error in Table 2) show
that the differences are not significant.

Finally, the three graphs of Fig. 3 provide an indication of
the speed-up obtained over the standard DE algorithm when
using the CS-DE, both for a random selection strategy and
for a closest selection strategy. From top to bottom, the plots
display the results when 5, 10 and 20 evaluating entities were
used. The CS-DE is always superior to the standard DE in
terms of efficiency, significantly speeding up the search. As
expected, as the number of evaluating entities increases there
is less difference between the two models.

Clearly, the random selection strategy leads to the most
significant differences between the standard DE and the

TABLE 1
ABSOLUTE ERROR FOR SCHWEFEL’S FUNCTION.

Random target selection

strategy
Closest target selection

strategy
EE5 EE10 EE20 EE5 EE10 EE20

St – EA
1.4e-07 ±

0e+00
1.4e-07 ±

0e+00
1.4e-07 ±

0e+00
1.4e-07 ±

0e+00
1.4e-07 ±

0e+00
1.4e-07 ±

0e+00

Cs – EA
3.9e+00 ±
2.0e+01

1.4e-02 ±
7.4e-02

4.4e-04 ±
1.5e-03

1.4e-07 ±
4.5e-14

1.4e-07 ±
8.5e-12

1.4e-07 ±
1.0e-13

TABLE 2
GENOTYPIC ERROR PROVIDED FOR SCHWEFEL’S FUNCTION.

Random target selection

strategy
Closest target selection

strategy
EE5 EE10 EE5 EE10 EE5 EE10

St – EA
1.3e-07 ±
4.9e-10

1.3e-07 ±
5.1e-10

1.3e-07 ±
4.3e-10

1.3e-07 ±
6.5e-10

1.3e-07 ±
7.1e-10

1.3e-07 ±
5.8e-10

Cs – EA
3.0e-02 ±
2.0e-01

1.6e-04 ±
6.6e-04

4.4e-04 ±
1.5e-03

1.3e-07 ±
4.7e-10

1.3e-07 ±
6.1e-09

1.3e-07 ±
4.9e-10

Fig. 3. Speedup comparison between the two algorithms when 5,
10 and 20 (from top to bottom) evaluating entities are used.

2379

CS-DE. The latter is 2.5 times faster in the worst case and 12
times faster in the best one. This difference is more evident in
multimodal functions (f2-f5), which require a more
exploratory behavior from the DE algorithm. In fact, among
the multimodal functions, f2, f3 and f4 present a
topographical structure that requires less explorative
capacities than function f5 (see [18] for more details). This is
the reason why the difference between the CS-DE and the
standard DE is larger in the case of function f5. In this case
the CS-DE approach explores the solution space in a short
span of time, as, unlike the standard DE, it takes advantage
from the information it gathers during the trajectories.

IV. REAL WORLD TEST

A more realistic example of the application of a CS-DE is
considered in this section. The task that we contemplate is
that of searching for a number of shipwreck survivors
floating in the sea wearing life vests with short-range
beacons. This search will be carried out by a group of
autonomous Unmanned Aerial Vehicles (UAVs) led in their
search by a CS-DE, in this case a CS-DE with niching as we
need to find all of the survivors simultaneously.

A. Experimental Setup

As the objective here is to test the behavior of the CS-DE
extensively and in order to avoid the high costs of performing
real test flights for each experiment, it was necessary to
create a simulation environment where the algorithms could
be evaluated. The parameters of the UAV models used within
this simulator were obtained from flight tests of real UAVs
with a wingspan of 1660 mm, a length of 1200 mm, and a 40
km range. The dynamic behavior for each plane was
simulated using the FlightGear Flight simulator. FlightGear
interacts with a Java program, which implements the Virtual
Aircraft agent and runs the behavior of the VA and the
Autopilot software.

Fig.4 UAV team simulator block diagram.

The simulation environment (Fig. 4) uses a central control
point, the SC, for monitoring and visualization purposes
(using the Google Maps API), and for global squadron
control in some algorithms. The SC communicates remotely,
via UDP/IP, with the Virtual Aircraft (VA) software, which
can be run in remote computers, so that a computation cluster
can be used to run multiple planes. This remote operation

capability allows running a VA directly in the flight field,
connected via radio control to a real plane and remotely
connected to the SC via Internet.

B. Tests and Results

As indicated at the beginning of the section, the task
considered in the experiments was that of finding different
numbers of shipwreck survivors in a large area of the sea.
This task is quite costly through conventional means and is
very adequate for UAV teams. In this case, as we were just
studying the capabilities of the algorithms, it was assumed, as
it is commonly the case, that all these shipwrecked people
were wearing a life vest provided with a low power radio
beacon. Thus, the search is based on the detection of the
emergency signals given off by these beacons, which, for our
purposes and to make the problem more general and
applicable to other tasks, such as environmental monitoring,
we assumed were not directional.

The tests have consisted in searching for different numbers
of shipwrecked people within a 100 km2 area of the sea. To
compare to other more common strategies, we have used two
different algorithms: the CS-DE and a Swarm Intelligence
based approach and different sizes of UAV squadrons.

Two different versions of the virtual emitting source
function have been used. One without noise, that could, in
principle, be easily solved using gradient based algorithms,
and one with noise (the noise levels where modeled after the
real data extracted from the real planes) that would
theoretically be more difficult for gradient based algorithms.

In order to compare the algorithms in terms of time taken
to accomplish the task of finding N emitting sources, we are
assuming that planes can “see” the targets when they are
within a radius of 100 meters from them. The algorithms
were run until all the emitting sources in the area were
visually confirmed by, at least, two planes. This was done to
minimize the influence of random successes due to planes
that visually confirm sources during the exploration stage.

The configuration parameters for the DE used are those
recommended in [17]. Specifically, we have used a value of
0.5 for the F parameter, 0.9 for the crossover rate (CR) and a
population of 100 individuals. The target selection strategy
used was random within the detection range of the planes.
This detection range is taken as infinite in distance but
limited to an angle of 45 degrees in their heading direction. In
the case of the swarm approach, the configuration parameters
were a decision gap (T) of one minute and a number of closest
neighbors taken into account in the selection of the heading
direction (N) of 3.

For each test, the times required to find each existing
emitting source were recorded. Not all the combinations of
squadron sizes and emitting source numbers were solved by
both algorithms. Finally, the search was temporally limited to
a maximum of sixty minutes. More time than that would
exceed the flight autonomy of the real planes and in real
conditions in the Atlantic, the average survival time is usually
no more than 50 minutes due to hypothermia.

As an example of the test runs, Fig. 5 displays a sequence

2380

of snapshots from the simulator running the CS-DE
algorithm with five planes and two shipwrecked people. The
planes are shown as arrows, with their trajectories drawn as
colored lines. The stars mark the target population of
geographical points generated by the CS-DE algorithm in
that generation. Initially (a) the algorithm generates a highly
dispersed population. As the planes start exploring the space,
the target population of the algorithm concentrates around the
areas where the agents have sensed the most promising
values (b and c). As the simulation progresses, the algorithm
starts to exploit the already collected information by
concentrating the target population near the emitting beacons
of the shipwrecked people (d and e). As the planes tend to
move towards the target population, the concentration of the
target population obtained by the evolutionary algorithm over
the areas where the shipwrecked people are located end up
leading the planes to fly over these areas (f).

Fig. 6 displays the results of the performance of the CS-DE
compared to that of the swarm approach. Obviously, as the
number of shipwrecked people increases the task becomes
harder in all cases. Take into account that the area being
explored corresponds to 100 Km2 of sea and the number of
planes is quite small (15 at most). For all three squadron
sizes, as the number of objectives increases, the time it takes
the CS-DE to find them increases on average. In the case of
the swarm based approach this is more evident, as when the
tasks involve two or three shipwrecked people the number of
successful runs decreases dramatically, especially in the case
of the smaller squadron (5 planes). In fact, for the smaller
squadron, the swarm-based approach is never successful
when there are more than one shipwrecked person. This is
because, with such a small number of units, it is quite
difficult for the algorithm to split the units into teams. On the
other hand, when the swarm-based approach is successful in
this case it can be marginally faster than the CS-DE due to its
higher exploitative capabilities.

 The CS-DE, on the other hand, seems more balanced in its
exploitation vs. exploration capabilities. This, obviously,
induces a slight disadvantage in terms of speed when there is

just one shipwrecked person, but as the graphs show, when
the number of targets increases it is clearly advantageous,
dramatically reducing the chance of missing one.

One can improve the results of the swarm-based approach
by increasing the number of planes in the team (bottom left
graph). That is, allowing more planes per unit area. However,
the CS-DE still produces a higher number of successful runs,
solving within the allotted time every run with 2-shipwrecked
people and all of the runs but two with 3-shipwrecked people.
Additionally, as the number of planes increases the CS-DE
becomes as fast as and sometimes even faster than the
swarm-based approach in all cases.

The same conclusions hold when analyzing the results of
the cases where the electromagnetic signal was noisy (right
graphs). Although the average time required to accomplish
the tests is slightly longer for both algorithms than in the
noiseless scenarios, the reliability of the CS-DE approach
remains much better.

Summarizing, although the swarm based approach may
sometimes be faster in finding one individual than the
CS-DE, the latter is much more reliable and robust in all
cases. In addition, as the number of planes increases the time
needed to find all the shipwrecked people becomes similar
for both approaches when successful. This is because the
search process of an evolutionary algorithm exploits the
information of the search space provided by the planes more
effectively.

Fig. 6. Results provided by the two approaches in the different test scenarios.
From left to right, each graph shows the results for different types of runs:
those with no noise in the electromagnetic signal are shown in the left
column while those with noise are shown in the right column. From top to
bottom, results obtained by teams of 5, 10 and 15 UAVs. Triangles
correspond to the Swarm based algorithm and squares to the CS-DE.

Fig. 5. Sequence of snapshots from the simulator while running a
simulation using the CS-DE algorithm, 2 shipwrecked people (circles)
and 5 airplanes (arrows). The stars represent the target population
provided by the algorithm in a given generation and the lines the
trajectories followed by the airplanes.

2381

V. CONCLUSIONS

This paper proposes a new kind of Differential Evolution
algorithm in order to address a niche of problems where EAs
have seldom been applied due to their poor performance.
These problems have been called Constrained Sampling
problems and are characterized by a bottleneck in the process
of obtaining the individuals needed in order to evaluate the
offspring each generation of an evolutionary process.

We have shown that by appropriately using the
information obtained during the decoding process, that is,
during the process of positioning the individuals in the
locations of the fitness landscape indicated by the
evolutionary algorithm when producing offspring, the search
could be greatly accelerated. To this end, a series of
modifications over the standard DE are proposed allowing it
to work over this type of problems. The new algorithm has
been called the Constrained Sampling DE algorithm
(CS-DE).

The performance of the CS-DE has been compared to that
of a standard DE in a set of benchmark constrained sampling
problems. These problems are well known benchmark
functions where a constraint has been imposed on the
maximum size of the change of an individual each time step.
The results have shown that the CS-DE outperforms the
standard DE in all cases, leading to speedups of up to 12
depending on the target selection strategy and number of
evaluating units.

Finally, to show the applicability of this strategy to real
problems, the CS-DE has been applied to the coordination of
a UAV team when searching for shipwreck survivors in the
open sea and compared to a swarm based strategy (which is a
more popular strategy in this case). The results show that the
CS-DE is much more robust, especially when multiple
targets are present and much more balanced with regards to
exploration and exploitation.

Current activities involve characterizing the scalability of
the CS-DE to higher dimensionalities. In this line, some
preliminary experiments have shown that in a 10 dimensional
problem, the speedup of the CS-DE with respect to a standard
DE can reach values of up to 2000. We are also working on
the reformulation of other types of EAs to a CS version as
well as on their application to real world problems.

REFERENCES

[1] Ong, Y. S., Nair, P. B., & Keane, A. J. (2003). Evolutionary
optimization of computationally expensive problems via
surrogate modeling. AIAA journal, 41(4), 687-696.

[2] Jin, Y. (2005). A comprehensive survey of fitness
approximation in evolutionary computation. Soft computing,
9(1), 3-12.

[3] Piccolboni, A., & Mauri, G. (1998, January). Application of
evolutionary algorithms to protein folding prediction. In
Artificial Evolution (pp. 123-135). Springer Berlin Heidelberg.

[4] Schneider, G. (2000). Neural networks are useful tools for drug
design. Neural Networks, 13(1), 15-16.

[5] Y. Altshuler, V. Yanovsky, I. a. Wagner, and A. M. Bruckstein,
“Efficient cooperative search of smart targets using UAV
Swarms,” Robotica, vol. 26, no. 04, Feb. 2008.	

[6] Faiña, A., Orjales, F., Bellas, F., & Duro, R.J., (2011) First
Steps towards a Heterogeneous Modular Robotic Architecture
for Intelligent Industrial Operation, Workshop Reconfigurable
Modular Robotics: Challenges of Mechatronic and
Bio-Chemo-Hybrid Systems, IROS, 0-6.

[7] Singh, S. P., & Sharma, R. R. K. (2006). A review of different
approaches to the facility layout problems. The International
Journal of Advanced Manufacturing Technology, 30(5-6),
425-433.

[8] Hansen, Nikolaus, and Andreas Ostermeier, "Adapting
arbitrary normal mutation distributions in evolution strategies:
The covariance matrix adaptation." In Evolutionary
Computation, Proceedings of IEEE International Conference
on, pp. 312-317. IEEE, 1996.

[9] Storn, Rainer, and Kenneth Price. "Differential evolution a
simple and efficient heuristic for global optimization over
continuous spaces." Journal of global optimization 11, no. 4,
341-359, 1997.

[10] Banks, A., Vincent, J. and Phalp, K. T.,“Particle Swarm
Guidance System for Autonomous, Unmanned Aerial Vehicles
in an Air Defence Role”. Journal of the Royal Institute of
Navigation, 61, pp. 9-29, 2008.

[11] Kennedy, J.; Eberhart, R. (1995). “Particle Swarm
Optimization”. Proceedings of IEEE International Conference
on Neural Networks Vol. IV: 1942–1948.

[12] E. Besada-Portas, L. de la Torre, J. M. de la Cruz, and B. de
Andres-Toro, “Evolutionary Trajectory Planner for Multiple
UAVs in Realistic Scenarios” IEEE Trans. Robot., vol. 26, no.
4, pp. 619–634, Aug. 2010.

[13] S. Mittal and K. Deb, “Three-dimensional offline path planning
for UAVs using multiobjective evolutionary algorithms,” in
Proc. IEEE Congr. Evol. Comput., vol. 7, pp. 3195–3202,
2007.

[14] Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc, M.,
Suganthan, P. N., Coello, C. C., & Deb, K. (2006). Problem
definitions and evaluation criteria for the CEC 2006 special
session on constrained real-parameter optimization. Journal of
Applied Mechanics, 41.

[15] Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P.,
Auger, A., & Tiwari, S. (2005). Problem definitions and
evaluation criteria for the CEC 2005 special session on
real-parameter optimization. KanGAL Report 2005.

[16] Gulshan Singh and Kalyanmoy Deb, Dr. “Comparison of
multi-modal optimization algorithms based on evolutionary
algorithms.” In Proceedings of the 8th annual conference on
Genetic and evolutionary computation (GECCO '06). ACM,
New York, NY, USA, 1305-1312, 2006.

[17] Epitropakis, M. G., Plagianakos, V. P., and Vrahatis, M. N.
“Finding multiple global optima exploiting differential
evolution's niching capability”. In Differential Evolution
(SDE), IEEE Symposium on (pp. 1-8). IEEE, 2011.

[18] Caamaño, P., Bellas, F., Becerra, J. A., & Duro, R. J. (2013).
Evolutionary algorithm characterization in real parameter
optimization problems. Applied Soft Computing, 13(4),
1902-1921.

2382

