
 
 

 

 

Abstract— This work proposes a set of modifications to the 
Differential Evolution algorithm in order to make it more 
efficient in solving a particular category of problems, the so 
called Constrained Sampling problems. In this type of 
problems, which are usually related to the on-line real-world 
application of evolution, it is not always straightforward to 
evaluate the fitness landscapes due to the computational cost it 
implies or to physical constraints of the specific application. The 
fact is that the sampling or evaluation of the offspring points 
within the fitness landscape generally requires a decoding phase 
that implies physical changes over the parents or elements used 
for sampling the landscape, whether through some type of 
physical migration from their locations or through changes in 
their configurations. Here we propose a series of modifications 
to the Differential Evolution algorithm in order to improve its 
efficiency when applied to this type of problems. The approach 
is compared to a standard DE using some common real-coded 
benchmark functions and then it is applied to a real constrained 
sampling problem through a series of real experiments where a 
set of Unmanned Aerials Vehicles is used to find shipwrecked 
people. 

I. INTRODUCTION 

volutionary Algorithms (EAs) have demonstrated a 
strong capacity for solving a large number of hard 

optimization problems, showing complicated fitness 
landscapes, that are difficult to address using more traditional 
and non-stochastic techniques. However, unlike other 
algorithms, such as Swarm Intelligence based strategies, they 
are usually relegated to off line optimization and are hardly 
ever used on-line in the case of real time real world 
applications. That is, they are seldom used as an intrinsic part 
of the operation of a real system, but rather as optimizers of 
the parameters of the system that has to work in real time and 
hardly ever used in applications where the fitness evaluation 
is not straightforward or where it is very expensive in terms 
of computational time.  

Some inroads have been made by several authors when 
considering the problem of costly evaluations. Examples of 
these are to use surrogate models [1], which are 
approximations to the fitness functions using coarser models 
with lower computational requirements. Several techniques 
to approximate fitness such as approximation levels, 
approximate model management schemes or model 
construction techniques [2] have been analyzed for 
application to problems where the calculation of the fitness is 
extremely expensive, as in the case of, for instance, structural 
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design optimization [1], protein structure prediction [3] or 
protein design and drug design [4]. 

Nevertheless, these techniques are quite specific to off-line 
modeling and evolution, and only address the problem of 
costly evaluations through approximations. There are other 
types of problems where the bottleneck is not really the 
evaluation of the individuals but rather their decoding 
(usually taken as part of the evaluation phase). In general, all 
EAs assume that every point of the search space can be 
directly, or almost directly, decoded, i.e., it is possible to 
create the instance of the solution represented by the 
individual in a reasonably easy way and, thus, it is possible to 
easily measure the fitness of any point in the fitness 
landscape. 

There are, however, problems where this is not the case, 
especially when addressing real world problems for which 
evolutionary algorithms could be a good tool to be used as a 
part of the operation of the system that has to solve them. Just 
to name one, we could think of a system that needs to 
determine the area with the highest plankton content in the 
Pacific Ocean. This problem would require measuring or 
sampling the plankton at different points and depths in the 
ocean and using a strategy (perhaps evolutionary) to 
determine the next points to sample in order to be able to 
efficiently find the point with the highest plankton level. This 
is basically an optimization problem over a real fitness 
landscape and EAs are not very efficient in these situations as 
the points that should be sampled are usually far from the 
points over which the sampler is located after measuring the 
previous fitness value. Here, the decoding phase involves 
moving the sampler to a physical position of the solution 
space. In other words, in order to obtain the fitness of an 
offspring, its decoding is only possible through a series of 
transformations (in this case motions) from the decoded 
version of one of the parents or from that of another 
individual in the parent population. 

It seems obvious that this poses the same requirements as 
exploring unknown search or solution spaces in optimization 
problems in order to find their optimum or optima. The only 
difference is the fact that in real time real world problems, 
this exploration is carried out by a set of real units or devices. 
Thus, as such, they are constrained by the limitations of 
reality in terms of their own physical structure and the 
physics of the real world (they cannot be omnipresent, 
change positions instantaneously, or perform certain 
maneuvers). The consequence of these limitations is that they 
are constrained in terms of what can be sampled from the 
environment at a given point in time or in a given interval of 
time. Here we are going to denote the type of problems where 
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the sampling of the search space is limited by the physics of 
reality as Constrained Sampling (CS) problems. 

Thus, strictly speaking, Constrained Sampling Problems 
(CS-Problems) are problems in which the constraints do not 
correspond to areas of the search space that are forbidden, but 
rather, to the fact that the entity that has to sample the points 
only has access to a limited neighborhood of its current 
position each instant of time. That is, they can be described as 
search or optimization problems in which it is necessary to 
physically reach a specific point of the solution space through 
a series of transformations from the decoded version of a 
previous point in order to be able to produce a fitness value. 
Physically reaching a point in the solution space may involve, 
in some cases, moving a sensor to that point or, in others, 
constructing a physical entity. The key to this process is that 
it is not instantaneous, it takes time and requires following a 
trajectory that leads to the solution point that needs to be 
evaluated (either through the motion of a sensing entity or 
through a series of construction or transformation steps) from 
the decoded version of a previous individual. Thus, in 
general, a CS-Problem implies a bottleneck in the application 
of the EA induced by the, sometimes very long times 
required for decoding the individuals, that is, for getting to a 
position or configuration that allows evaluating them. Many 
problems can be included in this category, most of them 
involving real world applications. Examples are coordinated 
search in unknown environments [5] which imply physically 
moving sensors in order to evaluate points; the evolution of 
modular robots [6], in which, every time an individual has to 
be evaluated, a new robot needs to be constructed (usually 
from pieces that were used in a previous instance and that 
must be disassembled); or Facility Layout Problems (FLPs) 
[7], in which the individuals of the population represent the 
configuration of production plants and, in order to measure 
the fitness of each one, a simulation model has to be 
constructed. 

Several authors have proposed and tested certain types of 
modern evolutionary algorithms that have been shown to be 
very adequate in complex and rugged fitness landscapes or in 
flat fitness landscapes that provide little information for 
evolution; examples are CMA-ES [8], DE [9], and many 
others. However, as indicated before, they assume that 
reaching any point in the solution space is simple and 
immediate and thus impose no restriction within their 
operation on how the points to be sampled or evaluated next 
should be chosen. This leads to very inefficient behaviors in 
CS problems as they ignore information about the landscape 
that could be gathered during the decoding phase, as each 
step produces a new solution. Consequently, these problems 
have usually been addressed using other types of 
metaheuristics such as Particle Swarm Optimization (PSO) 
[11, 5]. EAs have only been used indirectly in these cases by 
some authors that concentrated on the off-line evolution of 
control strategies for the samplers that were able to use 
information from the environment for real-time 
improvements [12, 13]. 

To solve the efficiency problems of EAs in general, and 
the Differential Evolution algorithm in particular, the 
approach followed in this paper has been to adapt it to the CS 
nature of the problem. Specifically, we present a new version 
of the traditional Differential Evolution (DE) Algorithm. 
This version of the algorithm has been called the Constrained 
Sampling Differential Evolution Algorithm (CS-DE). 

The approach is compared to a standard DE using some 
common real-coded benchmark functions and then it is 
applied to a real constrained sampling problem through a 
series of real experiments where a set of UAVs is used to find 
shipwreck survivors in the open sea and its efficiency 
compared to a traditional swarm optimization method. 

The remainder of the paper is structured as follows. 
Section 2 describes the implementation and details of the 
constrained sampling Differential Evolution algorithm 
(CS-DE). It first considers a general presentation of 
Constrained Sampling Evolutionary Algorithms and then 
particularizes it to the Differential Evolution algorithm. 
Section 3 is devoted to testing the CS-DE over a set of 
benchmark functions and providing a comparison of its 
performance with respect to a standard DE. In Section 4 we 
provide an example of the application of CS-DE as an 
intrinsic part of the control of a set of Unmanned Aerial 
Vehicles (UAVs) that must perform a collaborative search 
operation. Finally, Section 5 provides some conclusions to 
this work. 

II. ALGORITHMS FOR CONSTRAINED SAMPLING PROBLEMS 

In order to describe the approach presented here, we are 
going to consider the general case of any EA in the initial 
description and then particularize it to the Differential 
Evolution algorithm.  

A. General Approach: CS-EA 

The CS-EA (Constrained Sampling Evolutionary 
Algorithm) is designed as a series of modifications over a 
standard EA to intrinsically deal with the sampling 
constraints induced by CS-problems. Thus, a base EA, i.e. the 
Differential Evolution algorithm (DE), undergoes 
modifications in the way it handles its populations.  

Thus, the execution cycle of any EA requires an offspring 
population (P’(t), where t is the current generation) to be 
evaluated and compared to the parent population (P(t)) in 
order to produce the next generation parent population 
(P(t+1)). As indicated in the introduction, CS problems 
usually entail following lengthy and constrained trajectories 
(sequences of transformations) in solution space from the 
individuals in P(t) to those in P’(t) before the individuals in 
the latter population can be evaluated. Thus, P’(t) can be 
taken as the target of the trajectories and in what follows we 
will denote it as T(t), that is, the target population. The main 
idea underlying this proposal is to use the information that 
can be gathered when moving along these trajectories in 
solution space as additional information for the EA in order 
to make it more efficient. We will say that the individuals 
following the trajectories towards their targets are evaluating 
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the points along the trajectory (think of a plankton 
measurement unit that is moving towards a target point and is 
evaluating all the points it traverses in that direction). Thus, 
two additional populations of individuals are considered by 
the CS-EA: 

 A population that includes all the points of the search 
space that have been evaluated up to that point. That is, 
not only the target points determined by the EA, but also 
those that different individuals have evaluated as they 
were moving towards their targets. These will be 
denoted as the evaluated population (hereafter, E(t)). 

 A population of evaluating entities: these elements are 
the successive transformations of the individuals in P(t) 
when moving towards T(t) and they can be used to 
measure the fitness of the landscape points they go 
through and send the measurements to the evaluated 
population. Each evaluating entity ( Ԧܿ) has an associated 
individual from the target population (ݐԦ) that guides its 
transformation along a trajectory (basically, the current 
individual changes by moving towards the target). We 
must point out that the number of evaluating entities is 
independent of the base-EA population size. 

In addition to these two populations, the CS-EA also 
implies changes with respect to regular EAs in the way the 
fitness landscape is covered. The following elements are 
necessary for this objective: 

 A strategy to select the target individual assigned to each 
evaluating entity, hereafter the target selection strategy 
(τ). In other words, it is necessary to provide a way to 
decide how the target towards which a given evaluating 
entity moves is chosen. 

߬: Թ ൈ Թൈ → Թ, ߬൫ Ԧܿ, ܶሺݐሻ൯ ൌ 	 ,Ԧᇱݐ Ԧᇱݐ ∈ ܶሺݐሻ          (1) 
where n is the problem size and m is the target population 
size. 
 A definition of the rules that determine the modifications 

allowed over the parameters of the current individual of 

the evaluating entities. They always adapted to the 
specific application and are denoted as the application 
rules (ߪ). 

Թ:ߪ ൈԹ → Թ, ሺߪ Ԧܿ, Ԧሻݐ 	ൌ 	 ܿ′ሬሬԦ, ห Ԧܿ 	െ 	 Ԧหݐ  ቚܿ′ሬሬԦ 	െ  Ԧቚ     (2)ݐ	

The only requirement in the definition of the application 
rules is the following: 
ሺߪ Ԧܿሻ ൌ 	 ,Ԧݐ ݅	 ∈ Գ, ݅ ൏ ∞                            (3) 

The execution cycle of CS-EAs is quite similar to that of 
regular EAs. The main difference is the inclusion of the two 
new populations within the structure of the algorithm.  

First, it is usually the case that we want a minimum size for 
the evaluated population before applying any evolutionary 
operator. For the sake of simplicity, this size, N, generally 
corresponds to the population size parameter of the base-EA. 
Thus, the algorithm usually waits until there are, at least, N 
evaluated individual and the parent population of the 
base-EA is then filled with the first N individuals of the 
evaluated population. At this point, the CS-EA starts running 
the operators corresponding to a generation of the EA; the 
selection phase is executed to select the individuals from the 
parent population that will be reproduced and the 
reproduction operators are used to generate a new offspring 
population that will be stored as the target population.  

After this, the evaluating entities start to follow a trajectory 
from the current parent population to the target population, 
providing fitness values for the points along the way and 
sending them to the evaluated population. Once the 
evaluated population has, again, at least N evaluated 
individuals, the replacement operators compare the parent 
population to the evaluated individuals selected from the 
evaluated population, creating the new parent population 
that leads to a new generation of the CS-EA. The flowchart of 
Fig. 1 represents the sequence of steps followed by the 
CS-EA each generation.  

As previously mentioned, due to the computational cost or 
to physical constraints of the applications, the individuals of 
the base-EA cannot directly measure the fitness of the 
solutions proposed by the target population. The evaluating 
entities go through the fitness landscape following a 
trajectory guided by the individuals of the target population. 

Fig. 1. Constrained Sampling EA flow chart.

Fig. 2. Evaluating entities behavior flowchart. 
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Each instant of time, the current individuals of the evaluating 
entities are modified according to the application rules. The 
evaluating entities measure the fitness of their new positions 
in search space and send them to the evaluated population. 
Note that this fitness value is not necessarily that of the target, 
but that of a point closer to the target than the initial value. 
Finally, according to the target selection strategy, a new 
target individual is assigned to the evaluating entity. The 
behavior of the evaluating entities is represented in the 
flowchart of Fig. 2.  

Summarizing, the target population generated using the 
CS-EA operators guides the motion of the evaluating entities 
along the landscape towards areas that the CS-EA considers 
promising. However, this target population cannot be used to 
guide the evolutionary process due to the fact that it is usually 
impossible to evaluate the fitness value (sensed value) for 
these positions within the time interval assigned, that is, there 
is usually no evaluating entity close enough (either in 
distance or in configuration) to be able to make the 
measurement. However, as the evaluating entities move 
throughout the fitness landscape, they are evaluating 
positions in the direction of the target positions and these 
evaluations can be used as evaluated individuals in the 
CS-EA.  

B. Particularization to Differential Evolution 

As previously indicated, the evolutionary approach 
proposed here could be coupled to any EA. This work 
concentrates on the modification of a Differential Evolution 
(DE) algorithm [9]. It has been chosen due to its exploration 
capabilities and to the fact that it has shown the best average 
performance in the most popular algorithm competitions of 
the field [14, 15]. Thus, the base-EA in this case is 
Differential Evolution algorithm.  

For application to constrained sampling problems, the DE 
must undergo a series of changes. On one hand, it must 
consider the two new populations mentioned above, but that 
is completely straightforward. On the other, a target selection 
strategy and a set of application rules need to be defined.  

Regarding the target selection strategy, in this work two 
very different strategies were considered and they were 
compared in the experimental section. The first one, which 
we have called random, selects a random individual from the 
target population for each evaluating entity. The second one, 
which we have labeled as closest, chooses the individual 
from the target population that is closest to the current 
configuration (position in the fitness landscape) of each 
evaluating entity.  

The target selection strategy is also responsible for 
determining when the target is changed. When working with 
standard EAs, the target is only changed when the evaluating 
entities reach it, as it is mandatory to measure its fitness in 
order to obtain the fitness of the offspring that, in standard 
EAs, constitute the evaluated population. This is not the case 
of the CS-EA due to the fact that the evaluating entities fill 
the evaluated population as they move along the search space 
and there are many more evaluated individuals than just the 

targets. In fact, the targets may not even be in the evaluated 
population, as they often cannot be reached in time.  
To finish with the configuration of the algorithm, the 
application rules need to be defined. The application rules 
are completely problem dependent and will be different for 
each problem considered. A description of the ones chosen 
for the two types of problems considered in the experimental 
section will be provided there.   

A basic DE scheme, with the best or random mutation 
strategy, is adequate for the optimization of functions that 
present only one global optimum. However, there are 
scenarios in which a CS-DE would be appropriate where the 
possibility of locating several optima is required. To this end 
a commonly used approach in the EA field is inspired by the 
biological concept of niching [16]. Taking advantage of this 
concept, the EAs preserve the diversity of the population 
through the formation of niches or sub-populations that 
explore different and spread-out promising areas of the 
search space. This allows the algorithm to simultaneously 
converge to several solutions of the function in the same run. 
EA niching techniques that can be found in the literature 
include crowding, fitness sharing, clearing, clustering, 
parallelization or speciation. In this work we have considered 
the DE variant for multimodal problems presented in [17] as 
our base algorithm for multiple optima problems because of 
its successful performance in solving the most commonly 
used multimodal benchmark functions. It takes advantage of 
the clustering behavior of the random mutation strategy and 
incorporates the concept of vicinity by using the information 
of the closest individual of the population to generate the 
mutated individual. More specifically, for each individual of 
the populationݔ ; ݅ ൌ 1, 2,… ,ܰܲ , where NP is the total 
number of individuals in the population and g indicates the 
generation, the trial vector is generated according to the 
DE/nrand/2/bin scheme. Where nrand is the mutation 
strategy that generates the mutant vector ݒାଵ

  as follows: 

ାଵݒ
 ൌ ݔ

ேே  ݔ൫ܨ
భ െ ݔ

మ൯  ݔ൫ܨ
య െ ݔ

ర൯               (4) 

where ݔ
ேே is the closest individual to the current one ݔ  ,  

,ଵݎ ,ଶݎ ,ଷݎ ସݎ ∈ ሼ1,… , ܰܲሽ/ሼ݅ሽ are mutually different random 
integers excluding the current index i and F is a real 
parameter called scaling factor. The trial vector is obtained 
through the application of the common binomial crossover 
operator to the mutant and target vector as follows. For each 
parameter of the individuals j, where j = 1…n, the trial vector 
ାଵݑ)

 ) is generated as follows: 

ݑ 
 ൌ ቊ

ݒ
	݂݅	݀݊ܽݎሺ0,1ሻ ൏ ݆	ݎ	ܴܥ ൌ ݇

	ݔ
 ݁ݏ݅ݓݎ݄݁ݐ	

                         (5) 

where CR is the crossover rate and k is a random integer value 
in [0, n) which ensures that at least one parameter of the 
mutant vector is inherited. 

III. EXPERIMENTS OVER BENCHMARK FUNCTIONS 

In this section, we are going to compare the performance 
of a CS-DE algorithm to that of a standard DE over a 
well-known set of benchmark functions. Due to space 
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limitations, only five benchmark functions will be presented 
in this paper. The selected functions are the Sphere Model 
(f1), and Ackelys’s (f2), Rastrigin’s (f3), Rosenbrock’s (f4) 
and Schwefel’s (f5) functions. The first one is unimodal, 
being the other four functions multimodal with different 
optima distributions. Their analytical expressions and 
characteristics may be found in [15]. 

A. Experimental Setup 

The algorithms are compared in terms of efficiency, 
effectiveness and precision using the speedup, the absolute 
error and the genotypic error [18], respectively. To ensure 
that the results are statistically significant, 50 independent 
runs of each experimental setup configuration were run. 
Their stop criterion, as in the most popular algorithm 
competitions, was based on the maximum number of 
function evaluations (FEs). Here this value was set to	݊ ∙ 10ହ, 
where n is the dimension of the problem. 

To fairly compare and analyze the results, an 
implementation of DE with the same configuration will be 
used as the standard DE. In [18], the authors analyzed the 
performance of DE over different optimization functions 
including the five used in this work. The configuration of the 
algorithms in this paper is the same as that of [18]. The 

population size was set to 50 individuals and the 
dimensionality of the functions was set to 2 in all cases.  

The CS-DE does not need to reach the targets in order to 
fill up the evaluated population. These targets can thus be 
changed even when they have not been evaluated, that is, 
before the evaluating entities have reached them. However, 
to compare the algorithms more evenly in these tests, the 
targets of the CS-DE approach will only be modified when 
the evaluating entities reach them. Notice that this decision is 
unfair to the CS-DE because its exploration capabilities 
decrease when forced to reach the targets, reducing its 
performance with respect to when it changes targets freely.  

To analyze the influence of the number of evaluating 
entities on the performance of the two algorithms, the tests 
were carried out using 5, 10 and 20 evaluating entities for the 
CS-DE. Again, to incorporate the constraints imposed by 
CS-problems, when evaluating the standard DE we also 
assumed a limitation in the number of evaluating entities. 
This means that the offspring population was evaluated, as in 
the case of any CS-problem, by using the number of samplers 
available (5, 10 or 20) until the whole offspring population 
had been covered. Our initial hypothesis is that the larger the 
number of evaluating entities, the less time required for 
completing the task. Also, increasing the number of 
evaluating entities improves the exploration capabilities of 
the algorithm and, consequently, the absolute and genotypic 
error should decrease. 

To finish with the adaptation of the algorithm to the 
problem, the application rules need to be defined. In these 
experiments, we simulate a target-finding problem where the 
target is the optimum of the benchmark function. Thus, the 
evaluating entities will be moved throughout the search space 
like physical samplers with the same physical constraints, 
i.e., their movements are limited by a maximum step length, 
here set to 0.01 units, which represents 0.35% of the search 
space. 

B. Results 

After executing the experiments described above, the first 
thing that must be mentioned is that all the runs were solved 
successfully. They all produced absolute errors below 1.0e-6, 
except for some of the runs over Schwefel’s function. In 
these cases, even though the random target selection strategy 
led to higher absolute errors (see Table 1) the results in terms 
of distance to the optimum (Genotypic error in Table 2) show 
that the differences are not significant. 

Finally, the three graphs of Fig. 3 provide an indication of 
the speed-up obtained over the standard DE algorithm when 
using the CS-DE, both for a random selection strategy and 
for a closest selection strategy. From top to bottom, the plots 
display the results when 5, 10 and 20 evaluating entities were 
used. The CS-DE is always superior to the standard DE in 
terms of efficiency, significantly speeding up the search. As 
expected, as the number of evaluating entities increases there 
is less difference between the two models. 

Clearly, the random selection strategy leads to the most 
significant differences between the standard DE and the 

TABLE 1 
ABSOLUTE ERROR FOR SCHWEFEL’S FUNCTION. 

 
Random target selection 

strategy 
Closest target selection 

strategy 
EE5 EE10 EE20 EE5 EE10 EE20 

St – EA 
1.4e-07 ± 

0e+00 
1.4e-07 ± 

0e+00 
1.4e-07 ± 

0e+00 
1.4e-07 ± 

0e+00 
1.4e-07 ± 

0e+00 
1.4e-07 ± 

0e+00 

Cs – EA 
3.9e+00 ± 
2.0e+01 

1.4e-02 ± 
7.4e-02 

4.4e-04 ± 
1.5e-03 

1.4e-07 ± 
4.5e-14 

1.4e-07 ± 
8.5e-12 

1.4e-07 ± 
1.0e-13 

TABLE 2 
GENOTYPIC ERROR PROVIDED FOR SCHWEFEL’S FUNCTION.

 
Random target selection 

strategy 
Closest target selection 

strategy
EE5 EE10 EE5 EE10 EE5 EE10

St – EA 
1.3e-07 ± 
4.9e-10 

1.3e-07 ± 
5.1e-10 

1.3e-07 ± 
4.3e-10 

1.3e-07 ± 
6.5e-10  

1.3e-07 ± 
7.1e-10 

1.3e-07 ± 
5.8e-10 

Cs – EA 
3.0e-02 ± 
2.0e-01 

1.6e-04 ± 
6.6e-04 

4.4e-04 ± 
1.5e-03  

1.3e-07 ± 
4.7e-10 

1.3e-07 ± 
6.1e-09 

1.3e-07 ± 
4.9e-10 

Fig. 3. Speedup comparison between the two algorithms when 5, 
10 and 20 (from top to bottom) evaluating entities are used. 
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CS-DE. The latter is 2.5 times faster in the worst case and 12 
times faster in the best one. This difference is more evident in 
multimodal functions (f2-f5), which require a more 
exploratory behavior from the DE algorithm. In fact, among 
the multimodal functions, f2, f3 and f4 present a 
topographical structure that requires less explorative 
capacities than function f5 (see [18] for more details). This is 
the reason why the difference between the CS-DE and the 
standard DE is larger in the case of function f5. In this case 
the CS-DE approach explores the solution space in a short 
span of time, as, unlike the standard DE, it takes advantage 
from the information it gathers during the trajectories. 

IV. REAL WORLD TEST 

A more realistic example of the application of a CS-DE is 
considered in this section. The task that we contemplate is 
that of searching for a number of shipwreck survivors 
floating in the sea wearing life vests with short-range 
beacons. This search will be carried out by a group of 
autonomous Unmanned Aerial Vehicles (UAVs) led in their 
search by a CS-DE, in this case a CS-DE with niching as we 
need to find all of the survivors simultaneously. 

A. Experimental Setup 

As the objective here is to test the behavior of the CS-DE 
extensively and in order to avoid the high costs of performing 
real test flights for each experiment, it was necessary to 
create a simulation environment where the algorithms could 
be evaluated. The parameters of the UAV models used within 
this simulator were obtained from flight tests of real UAVs 
with a wingspan of 1660 mm, a length of 1200 mm, and a 40 
km range. The dynamic behavior for each plane was 
simulated using the FlightGear Flight simulator. FlightGear 
interacts with a Java program, which implements the Virtual 
Aircraft agent and runs the behavior of the VA and the 
Autopilot software. 

 
Fig.4 UAV team simulator block diagram. 

The simulation environment (Fig. 4) uses a central control 
point, the SC, for monitoring and visualization purposes 
(using the Google Maps API), and for global squadron 
control in some algorithms. The SC communicates remotely, 
via UDP/IP, with the Virtual Aircraft (VA) software, which 
can be run in remote computers, so that a computation cluster 
can be used to run multiple planes. This remote operation 

capability allows running a VA directly in the flight field, 
connected via radio control to a real plane and remotely 
connected to the SC via Internet.  

B. Tests and Results 

As indicated at the beginning of the section, the task 
considered in the experiments was that of finding different 
numbers of shipwreck survivors in a large area of the sea. 
This task is quite costly through conventional means and is 
very adequate for UAV teams. In this case, as we were just 
studying the capabilities of the algorithms, it was assumed, as 
it is commonly the case, that all these shipwrecked people 
were wearing a life vest provided with a low power radio 
beacon. Thus, the search is based on the detection of the 
emergency signals given off by these beacons, which, for our 
purposes and to make the problem more general and 
applicable to other tasks, such as environmental monitoring, 
we assumed were not directional.  

The tests have consisted in searching for different numbers 
of shipwrecked people within a 100 km2 area of the sea. To 
compare to other more common strategies, we have used two 
different algorithms: the CS-DE and a Swarm Intelligence 
based approach and different sizes of UAV squadrons.  

Two different versions of the virtual emitting source 
function have been used. One without noise, that could, in 
principle, be easily solved using gradient based algorithms, 
and one with noise (the noise levels where modeled after the 
real data extracted from the real planes) that would 
theoretically be more difficult for gradient based algorithms.  

In order to compare the algorithms in terms of time taken 
to accomplish the task of finding N emitting sources, we are 
assuming that planes can “see” the targets when they are 
within a radius of 100 meters from them. The algorithms 
were run until all the emitting sources in the area were 
visually confirmed by, at least, two planes. This was done to 
minimize the influence of random successes due to planes 
that visually confirm sources during the exploration stage.  

The configuration parameters for the DE used are those 
recommended in [17]. Specifically, we have used a value of 
0.5 for the F parameter, 0.9 for the crossover rate (CR) and a 
population of 100 individuals. The target selection strategy 
used was random within the detection range of the planes. 
This detection range is taken as infinite in distance but 
limited to an angle of 45 degrees in their heading direction. In 
the case of the swarm approach, the configuration parameters 
were a decision gap (T) of one minute and a number of closest 
neighbors taken into account in the selection of the heading 
direction (N) of 3. 

For each test, the times required to find each existing 
emitting source were recorded. Not all the combinations of 
squadron sizes and emitting source numbers were solved by 
both algorithms. Finally, the search was temporally limited to 
a maximum of sixty minutes. More time than that would 
exceed the flight autonomy of the real planes and in real 
conditions in the Atlantic, the average survival time is usually 
no more than 50 minutes due to hypothermia.  

As an example of the test runs, Fig. 5 displays a sequence 
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of snapshots from the simulator running the CS-DE 
algorithm with five planes and two shipwrecked people. The 
planes are shown as arrows, with their trajectories drawn as 
colored lines. The stars mark the target population of 
geographical points generated by the CS-DE algorithm in 
that generation. Initially (a) the algorithm generates a highly 
dispersed population. As the planes start exploring the space, 
the target population of the algorithm concentrates around the 
areas where the agents have sensed the most promising 
values (b and c). As the simulation progresses, the algorithm 
starts to exploit the already collected information by 
concentrating the target population near the emitting beacons 
of the shipwrecked people (d and e). As the planes tend to 
move towards the target population, the concentration of the 
target population obtained by the evolutionary algorithm over 
the areas where the shipwrecked people are located end up 
leading the planes to fly over these areas (f). 

Fig. 6 displays the results of the performance of the CS-DE 
compared to that of the swarm approach. Obviously, as the 
number of shipwrecked people increases the task becomes 
harder in all cases. Take into account that the area being 
explored corresponds to 100 Km2 of sea and the number of 
planes is quite small (15 at most). For all three squadron 
sizes, as the number of objectives increases, the time it takes 
the CS-DE to find them increases on average. In the case of 
the swarm based approach this is more evident, as when the 
tasks involve two or three shipwrecked people the number of 
successful runs decreases dramatically, especially in the case 
of the smaller squadron (5 planes). In fact, for the smaller 
squadron, the swarm-based approach is never successful 
when there are more than one shipwrecked person. This is 
because, with such a small number of units, it is quite 
difficult for the algorithm to split the units into teams. On the 
other hand, when the swarm-based approach is successful in 
this case it can be marginally faster than the CS-DE due to its 
higher exploitative capabilities.  

 The CS-DE, on the other hand, seems more balanced in its 
exploitation vs. exploration capabilities. This, obviously, 
induces a slight disadvantage in terms of speed when there is 

just one shipwrecked person, but as the graphs show, when 
the number of targets increases it is clearly advantageous, 
dramatically reducing the chance of missing one. 

One can improve the results of the swarm-based approach 
by increasing the number of planes in the team (bottom left 
graph). That is, allowing more planes per unit area. However, 
the CS-DE still produces a higher number of successful runs, 
solving within the allotted time every run with 2-shipwrecked 
people and all of the runs but two with 3-shipwrecked people. 
Additionally, as the number of planes increases the CS-DE 
becomes as fast as and sometimes even faster than the 
swarm-based approach in all cases.  

The same conclusions hold when analyzing the results of 
the cases where the electromagnetic signal was noisy (right 
graphs). Although the average time required to accomplish 
the tests is slightly longer for both algorithms than in the 
noiseless scenarios, the reliability of the CS-DE approach 
remains much better. 

Summarizing, although the swarm based approach may 
sometimes be faster in finding one individual than the 
CS-DE, the latter is much more reliable and robust in all 
cases. In addition, as the number of planes increases the time 
needed to find all the shipwrecked people becomes similar 
for both approaches when successful. This is because the 
search process of an evolutionary algorithm exploits the 
information of the search space provided by the planes more 
effectively. 

 

 

 

 
Fig. 6. Results provided by the two approaches in the different test scenarios. 
From left to right, each graph shows the results for different types of runs: 
those with no noise in the electromagnetic signal are shown in the left 
column while those with noise are shown in the right column. From top to 
bottom, results obtained by teams of 5, 10 and 15 UAVs. Triangles 
correspond to the Swarm based algorithm and squares to the CS-DE.

Fig. 5. Sequence of snapshots from the simulator while running a 
simulation using the CS-DE algorithm, 2 shipwrecked people (circles) 
and 5 airplanes (arrows). The stars represent the target population 
provided by the algorithm in a given generation and the lines the 
trajectories followed by the airplanes. 
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V. CONCLUSIONS 

This paper proposes a new kind of Differential Evolution 
algorithm in order to address a niche of problems where EAs 
have seldom been applied due to their poor performance. 
These problems have been called Constrained Sampling 
problems and are characterized by a bottleneck in the process 
of obtaining the individuals needed in order to evaluate the 
offspring each generation of an evolutionary process.   

We have shown that by appropriately using the 
information obtained during the decoding process, that is, 
during the process of positioning the individuals in the 
locations of the fitness landscape indicated by the 
evolutionary algorithm when producing offspring, the search 
could be greatly accelerated. To this end, a series of 
modifications over the standard DE are proposed allowing it 
to work over this type of problems. The new algorithm has 
been called the Constrained Sampling DE algorithm 
(CS-DE). 

The performance of the CS-DE has been compared to that 
of a standard DE in a set of benchmark constrained sampling 
problems. These problems are well known benchmark 
functions where a constraint has been imposed on the 
maximum size of the change of an individual each time step. 
The results have shown that the CS-DE outperforms the 
standard DE in all cases, leading to speedups of up to 12 
depending on the target selection strategy and number of 
evaluating units.  

Finally, to show the applicability of this strategy to real 
problems, the CS-DE has been applied to the coordination of 
a UAV team when searching for shipwreck survivors in the 
open sea and compared to a swarm based strategy (which is a 
more popular strategy in this case). The results show that the 
CS-DE is much more robust, especially when multiple 
targets are present and much more balanced with regards to 
exploration and exploitation. 

Current activities involve characterizing the scalability of 
the CS-DE to higher dimensionalities. In this line, some 
preliminary experiments have shown that in a 10 dimensional 
problem, the speedup of the CS-DE with respect to a standard 
DE can reach values of up to 2000. We are also working on 
the reformulation of other types of EAs to a CS version as 
well as on their application to real world problems. 
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