
Learning and Evolution of Genetic Network
Programming with Knowledge Transfer

Xianneng Li, Wen He, and Kotaro Hirasawa
Graduate School of Information, Production and Systems, Waseda University, Japan

Email: {sennou@asagi., hewen@toki., and hirasawa@}waseda.jp

Abstract—Traditional evolutionary algorithms (EAs) gener-
ally starts evolution from scratch, in other words, randomly.
However, this is computationally consuming, and can easily
cause the instability of evolution. In order to solve the above
problems, this paper describes a new method to improve the
evolution efficiency of a recently proposed graph-based EA –
genetic network programming (GNP) – by introducing knowledge
transfer ability. The basic concept of the proposed method,
named GNP-KT, arises from two steps: First, it formulates the
knowledge by discovering abstract decision-making rules from
source domains in a learning classifier system (LCS) aspect;
Second, the knowledge is adaptively reused as advice when
applying GNP to a target domain. A reinforcement learning (RL)-
based method is proposed to automatically transfer knowledge
from source domain to target domain, which eventually allows
GNP-KT to result in better initial performance and final fitness
values. The experimental results in a real mobile robot control
problem confirm the superiority of GNP-KT over traditional
methods.

I. INTRODUCTION

Evolutionary computation (EC) has been studied extensively
to solve the optimization problems, where numerous ap-
proaches have been proposed, such as genetic algorithm (GA)
[1], [2], evolution strategy (ES) [3], genetic programming (GP)
[4], [5], ant colony optimization (ACO) [6] and particle swarm
optimization (PSO) [7], etc. Though these approaches have
drawn much success in solving different sorts of optimization
problems, a consensus has been reached that there is no any
specific approach that can outperform the others in all op-
timization problems [8]. Accordingly, researchers are always
interested in developing new techniques to appropriately deal
with particular types of problems.

An evolutionary algorithm with graph structures, called
genetic network programming (GNP) [9], [10], [11], was
proposed. GNP follows the inspiration of bit-string structure
GA and tree structure GP to extend the solution representations
to a directed graph structure. The distinguished directed graph
is capable of modeling complex systems with high expression
ability, which has been confirmed to be very suitable for
program generation of intelligent agent systems [12], [13],
[14], [15], [16]. In a directed graph, plural judgment nodes and
processing nodes are existed, which are connected arbitrarily.
GNP transits this directed graph to efficiently generate pro-
grams for decision-making. In the previous research, a number
of studies have demonstrated that GNP is a successful rule
generator that discovers decision-making [17], [18], [19] or
classification [20], [21], [22], [23] rules via evolution.

However, as most of the other EC approaches, GNP gen-
erally evolves a population of directed graphs from scratch,
in other words, randomly. This is computationally expensive,
and sometimes poor initial population may result in local
convergence when applying to real-world complex problems.

On the other hand, our human being generally has the ability
of learning new skills by inducing knowledge from the related
problems, that is, knowledge transfer ability. This concept
has been inspired in machine learning (ML) community to
develop new techniques of support vector machine (SVM)
[24], [25] and reinforcement learning (RL) [26], [27], however,
which has been reported to be rare in the vast majority of EC
approaches [28].

This paper is dedicated to derive the above human-inspired
concept to develop the knowledge transfer ability of GNP.
The uniqueness of the proposed extension, named GNP with
knowledge transfer (GNP-KT), arises from three points:

∙ The inherent characteristic of GNP that discovers
decision-making rules by evolution is utilized to formu-
late the resource of knowledge transfer.

∙ A RL-based method is proposed to realize the automatic
knowledge transfer in GNP.

∙ With the knowledge transfer ability, GNP-KT can signif-
icantly improve the evolution efficiency.

In the next section, the preliminaries of knowledge transfer
are presented. Section III introduces GNP-KT in detail. Sec-
tion IV presents the experimental studies of this work in a real
mobile robot control problem, and compares GNP-KT with
several traditional approaches. Finally, Section V concludes
this work and presents some potential future directions.

II. PRELIMINARIES OF KNOWLEDGE TRANSFER

In this section, we introduce the notations, basic paradigm
of knowledge transfer and problem descriptions of this paper.

A. Notations

A domain 𝔻 can be denoted by two components (𝔽,𝕋). 𝔽 is
the feature space 𝐹 consisting of 𝑁 features with a marginal
probability distribution 𝑃 (⋅), which are represented by

𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑁}. (1)

𝕋 is the task to be solved, which is represented by a label
space 𝐿 with 𝑀 labels and an objective function 𝑓(⋅), where

𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑀}. (2)

798

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

In other words, we have

𝔻 = (𝔽,𝕋), (3)

where,
𝔽 = (𝐹, 𝑃 (⋅)) and 𝕋 = (𝐿, 𝑓(⋅)). (4)

From the viewpoint of an intelligent agent system studied
in this paper, 𝔽 indicates the perception of the environments,
where 𝐹 is the set of sensory functions of the agent, in which
𝑓𝑖 is the term corresponding to the sensory result of the 𝑖th
sensor of the agent, and 𝑃 (⋅) could be the perception of the
agent to the real environments in the given domain. In task
𝕋, 𝐿 represents the possible actions of the agent manipulated
in the environments, where 𝑓(⋅) is used to evaluate the
performance of the system when predicting an action 𝑙 for
a perceived environment 𝑓 .

B. Knowledge Transfer

Based on the above notations, knowledge transfer (also
called transfer learning in ML community [25]) can be
defined.

Definition 1 (Knowledge Transfer) Given a source do-
main 𝔻𝑆 and a target domain 𝔻𝑇 , knowledge transfer is
dedicated to transfer/reuse knowledge obtained from 𝔻𝑆 to
improve the problem solving of 𝔻𝑇 .

In other words, different from traditional approaches that
develop specific systems for specific 𝔻𝑇 , knowledge transfer
requires 𝔻𝑆 when solving a particular 𝔻𝑇 . This concept is
evident due to the fact that our human being can intelligently
apply knowledge learned previously to solve new problems
with faster speed or better solutions.

It should be noted that in order to successfully realize the
knowledge transfer, a condition should be satisfied, that is,

Prerequisite 1 The source domain 𝔻𝑆 and target domain
𝔻𝑇 should be different but related.

Based on the above notations, the prerequisite can be
substituted by the following four conditions, and possibly the
combinations of them,

1) 𝐹𝑆 ∕= 𝐹𝑇 and 𝐹𝑆 ∩ 𝐹𝑇 ∕= ∅;
2) 𝑃𝑆(⋅) ∕= 𝑃𝑇 (⋅);
3) 𝐿𝑆 ∕= 𝐿𝑇 and 𝐿𝑆 ∩ 𝐿𝑇 ∕= ∅;
4) 𝑓𝑆(⋅) ∕= 𝑓𝑇 (⋅).

If only one or more of the above conditions are satisfied,
knowledge transfer will become possible and useful. The
reason is straightforward, since only the knowledge from
related domains will potentially benefit the problem solving
of a particular domain.

Taking the intelligent agent system as an example, the
agents in a source domain 𝔻𝑆 and a target domain 𝔻𝑇 should
(1) have different but overlapped sensory abilities, (2) be
positioned in different environments (i.e., maps), (3) have

Fig. 1: Directed graph structure of GNP

different actions to be manipulated, or (4) be applied to achieve
different objectives.

C. Problem Description

Numerous studies have been carried out to realize the
knowledge transfer in ML, i.e., transferring training data in
data mining [24] and experience in RL [26]. However, it has
been rarely investigated in EC, where the limited works are
the ones reported to transfer probabilistic models in estimation
of distribution algorithm (EDA) [29], [30]. Accordingly, it still
remains a gap to investigate knowledge transfer in the broader
field of EC.

This paper is dedicated to introduce knowledge transfer
into EC to solve the problem of evolution from scratch, i.e.,
randomly generated population. It is demonstrated that the
proposed approach GNP-KT provides a solution to achieve
the significant speed-up of evolution by reducing the evolution
bias of randomness.

In order to successfully realize knowledge transfer of GNP-
KT, the following two main issues are to be addressed: 1)
“what to transfer” indicates what kind of knowledge can be
transferred across domains; 2) “how to transfer” denotes how
to develop suitable algorithms to transfer knowledge. In the
next section, the details of GNP-KT are described to realize
the knowledge transfer in GNP.

III. GNP WITH KNOWLEDGE TRANSFER (GNP-KT)

For the sake of understanding, GNP-KT is described mainly
in the following three components: 1) individual representa-
tion; 2) knowledge representation; 3) knowledge transfer and
learning algorithm.

A. Individual Representation

GNP-KT mainly retains the directed graph structure of
GNP for individual representation. The directed graph of GNP
extends traditional bit-string structure of GA and tree structure
of GP to a more complex graph structure, as shown in Fig. 1.

Each directed graph consists of two kinds of nodes: judg-
ment node and processing node, and each of which has its
own role. Judgment node simulates the sensory ability of the
agent to judge the environment, and processing node includes
functions of actions. Each node 𝑖 is represented by a term

𝑖 = {𝑁𝑇𝑖, 𝑁𝐹𝑖, 𝑇𝐷𝑖, 𝑡𝑑𝑖, 𝐶𝑖1, 𝐶𝑖2, ..., 𝐶𝑖∣𝐵𝑖∣}. (5)

𝑁𝑇𝑖 denotes the node type. 𝑁𝐹𝑖 represents the node function.
𝑇𝐷𝑖 and 𝑡𝑑𝑖 mean the time delay of executing nodes and
transiting branches, respectively. 𝐶𝑖𝑗 denotes the connected

799

Fig. 2: Processing nodes of GNP-KT

node of branch 𝑗 from node 𝑖, where 𝑗 = {1, 2, ..., ∣𝐵𝑖∣}, and
𝐵𝑖 is the set of branches of node 𝑖.

Each judgment node 𝑖 consists of multiple branches, i.e.,
∣𝐵𝑖∣ ≥ 2, where each branch is connected to another node
in the directed graph, representing a consequent output corre-
sponding to the specific value of the perceived sensory input.
Each processing node plays the role of action determination,
without the requirement of conditional branches.

Each directed graph is encoded with 𝑁𝑗 judgment nodes
and 𝑁𝑝 processing nodes, where the nodes can be connected
to each other arbitrarily to efficiently model the complicated
combination of judgment and processing.

B. Knowledge Representation

In the previous research, it has been evaluated that the distin-
guished directed graph structure can allow GNP to efficiently
generate “if-then” decision-making rules to perform compact
programs [17], [18], [19]. Moreover, the obtained rules actu-
ally can be viewed as the abstract knowledge of domains in
certain respects, since they are learned and accumulated in a
long-term process to represent the high-level information of
the domains with generalization ability. Accordingly, GNP-
KT utilizes a new concept to address the problem of “what to
transfer”, that is, utilizes the “if-then” decision-making rules
as the knowledge resource to be transferred across domains.

Let 𝕂 denote the source knowledge of GNP-KT. It includes
a set of rules accumulated from a source domain 𝔻𝑆 . Each
𝑟𝑢𝑙𝑒 ∈ 𝕂 is represented in a form of “if condition, then action”

𝑟𝑢𝑙𝑒 : 𝐹𝑆 → 𝐿𝑆 . (6)

In order to prepare 𝕂 from 𝔻𝑆 , evolutionary rule-based
system, i.e., learning classifier system (LCS) [31], [32], is
adopted to discover rules in GNP-KT. We note that the rule
discovery of 𝔻𝑆 can be considered out of the scope of GNP-
KT framework, where many alternative approaches can be
applied. Therefore, the details are not included in this paper.
Particularly, in this paper, GNP-based LCS proposed in [18],
[19] is used, which has been confirmed to efficiently discover
decision-making rules with generalization ability.

C. Knowledge Transfer and Learning Algorithm

1) Modified processing nodes: To realize the knowledge
transfer of GNP-KT, we modify the original directed graph

Fig. 3: Basic structure of GNP-KT

structure of GNP by introducing sub-processing nodes in each
processing node as illustrated in Fig. 2. In GNP-KT, there are
two types of sub-processing nodes in each processing node,
named evolution sub-processing node (ESP) and transfer sub-
processing node (TSP). For each processing node 𝑖𝑝,

ESP it is denoted as 𝑖1𝑝, which works as original process-
ing node of GNP with processing function 𝑁𝐹𝑖𝑝 .

TSP it is denoted as 𝑖2𝑝, consisting of a static knowledge
rule-pool 𝕂 discovered from a source domain 𝔻𝑆 .

The concept of sub-nodes is derived from GNP-RL [10]
but with different objectives. GNP-RL introduces sub-nodes in
both judgement and processing nodes to realize the learning
ability, where all the sub-nodes are subject to evolution. GNP-
KT only introduces sub-nodes in its processing nodes and
separates them into ESP and TSP to develop the knowledge
transfer ability. ESP is evolved but TSP is remained fixed.

2) Performance component: GNP-KT is performed simi-
larly as GNP. It interacts with the environment as an intelligent
agent. Each directed graph is transited from a predefined
start node, where hereafter the transited nodes are determined
based on the interaction with the environment. However,
different from GNP that executes actions fully based on the
processing functions of processing nodes, GNP-KT is capable
of using the source knowledge adaptively as advice for action
determination in target domain 𝔻𝑇 .

The basic structure of GNP-KT is described in Fig. 3. When
a modified processing node, i.e., 𝑖𝑝, is transited, there are two
options for the action determination.

If ESP is executed, it works as an original processing node
that executes processing function 𝑁𝐹𝑖𝑝 .

The execution of TSP is slightly complex. Firstly, it mem-
orizes the sequence of judgment nodes executed between the
current processing node 𝑖𝑝 and its previous processing node1,
denoted as 𝑠𝑒𝑞. It is notable that each 𝑠𝑒𝑞 consists of not
only the judgment nodes but also their corresponding judgment
results perceived from the current environment. Second, the
match set 𝑀𝑆 is built by grouping the rules2 from 𝕂 whose
conditions match 𝑠𝑒𝑞, as described in Algorithm 1. Hereafter,

1two examples are shown in Fig. 3, i.e., transition 𝐴 and 𝐵.
2some necessary operations are performed to filter the knowledge which is

not related to 𝔻𝑇 .

800

Algorithm 1: match set of 𝕂
1 overlapped labels: 𝐿𝒪 ← 𝐿𝑆 ∩ 𝐿𝑇 ;
2 overlapped features: 𝐹𝒪 ← 𝐹𝑆 ∩ 𝐹𝑇 ;
3 match set: 𝑀𝑆 ← 𝑁𝑈𝐿𝐿;
4 for each 𝑟𝑢𝑙𝑒 ∈ 𝕂 do
5 if 𝑟𝑢𝑙𝑒’s label /∈ 𝐿𝒪 then
6 delete 𝑟𝑢𝑙𝑒 from 𝕂;
7 else
8 if all features of 𝐹𝒪 in 𝑟𝑢𝑙𝑒 match 𝑠𝑒𝑞 then
9 add 𝑟𝑢𝑙𝑒 into 𝑀𝑆;

output : match set 𝑀𝑆

the average matching degree of each label/action 𝑙 is calculated
by averaging the credits of the rules over match set 𝑀𝑆𝑙 of
label/action 𝑙:

𝑚𝑙(𝑠𝑒𝑞) =

∑
𝑟𝑢𝑙𝑒∈𝑀𝑆𝑙

𝑐𝑟𝑒𝑑𝑖𝑡(𝑟𝑢𝑙𝑒)

∣𝑀𝑆𝑙∣
. (7)

𝑐𝑟𝑒𝑑𝑖𝑡(𝑟𝑢𝑙𝑒) denotes the quality of 𝑟𝑢𝑙𝑒, which is prepared in
advance based on [19].

The final action 𝑙∗ is determined by the one with the highest
average matching degree among all available actions, that is,

𝑙∗ = arg max
𝑙∈𝐿𝒪

𝑚𝑙(𝑠𝑒𝑞). (8)

3) Learning algorithm: The modified processing nodes
leave a problem of selecting the sub-processing nodes, cor-
responding to the issue of “how to transfer”. In this paper, we
propose a RL-based method to adaptively utilize the source
knowledge into the target domain. The basic concept is to
determine the appropriate selection of sub-processing nodes
by learning 𝑄-values of RL based on trial-and-error. We define
the state and action of RL as follows:

Definition 2 (state) it is defined as a processing node of
GNP-KT.

Definition 3 (action) it is defined as the selection of sub-
processing nodes.

Therefore, the state space 𝒮 is the set of processing nodes
of GNP-KT, where ∣𝒮∣ = 𝑁𝑝, and the action space 𝒜 =
{ESP,TSP}.

On-policy Sarsa algorithm [33] is applied to learn the
𝑄(𝑠, 𝑎) value of each state-action pair (𝑠, 𝑎). At time step
𝑡, the learning function of Sarsa for updating the 𝑄 values
depends on the current state-action pair (𝑠𝑡, 𝑎𝑡) of the agent,
the reward 𝑟𝑡 the agent observes, and the new state-action pairs
(𝑠𝑡+1, 𝑎𝑡+1) in the next time step, as shown in the following:

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
[
𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)−𝑄(𝑠𝑡, 𝑎𝑡)

]
,

(9)
where 𝛼 (0 < 𝛼 ≤ 1) is the learning rate, and 𝛾 (0 ≤ 𝛾 < 1)
is the discount factor.

Algorithm 2: learning algorithm of 𝕂

1 current time: 𝑡;
2 current processing node: 𝑖;
3 select sub-processing node 𝑖𝑡 ∈ {𝑖1, 𝑖2} based on 𝜀-greedy;
4 determine the action based on 𝑖𝑡 and get the reward 𝑟𝑡;
5 transit to the next node 𝑗;
6 while 𝑁𝑇𝑗 = 0 do /* 𝑗 is a judgment node */
7 execute judgment function 𝑁𝐹𝑗 ;
8 transit to the next node which is reset as 𝑗;

/* 𝑗 is a processing node */
9 next time: 𝑡+ 1;

10 select sub-processing node 𝑗𝑡+1 ∈ {𝑗1, 𝑗2} based on 𝜀-greedy;
11 update 𝑄 value as follows:

𝑄(𝑖, 𝑖𝑡)← 𝑄(𝑖, 𝑖𝑡) + 𝛼
[

𝑟𝑡 + 𝛾𝑄(𝑗, 𝑗𝑡+1)−𝑄(𝑖, 𝑖𝑡)
]

; (10)

12 𝑖𝑡 ← 𝑗𝑡+1, 𝑡← 𝑡+ 1, 𝑖← 𝑗, and return to step 4;

Fig. 4: Khepera robot

The learning procedures of GNP-KT is illustrated in Algo-
rithm 2.

The fundamental basis of GNP-KT to achieve the knowl-
edge transfer arises from that in early generations, 𝕂 of
𝔻𝑆 may provide better actions since GNP in 𝔻𝑇 is poorly
performed in early generations. However, over time GNP in
𝔻𝑇 is evolved sufficiently where the bias towards using static
𝕂 will be overridden gradually. This adaptive selection will
directly appear in the updating of 𝑄 values, which makes the
knowledge transfer appropriately addressed.

IV. EXPERIMENTAL STUDY

In order to evaluate the performance, GNP-KT is applied to
a real mobile robot control problem – Khepera robot control
[11], [34], [35].

A. Mobile Robot

Khepera robot [34], [35] is a small (5.5𝑐𝑚) differential
wheeled mobile robot, including 8 infrared sensors which
allow the robot to detect the proximity of objects around it
by reflexion, as shown in Fig. 4. Each sensor can return a
continuous value ranging from 0 (no object in front of the
sensor) to 1023 (an object is almost touching the sensor).
Two motors corresponding to the left and right wheel can take
speed values ranging in [−10, 10]. Different combinations of
these two speeds can control the robots for different moving
behaviors. For example, the speeds (+10, 0) can control the

801

TABLE I: Judgment functions for Khepera robot

Function Symbol Description Content of Branches

𝐽1 JF1 Judge Front sensor 1

1: [0, 1000)
𝐽2 JF2 Judge Front sensor 2
𝐽3 JFR Judge Front Right sensor
𝐽4 JR Judge Right sensor
𝐽5 JB1 Judge Back sensor 1

2: [1000, 1023]
𝐽6 JB2 Judge Back sensor 2
𝐽7 JL Judge Left sensor
𝐽8 JFL Judge Front Left sensor

TABLE II: Processing functions for Khepera robot

Function Symbol Description

𝑃1, 𝑃2, 𝑃3 L(-10), L(-5), L(0) set Left motor speed at −10, −5, 0
𝑃4, 𝑃5 L(5), L(10) 5 and 10

𝑃6, 𝑃7, 𝑃8 R(-10), R(-5), R(0) set Right motor speed at −10, −5, 0
𝑃9, 𝑃10 R(5), R(10) 5 and 10

robot to turn right, and (+10,+10) make the robot move
straight ahead with the highest speed.

The robot is located in a map with the size of 1𝑚 × 1𝑚,
where it is capable of moving on the floor based on the values
of its sensors to avoid the obstacles and solve a particular task.

B. Domain Constructions

1) Feature and label space: Based on the notations of
section II, the feature space 𝐹 of Khepera robot can be
represented by its 8 real sensors, in other words, consisting of
{𝑓1, 𝑓2, ..., 𝑓8} features. Based on the returned sensor values,
the robot can consequently determine its actions by setting
the speeds of two motors. Therefore, the label space 𝐿 is
corresponding to the speed values of left and right wheels.

Since both 𝐹 and 𝐿 include continuous variables, discretiza-
tion process is necessary to convert them into discrete values.
In 𝐹 , the continuous range [0, 1023] of each sensor variable
is divided into two intervals, i.e., [0, 1000) and [1000, 1023],
to efficiently implement the IFLTE(𝑎, 𝑏, 𝑐, 𝑑) function3. For
each motor, the robot can take speeds ranging from the
continuous space [−10,+10], which is discretized into the set
of {−10,−5, 0, 5, 10}.

Accordingly, the judgment functions of GNP can be defined
as shown in Table I, while the processing functions are defined
in Table II.

2) Wall-following problem: Wall-following problem is used
to evaluate the performance of our study. During this task, the
robot should avoid the obstacles and find the path to move
along the wall quickly. The task ends when a maximum steps
𝑆𝑇 are reached. The reward and fitness functions are designed
based on [36], aiming to obtain the optimal strategy that can
control the robot to move along the wall as fast as and as
straight as possible.

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑣𝑅 + 𝑣𝐿

20

(
1−

√
∣𝑣𝑅 − 𝑣𝐿∣

20

)
𝐶, (11)

3IFLTE(𝑎, 𝑏, 𝑐, 𝑑) function means that if (𝑎 < 𝑏) then 𝑐 else 𝑑, which is
widely used for a range of problems, i.e., robot control.

(a) source map (b) target map

Fig. 5: Experimental maps

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

𝑆𝑇∑
𝑠𝑡𝑒𝑝=1

𝑅𝑒𝑤𝑎𝑟𝑑

𝑆𝑇
, (12)

where,
𝑣𝑅, 𝑣𝐿: the speed of right and left wheels,
𝐶: value defined by

𝐶 =

⎧⎨
⎩

1, all the sensor values are less than 1000,
and at least one of them is more than 100,

0, otherwise.

In every step, the reward can be calculated by Eq. (11),
where the final fitness value is the average reward over all
𝑆𝑇 steps. The reward is also used to determine 𝑟𝑡 of Sarsa in
Eq. (9). In certain respects, parameter 𝑆𝑇 can be viewed as a
problem size, which can determine the robot’s running time.

3) Constructions of 𝔻𝑆 and 𝔻𝑇 : It is notable that the
robot control problem is very suitable for studying knowledge
transfer, since it is easy to construct 𝔻𝑆 and 𝔻𝑇 to fit the
knowledge transfer scenario.

Based on the description of Prerequisite 1, we design the
following 4 experiments to confirm the effectiveness of GNP-
KT under different constructions of 𝔻𝑆 and 𝔻𝑇 :

Experiment 1 (𝐹𝑆 ∕= 𝐹𝑇 and 𝐹𝑆 ∩ 𝐹𝑇 ∕= ∅): some sensors
of the robot can be blocked to formulate 𝔻𝑆 , while the robot
is configured with 8 full sensor abilities in 𝔻𝑇 . This kind of
configuration has extensive practical usage in real-world, such
as transferring knowledge of a robot to its next-generation
product with more features. In this paper, we randomly block
2 sensors in 𝔻𝑆 to testify the performance of each independent
trial.

Experiment 2 (𝑃𝑆(⋅) ∕= 𝑃𝑇 (⋅)): the robot of 𝔻𝑆 and 𝔻𝑇 is
located in different environments, i.e., maps.

Experiment 3 (𝐿𝑆 ∕= 𝐿𝑇 and 𝐿𝑆 ∩𝐿𝑇 ∕= ∅): the configura-
tion is similar as experiment 1, where some actions are blocked
in 𝔻𝑆 . In this paper, 2 respective actions corresponding to left
and right wheels, are randomly canceled in each independent
trial.

Experiment 4 (𝑓𝑆(⋅) ∕= 𝑓𝑇 (⋅)): different maximum steps 𝑆𝑇
of the wall-following problem are set in 𝔻𝑆 and 𝔻𝑇 to design
for different objectives. In other words, knowledge transfer is
dedicated to realize the scalable learning ability of GNP-KT.
In this paper, 𝑆𝑇𝑆 of 𝔻𝑆 is set at 300 whose knowledge is
transferred to solve 𝔻𝑇 with 𝑆𝑇𝐷 = 500.

802

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3 (d) Experiment 4

Fig. 6: Fitness curves of four experiments with different 𝔻𝑆

(a) fitness curves (b) initial performance (c) final performance

Fig. 7: Effectiveness of knowledge transfer under different 𝔻𝑆

The experimental maps used in this paper are shown in Fig.
5, which include the source map (used in Experiment 2) and
target map.

C. Parameter Configuration

The directed graph of GNP is defined based on the sugges-
tions of [11]: 𝑁𝑗 = 40 (5 nodes per each judgment function),
and 𝑁𝑝 = 20 (2 nodes per each processing function); ∣𝐵𝑖∣ = 2
if node 𝑖 is a judgment node, and ∣𝐵𝑖∣ = 1 for processing
nodes; 𝑇𝐷𝑖 = 1 and 5 for judgment nodes and processing
nodes, respectively; 𝑡𝑑 = 0. The population size is set at
500, including 1 elite individual, 200 crossover individuals and
299 mutation individuals. Tournament selection with size 5 is
performed. The crossover and mutation rates are 0.1 and 0.02,
respectively. In GNP-KT, the additional parameters include
𝛼 = 0.1, 𝛾 = 0.9 and 𝜀 = 0.1 for its learning algorithm. The
initial 𝑄 values are 0.

To verify the effectiveness of the proposal, several classical
algorithms are selected as the baselines from the literature for
comparison, including GP [4] and Sarsa [33]. All the experi-
mental settings of each algorithm are determined carefully by
hand-tuning based on [11] to perform the best of each one.

The final results presented in this paper are the average
values of 30 independent trials to remove the random bias of
evolution.

D. Experimental Results

1) Fitness curves: 4 experiments of GNP-KT mentioned
before are carried out based on different configurations of
source domain 𝔻𝑆 , where the fitness curves are described in
Fig. 6 for the comparison with the traditional algorithms. It

is notable that all the presented results are the ones in target
domain 𝔻𝑇 , that is, wall-following problem with 𝑆𝑇 = 500.
The results of 𝔻𝑆 in GNP-KT are neglected, since they can
be considered as the resources already prepared, which is out
of the scope of solving 𝔻𝑇 .

It is observed that within the non-transfer algorithms, i.e.,
GP, Sarsa and GNP, the directed graph-based GNP achieves
the best performance, which has been also verified in many
previous studies. Sarsa suffers from the large state-action space
in this problem that the optimal strategy is hardly learned.
Standard GP with tree structures lacks the expression ability
when comparing with GNP.

With the help of source domains, the proposed GNP-KT
can significantly improve the fitness values. It is expected
that GNP-KT outperforms the others because transferring
knowledge from the related source domains can reasonably
simplify the evolution search of GNP. The superiority of GNP-
KT confirms the following two factors:

∙ The decision-making rules are appropriate abstraction of
domains, which can be used to formulate the source
knowledge in knowledge transfer.

∙ With the modified processing nodes, RL can automatically
realize the knowledge transfer of GNP.

The studied 4 experiments also verify the reliability of GNP-
KT, since each experiment is carried out corresponding to the
specific constructions of 𝔻𝑆 derived from Prerequisite 1. Fig.
6 shows that GNP-KT succeeds in knowledge transfer under
different constructions of 𝔻𝑆 .

2) Effectiveness of knowledge transfer: In spite of the
knowledge transfer approaches, the effectiveness of knowledge

803

TABLE III: Benefits of knowledge transfer

Metric GNP 𝑐𝑎𝑠𝑒 1 𝑐𝑎𝑠𝑒 2 𝑐𝑎𝑠𝑒 3 𝑐𝑎𝑠𝑒 4

Jumpstart 0 0.093 0.157 0.233 0.330
– improvement – 58.5% 98.7% 146.5% 207.5%
Asymptotic performance 0 0.029 0.043 0.08 0.109
– improvement – 4.4% 6.5% 12.1% 16.4%

transfer highly depends on the similarity of 𝔻𝑆 and 𝔻𝑇 . This
can be easily understood since the more related 𝔻𝑆 and 𝔻𝑇

are, the more feasible knowledge transfer will be. For example,
people knowing Chinese (𝔻𝑆) can learn Japanese (𝔻𝑇) much
more easily than people only knowing English, which is
because that Chinese and Japanese share much similarity about
Kanji.

As described in the domain constructions, the difference of
the studied 4 experiments arises from the selection of 𝔻𝑆 .
In order to better understand the effectiveness of knowledge
transfer in GNP-KT, we further present the deeper analysis on
the performance improvement of the 4 experiments.

The details of the fitness curves of GNP-KT with differ-
ent 𝔻𝑆 are presented in Fig. 7a, where the listed 4 cases
correspond to the 4 experiments. It is observed that with
different 𝔻𝑆 , the performances of GNP-KT are different.
The main differences arise from the initial performance and
final performance of evolution. The detailed results for the
comparison with standard GNP are described in Fig. 7b and
Fig. 7c.

Based on the description of [27], there are many metrics
to measure the benefits of knowledge transfer, where the
following two metrics are the most important ones:

1) Jumpstart: the initial performance of an agent in 𝔻𝑇

may be improved by knowledge transfer from 𝔻𝑆 .
2) Asymptotic performance: the final learned performance

of an agent in 𝔻𝑇 may be improved via knowledge
transfer from 𝔻𝑆 .

The results of jumpstart and asymptotic performance of
GNP-KT under different 𝔻𝑆 are listed in Table III. All GNP-
KT variants achieve the improvement over standard GNP
without knowledge transfer, however, whose improvements are
different from each other.

First, it is observed that 𝑐𝑎𝑠𝑒 1 achieves the smallest
improvement over GNP. In 𝑐𝑎𝑠𝑒 1, 𝔻𝑆 is constructed by
randomly blocking 2 sensors of the robot to provide the source
knowledge 𝕂. The decision-making rules of 𝕂 may be less
accurate in 𝔻𝑇 , since they can only partially observe the target
environment. In other words, calling the sub-processing node
TSP sometimes provides inaccurate action, which will cause
the negative knowledge transfer.

Second, 𝑐𝑎𝑠𝑒 2 formulates 𝕂 by using a different training
map but retaining all the functions of the robot. In this
configuration, the effectiveness of knowledge transfer is highly
depending on the similarity between the source map and target
map. We notice that the inconsistency of these two maps
used in this paper is relatively small as shown in Fig. 5.
Accordingly, the source rules can highly benefit the problem

Fig. 8: GNP-KT with multiple 𝔻𝑆

solving of 𝔻𝑇 .
Third, 𝑐𝑎𝑠𝑒 3 blocks 2 processing functions of the robot

in 𝔻𝑆 . This, of course, will make the discovered rules not
exactly precise in 𝔻𝑇 . However, since the judgment functions
are preserved, the source robot can completely observe the
target environment, which can ensure the transfer actions to
be relatively accurate even they might be more conservative.
Therefore, much better performance is achieved in 𝑐𝑎𝑠𝑒 3.

Finally, 𝑐𝑎𝑠𝑒 4 can obtain the largest improvement among
different GNP-KT variants. This observation is due to the
domain consistency. In this case, 𝔻𝑆 is very similar to 𝔻𝑇 ,
where only the maximum steps 𝑆𝑇 of the wall-following
problem are different. The optimal trajectory of 𝔻𝑆 can be
viewed as a sub-optimum of 𝔻𝑇 , which implies that there are
high chances to recommend accurate actions via TSP. In fact,
𝑐𝑎𝑠𝑒 4 can be grouped into scalable learning [37] that focuses
on reusing the learned knowledge of a low-level problem to a
high-level problem.

Overall, it is observed that GNP-KT can successfully realize
the knowledge transfer of GNP under different 𝔻𝑆 with
different degrees of similarity. Much higher initial performance
is obtained by learning to transfer source knowledge, where
the evolution towards the optimum of 𝔻𝑇 can be more focused
on in GNP-KT to find better final performance.

3) Knowledge transfer with multiple 𝔻𝑆: Brute force
knowledge transfer of weak related 𝔻𝑆 may lead to perfor-
mance deterioration in 𝔻𝑇 , called negative transfer. Therefore,
it has been reported that knowledge transfer from multiple 𝔻𝑆

provides one of the solutions and challenges [38], [39].
It is observed that the proposed GNP-KT is capable of

transferring knowledge from multiple 𝔻𝑆 easily. The only
required modification is to add multiple TSP in each modified
processing node, in which each TSP corresponds to a specific
𝔻𝑆 . GNP-KT can automatically select the appropriate source
knowledge based on the learned 𝑄 values.

Fig. 8 plots the effectiveness of GNP-KT with multiple 𝔻𝑆 .
GNP-KTm denotes a variant that two 𝔻𝑆 corresponding to
𝑐𝑎𝑠𝑒 1 (less similar to 𝔻𝑇) and 𝑐𝑎𝑠𝑒 4 (more similar to 𝔻𝑇)
are utilized for knowledge transfer, denoted by 𝔻

1
𝑆 and 𝔻

4
𝑆 .

Comparing with 𝑐𝑎𝑠𝑒 1 which only uses a single 𝔻𝑆 with
less similarity, GNP-KTm obtain much better performance.
This indicates that GNP-KTm can successfully utilize the
source knowledge from more related 𝔻𝑆 rather than less

804

related 𝔻𝑆 .
On the other hand, when comparing with 𝑐𝑎𝑠𝑒 4, worse

initial performance is achieved because that GNP-KTm may
occasionally use the source knowledge from 𝔻

1
𝑆 which results

in less improvement. However, overtime, more accurate source
knowledge from 𝔻

4
𝑆 will be more preferred. Eventually, GNP-

KTm can still obtain the similar final performance as 𝑐𝑎𝑠𝑒 4.

V. CONCLUSIONS AND FUTURE WORK

In this paper, knowledge transfer ability has been embed-
ded into GNP, where a novel algorithm named GNP-KT
is proposed. By introducing sub-processing nodes into the
directed graph of GNP, it is found that the abstract decision-
making rules discovered from the related source domains can
be successfully transferred into a target domain, where the
selection of sub-nodes can be efficiently learned by RL. By
applying GNP-KT to a real mobile robot control problem, it
has been demonstrated that the knowledge transfer succeeds
under different constructions of source domains. Moreover,
we also confirmed that GNP-KT can realize the knowledge
transfer from multiple source domains. In the future, further
empirical studies and extended algorithms will be focused on.
Meantime, the concept of knowledge transfer proposed in this
paper will be studied in other evolutionary algorithms.

REFERENCES

[1] J. H. Holand, Andaptation in Natural and Artificial Systems. Ann-
Arbor, University of Michigan Press, 1975.

[2] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[3] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehensive
introduction,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

[4] J. R. Koza, Genetic Programming, on the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[5] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Published via http://lulu.com/ and freely available at
http://www.gp-field-guide.org.uk/, 2008, (With contributions by J. R.
Koza).

[6] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, 1997.

[7] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, 2002.

[8] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
1997.

[9] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and J. Murata, “Comparison
between genetic network programming (GNP) and genetic programming
(GP),” in Proc. of the IEEE Congress on Evol. Comput., 2001, pp. 1276–
1282.

[10] S. Mabu, K. Hirasawa, and J. Hu, “A graph-based evolutionary algo-
rithm: Genetic network programming (GNP) and its extension using
reinforcement learning,” Evol. Comput., vol. 15, no. 3, pp. 369–398,
2007.

[11] X. Li, S. Mabu, and K. Hirasawa, “A novel graph-based estimation of
distribution algorithm and its extension using reinforcement learning,”
IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 98–113, 2014.

[12] T. Eguchi, K. Hirasawa, J. Hu, and N. Ota, “A study of evolutionary
multiagent models based on symbiosis,” IEEE Trans. Syst., Man, Cybern.
B, vol. 36, no. 1, pp. 179–193, 2006.

[13] K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, and S. Markon, “A double-
deck elevator group supervisory control system using genetic network
programming,” IEEE Trans. Syst., Man, Cybern. C, vol. 38, no. 4, pp.
535–550, 2008.

[14] X. Li, S. Mabu, and K. Hirasawa, “Use of infeasible individuals in
probabilistic model building genetic network programming,” in Proc. of
the Genetic and Evol. Comput. Conf., 2011, pp. 601–608.

[15] ——, “An extended probabilistic model building genetic network pro-
gramming using both of good and bad individuals,” IEEJ Trans. on
Electrical and Electronic Engineering, vol. 8, no. 4, pp. 339–347, 2013.

[16] X. Li, W. He, and K. Hirasawa, “Genetic network programming with
simplified genetic operators,” in Proceedings of the Int’l Conf. on Neural
Information Processing, 2013, pp. 51–58.

[17] S. Mabu and K. Hirasawa, “Enhanced rule extraction and classification
mechanism of genetic network programming for stock trading signal
generation,” in Proc. of the Genetic and Evol. Comput. Conf., 2011, pp.
1659–1666.

[18] X. Li and K. Hirasawa, “Extended rule-based genetic network program-
ming,” in Proc. of the Genetic and Evol. Comput. Conf., 2013, pp. 155–
156.

[19] ——, “A learning classifier system using genetic network programming,”
in Proc. of the IEEE Int’l Conf. on Syst., Man, Cybern., 2013, pp. 1323–
1328.

[20] K. Shimada, K. Hirasawa, and J. Hu, “Genetic network programming
with acquisition mechanisms of association rules,” Journal of Advanced
Computational Intelligence and Intelligent Informatics, vol. 10, no. 1,
pp. 102–111, 2006.

[21] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, “An intrusion
detection model based on fuzzy class association rule mining using
genetic network programming,” IEEE Trans. Syst., Man, Cybern. C,
vol. 41, no. 1, pp. 130–139, 2011.

[22] X. Li, S. Mabu, H. Zhou, K. Shimada, and K. Hirasawa, “Genetic
network programming with estimation of distribution algorithms and
its application to association rule mining for traffic prediction,” in Proc.
of the ICCAS-SICE, 2009, pp. 3457–3462.

[23] ——, “Genetic network programming with estimation of distribution
algorithms for class association rule mining in traffic prediction,” in
Proc. of the IEEE Congress on Evol. Comput., 2010, pp. 2673–2680.

[24] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,”
in Proc. of the Int’l Conf. on Machine Learning, 2007, pp. 193–200.

[25] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359,
2010.

[26] M. E. Taylor and P. Stone, “Cross-domain transfer for reinforcement
learning,” in Proceedings of the international conference on Machine
learning, 2007, pp. 879–886.

[27] ——, “Transfer learning for reinforcement learning domains: A survey,”
Journal of Machine Learning Research, vol. 10, pp. 1633–1685, 2009.

[28] M. Iqbal, W. Browne, and M. Zhang, “Reusing building blocks of
extracted knowledge to solve complex, large-scale boolean problems,”
IEEE Trans. on Evol. Comput., 2013, (early access).

[29] M. Pelikan, M. Hauschild, and P. Lanzi, “Transfer learning, soft
distance-based bias, and the hierarchical BOA,” in Parallel Problem
Solving from Nature - PPSN XII, 2012, pp. 173–183.

[30] R. Santana, A. Mendiburu, and J. Lozano, “Structural transfer using
EDAs: An application to multi-marker tagging SNP selection,” in Proc.
of the IEEE Congress on Evol. Comput., 2012, pp. 1–8.

[31] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning classifier
systems: from foundations to applications. Springer, 2000.

[32] T. Kovacs, “Genetics-based machine learning,” in Handbook of Natural
Computing. Springer, 2012, pp. 937–986.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[34] Webots software. [Online]. Available: http://www.cyberbotics.com/
[35] K-team. [Online]. Available: http://www.k-team.com/
[36] P. Nordin, W. Banzhaf, and M. Brameier, “Evolution of a world

model for a miniature robot using genetic programming,” Robotics and
Autonomous Systems, vol. 25, pp. 105–116, 1998.

[37] P. Stone and M. Veloso, “Layered learning,” in Proc. of the European
Conference on Machine Learning, 2000, pp. 369–381.

[38] P. Luo, F. Zhuang, H. Xiong, Y. Xiong, and Q. He, “Transfer learning
from multiple source domains via consensus regularization,” in Proc. of
the 17th ACM Conf. on Information and Knowledge Management, 2008,
pp. 103–112.

[39] Y. Yao and G. Doretto, “Boosting for transfer learning with multiple
sources,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2010, pp. 1855–1862.

805

