
What Are Dynamic Optimization Problems?

Haobo Fu, Peter R. Lewis, Bernhard Sendhoff, Ke Tang, and Xin Yao

Abstract— Dynamic Optimization Problems (DOPs) have
been widely studied using Evolutionary Algorithms (EAs). Yet,
a clear and rigorous definition of DOPs is lacking in the
Evolutionary Dynamic Optimization (EDO) community. In this
paper, we propose a unified definition of DOPs based on the
idea of multiple-decision-making discussed in the Reinforcement
Learning (RL) community. We draw a connection between EDO
and RL by arguing that both of them are studying DOPs
according to our definition of DOPs. We point out that existing
EDO or RL research has been mainly focused on some types of
DOPs. A conceptualized benchmark problem, which is aimed
at the systematic study of various DOPs, is then developed.
Some interesting experimental studies on the benchmark reveal
that EDO and RL methods are specialized in certain types of
DOPs and more importantly new algorithms for DOPs can be
developed by combining the strength of both EDO and RL
methods.

I. INTRODUCTION

OPTIMIZATION has been long studied using Evolu-
tionary Algorithms (EAs). Generally speaking, opti-

mization problems can be divided into two categories. One
is Static Optimization Problems (SOPs), and the other is
Dynamic Optimization Problems (DOPs). Without any am-
biguity, a SOP can be defined as:

Definition 1.1: Given a fitness function 𝑓 , which is a
mapping from some set 𝒜, i.e., a solution space, to the real
numbers ℝ: 𝒜 → ℝ, a SOP is to find a solution1, i.e., making
a decision, x∗ in 𝒜 such that for all x ∈ 𝒜, 𝑓(x∗) ≥ 𝑓(x).

We can think of a SOP as a one-decision-making problem,
where only one solution, i.e., one decision, is determined for
a SOP. In contrast, there has not been a consensus about
the definition of DOPs studied in the Evolutionary Dynamic
Optimization (EDO) community.

Historically, many definitions about DOPs have been pro-
posed in EDO. Applying genetic algorithms to DOPs was
initially studied by Goldberg and Smith [9]. In [9], no explicit

H. Fu and X. Yao are with CERCIA, School of Computer Science, Uni-
versity of Birmingham, Birmingham, UK (e-mail: hxf990@cs.bham.ac.uk;
x.yao@cs.bham.ac.uk).

P. R. Lewis is with the School of Engineering and Applied Science, Aston
University, Birmingham, UK (e-mail: p.lewis@aston.ac.uk).

B. Sendhoff is with Honda Research Institute Europe, 63073 Offenbach,
Germany (e-mail: bernhard.sendhoff@honda-ri.de).

K. Tang is with UBRI, School of Computer Science and Technology,
University of Science and Technology of China, Hefei, China (email:
ketang@ustc.edu.cn).

This work was supported by Honda Research Institute Europe, an EPSRC
grant (No. EP/K001523/1), the National Natural Science Foundation of
China under Grants 61175065 and 61329302, the Program for New Century
Excellent Talents in University under Grant NCET-12-0512, the Science and
Technological Fund of Anhui Province for Outstanding Youth under Grant
1108085J16, and the European Union Seventh Framework Programme under
Grant 247619.

1Maximization problems are considered in this paper without loss of
generality. Also, we only consider single objective problems in this paper.

definition of DOPs was provided, and yet the authors studied
the performance (best-of-generation) of a genetic algorithm
with dominance and diploidy on a dynamic 0-1 knapsack
problem. Similarly, Branke studied the performance (off-line
performance) of memory-based EAs on the moving peaks
benchmark [4], without explicitly defining DOPs.

In some other works [22][1][17], DOPs were simply
defined as a sequence of SOPs over time, in which the goal
for each SOP is to find a solution maximizing the fitness
function of that SOP. Hence, the performance of algorithms
for such DOPs was measured by the average performance
on each SOP during a considered time interval.

Another type of definition of DOPs can be found in [3], in
which DOPs were considered as problems of maximizing an
integration of a Dynamic Fitness Function (DFF) over a time
period by determining a solution at each time point. Nguyen
[14] also defined DOPs as maximizing such an integral,
but with a more flexible definition framework than [3] in
terms of quantifying how the DFF changes, how previously
determined solutions influence the dynamic, etc.

There also exist some descriptions about what DOPs
should look like. Examples are “optimization problems are
considered dynamic only if the EA has to cope with the
dynamic” by Branke [5], “If any of those uncertainties related
to optimization problems are to be taken into account, we
call the problem dynamic” by Jin et al [10], “DOPs are
optimization problems which must be solved as time goes
by” by Bosman [3], and “DOPs are a special class of dy-
namic problems which are solved on-line by an optimization
algorithm as time goes by” by Nguyen et al [15].

The aforementioned four types of definitions of DOPs
are limited in different ways. The first type does not define
DOPs explicitly but considers DOPs as problems of adapting
a solution to a changing fitness landscape using EAs. This
largely restricts the possible domain of DOPs, as it unnec-
essarily assumes that DOPs should be solved by EAs. The
second type considers DOPs as a sequence of SOPs over
time, and it is assumed that the DOP is solved optimally
if and only if each of the SOPs is solved optimally. This
formulation is certainly true in some real-world scenarios
but not in others. For example, solutions determined for
previous SOPs can have an impact on what future SOPs
look like, as argued by Bosman [3]. Hence, in such cases,
the overall performance can be suboptimal even though an
optimal solution is found for each SOP. The third type defines
DOPs as maximizing an integration of a DFF over a time
period. Yet, it is not straightforward as how the decision
maker would provide solutions to such DOPs. With regard
to the fourth type, which is all descriptive, one obvious
drawback is that those descriptions are not rigorous enough,

1550

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

and people may interpret the same description differently.
In this paper, we propose a unified definition of DOPs.

Our definition is inspired by the idea of multiple-decision-
making in the Reinforcement Learning (RL) [18] community.
As a result, most problems studied in RL can also be defined
as DOPs according to our definition. The contribution of
our definition of DOPs is three-fold. The definition captures
the distinctive feature of DOPs compared to SOPs, which
is multiple-decision-making. Secondly, according to our def-
inition, most problems studied in EDO and RL are DOPs,
and therefore the definition draws a connection between EDO
and RL. Thirdly, different types of DOPs studied in EDO and
RL can be explicitly categorised within our definition. The
second contribution of this paper is a conceptualized DOP
benchmark, which is derived from our definition of DOPs
and developed for the purpose of systematically studying
different types of DOPs. For the third contribution of this
paper, one representative method from EDO and one repre-
sentative method from RL are tested on our conceptualized
DOP benchmark. The purpose is to show that EDO methods
and RL methods are specialised in certain types of DOPs,
and they can benefit each other in solving DOPs.

The rest of this paper is structured as follows. We give
our unified definition of DOPs in Section II. In Section III,
different types of DOPs studied in EDO and RL are briefly
reviewed and categorised. A conceptualized DOP benchmark
is developed in Section IV. Some experimental studies on the
conceptualized DOP benchmark are conducted in Section V.
Finally, conclusions and future work are given in Section VI.

II. A UNIFIED DEFINITION OF DOPS

In our opinion, the distinctive feature of DOPs compared
to SOPs is that the decision maker has to make multiple
decisions over time, and the overall performance depends
on all decisions made during an investigated time interval.
In contrast, SOPs can be considered as one-decision-making
problems. It should be noted that decisions in DOPs are being
made sequentially over time. Also, decisions made previously
may have an impact on later decision-making in DOPs.

There are various real-world situations where multiple
decisions are being made over time, and we identify two
main categories from the EDO literature. In the first category,
decisions are being made in a fixed frequency, and this
is mostly found in control problems. For instance, in the
greenhouse control problem [20], a decision maker updates
the control parameters every few seconds, so that the per-
formance of the system over time is maximised. One update
of the control parameters corresponds to one decision. Other
examples in this category can also be found [16][12]. In the
other category, decisions are being made over time in an
event-triggering manner. In other words, a decision has to
be made because something relevant in the environment has
changed, and the decision maker has to react to the change
by making a new decision. For instance, in the dynamic
job shop scheduling problem [2], the decision maker has to
assign new incoming jobs in an on-line manner. Also, when
a machine breaks down, some jobs have to be reassigned. In

this situation, an event corresponds to the arrival of new jobs
or the breakdown of machines, and a corresponding decision
is about scheduling new jobs or re-scheduling some existing
jobs. There are some other examples in the second category
[23][6].

The concept of multiple-decision-making has also been
discussed in RL, in which a decision is also called an action.
We first introduce some key concepts, borrowed from RL, for
our definition of DOPs in the following.

State: A state contains all the information, which is
relevant to decision-making. Simply put, a state is associated
with a system, with which the decision maker is interacting,
and can be understood as a set of variables 𝜶. The system’s
state is a function of time: the state at time2 step 𝑡 is 𝜶𝑡,
which is assumed to be dependent on previous states and
decisions made before time step 𝑡.

Action/Decision/Solution: We use action, decision, and
solution interchangeably in this paper. The decision maker
interacts with a DOP system by making decisions, one
decision for one time step, in order to maximize a certain
performance. The action taken at time step 𝑡 is denoted as
x𝑡. x𝑡 is chosen from an action set/space,𝒜𝑡, available at time
step 𝑡, and 𝒜𝑡 usually depends on 𝜶𝑡. For instance, assuming
the investigated DOP is about setting control parameters to
maximize a system’s performance, the value of the control
parameters at time step 𝑡 is then the action x𝑡 taken at time
step 𝑡. It should be noted that usually some computational
time is needed to come up with a decision.

Immediate Reward/Fitness: We use reward and fitness
interchangeably in this paper. We assume that the decision
maker receives an immediate reward every time after making
a decision. The reward is just a signal that indicates the
performance of the system at the time step when the decision
is made. The reward can be understood as a real number
with larger values for better performance. For instance, if the
investigated DOP is about maintaining a system at a target
state over a time period, the immediate reward after making
a decision can be the similarity between the target state and
the system’s state at that time step. It should be noted that the
objective of DOPs is not about maximizing the immediate
reward at a time step but the accumulated rewards over a
time period.

Bearing in mind these key concepts and the distinctive
feature of DOPs compared to SOPs, which is multiple-
decision-making over time, we define DOPs as follows:

Definition 2.1: DOPs are problems about how to make an
optimal set of decisions over time in order to maximize a cer-
tain performance, which is a function of all decisions made
over time. More formally, consider a time interval [0, 𝑡𝑒],
during which the system’s state at time step 𝑡, 𝜶𝑡, follows
a probabilistic distribution 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1),
which is dependent on previous states and actions. A DOP
can be stated as making a sequence of decisions, one at
each time step during [0, 𝑡𝑒], so that the decision sequence

2We only consider discrete time in this paper.

1551

maximizes the expected accumulated rewards3 over the entire
time interval [0, 𝑡𝑒]:

max

𝑡𝑒∑
𝑖=0

𝐸(𝑓𝑖(𝜶𝑖, x𝑖)), (1)

where 𝑓𝑖 is the reward function, which returns the immediate
reward of an action taken in state 𝜶𝑖. 𝑓𝑖 can be either
deterministic or stochastic. 𝐸() returns the expected value
over the random variable 𝑓𝑖. It should be noted that some
computational time is allowed for the decision maker to make
a decision at each time step.

In the following, we would like to point out some potential
assumptions with regard to DOPs. These assumptions can
be used to differentiate different types of DOPs. We will
demonstrate in the next section that existing EDO and RL
have mainly studied only some types of DOPs via examining
the corresponding underlying assumptions.

∙ Assumptions about the observability of state: Ba-
sically, the state 𝜶 can be fully observable, partially
observable, or non-observable to the decision maker.

∙ Assumptions about the dynamic of state: These
assumptions are solely related to the probability
distribution 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1). In an
extreme case, the full probability distribution is known
to the decision maker. If the full probability distribution
is not available, a common assumption is that it
is Markovian: 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1) =
𝑃 (𝜶𝑡∣𝜶𝑡−1, x𝑡−1). In some other cases, the
dynamic of state is assumed to be independent
of decisions: 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1) =
𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1). If the dynamic of state is
dependent on previous decisions, we say the DOP has
a time-linkage property [3].

∙ Assumptions about the reward function: This is about
to what extent the decision maker has information about
the reward function 𝑓 . The decision maker can have full
information (i.e., a concrete function form of 𝑓) or no
information (i.e., an action has to be made in order to
get its immediate reward at a particular state) about 𝑓 .
Alternatively, the decision maker can have intermediate
information about 𝑓 such that the decision maker can
query the immediate reward of any action at a time step
without actually implementing the action.

III. DOPS STUDIED IN EDO AND RL

We can differentiate different types of DOPs based on our
DOP definition by explicitly specifying those assumptions
with regard to the observability of state, the dynamic of state,
and the reward function. We demonstrate this via briefly
reviewing DOPs studied in EDO and RL. We also identify
some types of DOPs that may need more research attention
in EDO.

3In general, we maximize the discounted accumulated rewards:∑𝑡𝑒
𝑖=0

𝐸(𝛾𝑖 ⋅ 𝑓𝑖(𝜶𝑖, x𝑖)), where 𝛾 is the user defined discount factor,
0 ≤ 𝛾 ≤ 1. When 𝑡𝑒 goes to infinity, 0 ≤ 𝛾 < 1. In this paper, we
only consider finite 𝑡𝑒 with 𝛾 = 1.

A. DOPs Investigated in EDO

Types of DOPs studied in EDO are determined by the
benchmark problems and the algorithm performance mea-
sures used in EDO.

According to the latest survey on EDO [15], in nearly
all benchmark problems in EDO, the state is independent
of previous decisions: 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1) =
𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1). In addition, most benchmark problems
are Markovian as well: 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1) =
𝑃 (𝜶𝑡∣𝜶𝑡−1). Taking the widely used moving peaks bench-
mark [4] for example, the benchmark is generated by
adding a random noise to the current state. There-
fore, 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1) = 𝑃 (𝜶𝑡∣𝜶𝑡−1) in
the moving peaks benchmark. Other widely used bench-
marks [13][25] also have 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1) =
𝑃 (𝜶𝑡∣𝜶𝑡−1).

One exceptional benchmark, in which previous decisions
have an impact on the dynamic of state, was developed by
Bosman [3]. However, the benchmark is not general enough
as there is not much flexibility in terms of specifying the
observability of state, the dynamic of state, and the reward
function.

The performance measures also determine what types of
DOPs have been studied in EDO. According to [15], there
are two major types of performance measures in EDO.
The most common type is the optimality-based performance
measure, and the other is the behaviour-based performance
measure. We will discuss only optimality-based performance
measures. The reason is that behaviour-based performance
measures usually measure the population diversity in EAs
when solving DOPs and therefore are not properties of the
underlying DOPs themselves.

One popular optimality-based performance measure is the
best-of-generation measure [24], which takes the form:

𝐹1 =
1

𝐺

𝐺∑
𝑖=1

(
1

𝑁

𝑁∑
𝑗=1

𝐹𝐵𝑂𝐺𝑖𝑗
), (2)

where 𝐺 is the number of generations. 𝑁 is the number of
algorithm runs, and 𝐹𝐵𝑂𝐺𝑖𝑗

is the best fitness4 of individuals
at generation 𝑖 of the 𝑗th run. The underlying assumption
about the DOPs when using this performance measure is that
not every fitness evaluation contributes to the algorithm’s
performance. In other words, it is assumed that the deci-
sion maker has intermediate information about the reward
function such that a query of an action’s immediate reward,
i.e., a fitness evaluation, can be performed without actually
implementing the action.

Another widely used performance measure is the off-line
performance [5], which takes the form:

𝐹2 =
1

𝐺

𝐺∑
𝑖=1

𝐹𝐵𝑆𝑖
, (3)

4A solution’s fitness is an alias of the immediate reward received by
implementing the solution, i.e., making a decision.

1552

where 𝐺 is the number of generations. 𝐹𝐵𝑆𝑖
is the best fitness

obtained by the algorithm since the last state change till the
𝑖th generation. Similarly, not every fitness evaluation counts
in the measure of off-line performance, which indicates the
availability of intermediate information about the reward
function. Besides, when using the off-line performance, it
is assumed that every time a better action, in terms of
immediate reward, is found the action is implemented.

A lot of researchers in EDO also use the measure named
best-error-before-change [19]:

𝐹3 =
1

𝑚

𝑚∑
𝑖=1

𝑒𝑖, (4)

where 𝑚 is the number of state changes, and 𝑒𝑖 is the best
error (the error means the difference between a solution’s
fitness and the fitness of an optimum) just before the 𝑖th
change happens. The best-error-before-change takes a similar
form to Equation 1, and yet it is still implicitly assumed that
the intermediate information about the reward function is
available.

We are also aware of the on-line performance measure
proposed in [5], which takes the form:

𝐹4 =
1

𝑁𝑓𝑒

𝑁𝑓𝑒∑
𝑖=1

𝐹𝑖, (5)

where 𝐹𝑖 is the fitness of the 𝑖th fitness evaluation, and 𝑁𝑓𝑒

is the total number of fitness evaluations. This measure does
not assume the information of the reward function. Yet, the
on-line performance measure has been rarely used in EDO
[15].

B. DOPs Investigated in RL

Problems studied in RL are also about multiple-decision-
making, which can be defined as DOPs according to our
definition in Equation 1. In the following, we briefly analyse
the framework of a general RL method, from which we
discuss what assumptions have been made in DOPs studied
in RL.

A typical RL algorithm can be generally described as
follows. Initially, the agent, i.e., the decision maker, has no
prior information about the DOP. The agent first observes
the current state of the system and then implements an
action. After the action, the system transits into the next
state, and an immediate reward is returned to the agent. By
interacting with the system this way for a number of time
steps, the agent gradually learns a model that summarises all
the experiences so far. One experience corresponds to a triplet
(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑), which means the agent received a
reward after taking an action in a particular state. The model
can be the value function of state or the Q function of the
pair (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛). Through the loop of ‘trial-and-error’, it
is hoped that the agent will gradually approximate the true
model, which gives the optimal policy in terms of rewards
accumulated in the long run. A policy is basically a mapping
from a state to an action. For more information about the

TABLE I

ASSUMPTIONS ABOUT DOPS STUDIED IN EDO AND RL. THESE

ASSUMPTIONS ARE ABOUT THE OBSERVABILITY OF STATE, THE

DYNAMIC OF STATE, AND THE REWARD FUNCTION. ‘N’ MEANS NO

INFORMATION IS ASSUMED. ‘I’ MEANS INTERMEDIATE INFORMATION IS

ASSUMED. ‘F’ MEANS FULL INFORMATION IS ASSUMED.

research
community

observability of state dynamic of state reward function
‘N’ ‘I’ ‘F’ ‘N’ ‘I’ ‘F’ ‘N’ ‘I’ ‘F’

EDO
√ √ √

RL
√ √ √

value function, the Q function, the policy, and more general
information about RL, readers are referred to [18].

There are some underlying assumptions about DOPs in
RL. Firstly, the state is at least partially observable to the
decision maker, otherwise all the learning about the value
function or the Q function would be infeasible. Secondly,
most RL algorithms assume that the dynamic of state is
Markovian or nearly Markovian. Finally, no information is
required a priori about the reward function. In other words,
in order to get the immediate reward of an action in a state,
the action needs to be implemented.

C. A Comparison View of DOPs in EDO and DOPs in RL

In this subsection, we summarise different types of DOPs
studied in EDO and RL based on our previous discussions.
We classify DOPs into different groups by checking whether
those assumptions discussed in Section II are made. The
summary is tabulated into Table I.

In Table I, we divide assumptions into three levels within
each category of assumptions. ‘N’ means no information
is assumed. ‘I’ means intermediate information is assumed.
‘F’ means full information is assumed. For the assump-
tions about the observability of state, what existing EDO
methods need for solving DOPs is being able to evaluate
a solution (i.e., get its fitness) at the current time step.
The observability of state is irrelevant to EDO methods. In
contrast, the state should be at least partially observable to
RL methods. Accordingly, EDO and RL are marked as ‘N’
and ‘I’ respectively in this category.

For the assumptions about the dynamic of state, most of
the work in EDO deals with DOPs where previous decisions
have no impact on later dynamic of state. Besides, EDO
methods do not require the full information of state, i.e.,
the probability distribution 𝑃 (𝜶𝑡∣𝜶0, ...,𝜶𝑡−1, x0, ..., x𝑡−1).
We therefore mark EDO as ‘I’ in this category. Although
traditional RL methods assume the dynamic of state to be
Markovian, a lot of RL methods have been proven to be
effective in situations where the Markov property does not
hold. We therefore mark RL as ‘N’ in this category.

With regard to the assumptions about the reward function,
from the performance measures used in EDO, we can see
that most EDO methods assume that a fitness evaluation can
be performed without actually taking an action. Therefore,
an evaluation model for the reward function is assumed to
be available for these EDO methods. Yet, EDO methods do

1553

not require the analytical form of the reward function. In
contrast, in order to get the immediate reward of an action
in a certain state, that action has to be implemented in RL
methods. Therefore, EDO and RL are marked as ‘I’ and ‘N’
respectively in this category.

From Table I, we can see that more research attention
should be given to DOPs where previous decisions can
influence the dynamic of state and DOPs where an evaluation
model of the reward function is not available, from the
perspective of EDO. It will also be interesting to compare
the performances of EDO methods and RL methods on the
same DOPs.

IV. A CONCEPTUALIZED DOP BENCHMARK

A lot of DOP benchmarks have been developed in EDO
[15], in which common features are that decisions made
before have no impact on later dynamic of state and the
decision maker is able to do a fitness evaluation without
implementing an action. There are also many benchmarks
developed in RL [8], which can be seen as DOP benchmarks
according to our definition of DOPs. Benchmarks in RL have
some common features that may favour only RL methods,
such as a discrete action space, no evaluation model of the
reward function, and full observability of states. In order to
systematically studying different types of DOPs, we develop
a Conceptualized DOP benchmark in the following. By
making DOP assumptions discussed in Section II explicitly,
our conceptualized DOP benchmark enables the generation
of different types of DOPs, which can be hardly achieved
within existing DOP benchmarks. Based on our definition
of DOPs, we define the state space, the action space, the
reward function, and the dynamic of state respectively in the
benchmark.

We generalize the moving peaks benchmark [4] to define
our benchmark. The concepts of height, width, and center for
the reward/fitness function in the moving peaks benchmark
are transferred to our benchmark.

A. The State Space

A state is simply a set of variables in our benchmark. Each
state consists of four parts, namely height, width, center, and
bias. Each height, width, and center are associated with a
peak function, whose meaning will be explained later in the
reward function. The bias is just a single scalar. There are two
parameters to control the dimension of state. One is called
the number of peaks 𝑚, and the other is the dimension of
peak 𝑛. Simply put, a state 𝜶 is represented using the vector
(ℎ1, ℎ2, ..., ℎ𝑚, 𝑤1, 𝑤2, ..., 𝑤𝑚, 𝑐11, 𝑐12, ..., 𝑐𝑚𝑛, 𝑏) of length
(𝑛 + 2)𝑚 + 1, where ℎ𝑖 and 𝑤𝑖 denote the height and the
width of the 𝑖th peak function. c𝑖 (c𝑖 = (𝑐𝑖1, 𝑐𝑖2, ..., 𝑐𝑖𝑛)) is
the center of the 𝑖th peak function, and 𝑏 is the bias.

B. The Action Space

An action is specified by a set of variables. For a state
space that has the dimension of peak function being 𝑛, there
are 𝑛 variables to specify an action: x = (𝑥1, 𝑥2, ..., 𝑥𝑛). The
action/solution space 𝒜𝑡 for the state 𝜶𝑡 is basically a subset
of the 𝑛 dimensional real numbers ℝ

𝑛.

C. The Reward Function

The reward function takes a state and an action as inputs
and outputs a real number. The reward function in our
benchmark consists of the bias 𝑏 and several peak functions
(ℎ𝑖 − 𝑤𝑖∣∣x− c𝑖∣∣2 is the 𝑖th peak function):

𝑓(𝜶, x) =
𝑚

max
𝑖=1
{ℎ𝑖 − 𝑤𝑖∣∣x− c𝑖∣∣2}+ 𝑏, (6)

where 𝜶 represents a state 𝜶 = (ℎ1, ℎ2, ..., ℎ𝑚, 𝑤1, 𝑤2, ...,
𝑤𝑚, 𝑐11, 𝑐12, ..., 𝑐𝑚𝑛, 𝑏), and x is an action. c𝑖 denotes a
vector (𝑐𝑖1, 𝑐𝑖2, ...𝑐𝑖𝑛), and ∣∣ ∣∣2 is the Euclidean norm.
Without loss of generality, we require 𝑤𝑖 > 0 (1 ≤ 𝑖 ≤ 𝑚).

D. The Dynamic of State

We divide all state variables in 𝜶 into two groups. The
dynamic of the first group does not depend on previous
actions, while the dynamic of the second group depends on
previous actions.

The first group consists of all variables except for the
bias 𝑏 in 𝜶. We employ the 6 different dynamics suggested
in CEC09 dynamic optimization competition benchmark
generator [11] to update the state variables in the first group.
The 6 dynamics are described as follows:

1) small step:

Δ𝜙 = 𝛾 ⋅ ∣∣𝜙∣∣ ⋅ 𝑟 ⋅ 𝜙𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, (7)

2) large step:

Δ𝜙 = ∣∣𝜙∣∣⋅(𝜆⋅𝑠𝑖𝑔𝑛(𝑟)+(𝜆𝑚𝑎𝑥−𝜆)⋅𝑟)⋅𝜙𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, (8)

3) random:
Δ𝜙 = 𝒩 (0, 1) ⋅ 𝜙𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, (9)

4) chaotic:

𝜙𝑡+1 = 𝜙𝑚𝑖𝑛+𝛽 ⋅ (𝜙𝑡−𝜙𝑚𝑖𝑛)(1− (𝜙𝑡−𝜙𝑚𝑖𝑛)/∣∣𝜙∣∣),
(10)

5) recurrent:

𝜙𝑡 = 𝜙𝑚𝑖𝑛 + ∣∣𝜙∣∣ ⋅ (𝑠𝑖𝑛(2𝜋
𝑃

𝑡+ 𝜑) + 1)/2, (11)

6) recurrent with noise:

𝜙𝑡 = 𝜙𝑚𝑖𝑛 + ∣∣𝜙∣∣ ⋅ (𝑠𝑖𝑛(2𝜋
𝑃

𝑡+ 𝜑) + 1)/2+

𝒩 (0, 1) ⋅ 𝑛𝑜𝑖𝑠𝑒𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, (12)

where 𝜙 represents any single state variable in the first
group of 𝜶. 𝜙𝑡 is the value of 𝜙 at time step 𝑡, and Δ𝜙
denotes the change in 𝜙 between two consecutive time steps:
𝜙𝑡+1 = 𝜙𝑡 + Δ𝜙. 𝜙𝑚𝑖𝑛, ∣∣𝜙∣∣, and 𝜙𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 denote the
minimum value of 𝜙, the range of 𝜙, and the change severity
of 𝜙 respectively. 𝜆 and 𝜆𝑚𝑎𝑥 are constant parameters. A
logistic function is used for the chaotic change: 𝛽 is a
positive constant in the interval (1, 4). 𝑃 is the period for the
recurrent change and the recurrent with noise change, and 𝜑
is an initial phase. 𝑟 is a random number drawn uniformly
from the interval (−1, 1), and 𝑠𝑖𝑔𝑛(𝑟) returns 1 when 𝑟 is
positive, −1 when 𝑟 is negative, and 0 otherwise. 𝒩 (0, 1) is
a random number drawn from the Gaussian distribution with

1554

mean 0 and variance 1. 𝑛𝑜𝑖𝑠𝑒𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 is the noise severity
applied to the recurrent with noise change.

The bias 𝑏𝑡+1 in the state depends on the latest 𝑘 actions
and biases for the latest 𝑙 time steps:

𝑏𝑡+1 = 𝑔(x𝑡−𝑘+1, ..., x𝑡, 𝑏𝑡−𝑙+1, ..., 𝑏𝑡), (13)

where 𝑔() is a user-defined function returning a real number.
Since we use the concept of peak function in defining

the reward function in our benchmark, and our benchmark
is aimed at generating different types of DOPs, we name
our benchmark Conceptualized Moving Peaks Benchmark
(CMPB).

E. Specifications for a Benchmark Instance of CMPB

There are two groups of things need to be specified in
order to get a benchmark instance of CMPB.

In the first group, the parameters regarding to the state
space and the action space need to be specified. The type of
dynamic for the state needs to be specified as well, including
the function 𝑔() in Equation 13.

In the second group, assumptions discussed in Section
II need to be stated explicitly. It should be made clear
whether the decision maker is given the full analytical
form of the reward function, the intermediate information
of the reward function in which the decision maker can pose
questions about the immediate reward of any action without
implementing such an action, or no information of the reward
function where an action has to be implemented in order to
get its immediate reward at a particular state. The assumption
about the dynamic of state is determined once options in the
first group are specified, e.g, whether the dynamic of state is
Markovian. Finally, it is necessary to specify to what extent
the decision maker has information about the state 𝜶: 𝜶 can
be fully observable, partially observable in which, e.g., a
white noise is added to 𝜶 before it is passed to the decision
maker, or non-observable.

V. EXPERIMENTAL STUDIES

In this section, we generate two benchmark instances of
CMPB. More importantly, we conduct some preliminary
experimental studies of the performances of a representative
EDO method and a representative RL method on the two
benchmark instances. The purpose is to reveal which types
of DOPs EDO methods and RL methods are specialised in
respectively.

A. Two Benchmark Instances of CMPB

We generate the first benchmark instance as follows. The
peak dimension and the number of peaks in the state are both
1, which makes the dimension of the state 4. Accordingly, the
action space is one-dimensional. The height and the width in
the state are fixed to 30 and 2 respectively. The range of the
center in the state is [−10, 10], and the action space is also
[−10, 10]. The dynamic of the center is recurrent with period
being 2 time steps: the center starts at 5 and is multiplied
by −1 every time the environmental state changes (i.e., the

time step is increased by 1). The function 𝑔(), which defines
the dynamic of the bias in the state, is:

𝑏𝑡 =

{
𝜃𝑏 𝑖𝑓 x𝑡−1 ≥ 0,
−𝜃𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(14)

where x𝑡−1 is the action taken at time step 𝑡− 1, and 𝜃𝑏 is a
parameter, which controls the influence of x𝑡−1 on 𝑏𝑡, with
larger values being more influential. In the first benchmark
instance, 𝜃𝑏 is set to be 100.

The settings of the second benchmark instance is exactly
the same as the first one, except the parameter 𝜃𝑏 in Equation
14 is set to be 15. The reason to design such two benchmark
instances is that we would like to compare the performances
of EDO methods and RL methods in two representative
situations. One situation is that actions made previously have
a large impact on the dynamic of state, while the other is that
actions made previously have little impact on the dynamic
of state, i.e., maximizing the reward function at each time
step separately tends to be equivalent to maximizing the
accumulated rewards. Such experimental design is useful in
indicating the advantages of EDO methods and RL methods.

For both benchmark instances, the dynamic of the state and
the reward function are assumed to be deterministic. Also, the
dynamic of the state is Markovian. We assume that the de-
cision maker has intermediate information about the reward
function, i.e., a fitness evaluation can be performed without
implementing an action. Besides, the state is assumed to be
fully observable to the decision maker.

B. Investigated Algorithms in EDO and RL

The Particle Swarm Optimizer (PSO) with a restart strat-
egy is selected as the representative EDO method, which we
denote as ‘RPSO’ hereafter. The restart strategy means the
whole population is randomly reinitialized except that the
best solution found in the last time step is copied into the
current population whenever the environmental state changes.
The corresponding PSO follows the constriction version [7].
The swarm population size is 10. The two constants, which
are used to bias a particle’s attraction to the local best and the
global best, are both set to be 2.05, and hence the constriction
factor takes a value of 0.729844. The velocity of particles is
constricted within the range [−𝑉𝑀𝐴𝑋 , 𝑉𝑀𝐴𝑋]. The value of
𝑉𝑀𝐴𝑋 is set to be the range of the search space, which is 20
in our case. 100 fitness evaluations are allowed for ‘RPSO’
to come up with an action at a time step.

The Q learning algorithm [21] is selected as the represen-
tative RL method, which we denote as ‘Q-learning’ hereafter.
The semi-uniform random exploration strategy is used to
select an action in ‘Q-learning’, where at each time step the
best action in terms of the currently estimated 𝑄 value is
selected with some probability 1− 𝜖, and with probability 𝜖,
an action is selected at random. In our experiment, 𝜖 is set
to be 0.1. The learning rate 𝜂 in ‘Q-learning’ takes the form:
𝜂 = 𝑞1/(𝑞2+ 𝑡), where 𝑞1 and 𝑞2 are two constants, and 𝑡 is
the index of the time step, which starts from 0 and increases
by 1 every time the environmental state changes. 𝑞1 and 𝑞2
are set to be 200 and 300 respectively. The discount factor

1555

in ‘Q-learning’ is set to be 0.7. Also for ‘Q-learning’, the
action space is discretized, which in our experiment is the
set {−10,−9,−8, ..., 8, 9, 10}. At the beginning of the time
(i.e., time step 𝑡 = 0), the 𝑄 values in ‘Q-learning’ are all
initialised to 0.

The main feature of ‘RPSO’ is that at each time step it
tries to select an action that maximizes the current reward
function. In other words, ‘RPSO’ does not care about what
impact the selected action would have on the dynamic of
state. This feature is also shared by most other EDO methods
[15]. The main feature of ‘Q-learning’ is that it tries to learn
the true Q value of each state and action pair. Based on
the true Q values, optimal actions in terms of maximizing
the discounted accumulated rewards can be derived for any
state. It has been shown in [21] that for Markovian decision
problems (i.e., DOPs defined in this paper with the dynamic
of state being Markovian), ‘Q-learning’ converges to the
true Q values with probability 1 under mild conditions as
the number of time steps goes to infinity. However, in
reality, there is always a trade-off between exploration and
exploitation in ‘Q-learning’, and the performance within
finite time steps depends on the structure of the Markovian
decision problem and the parameters in ‘Q-learning’.

C. Experimental Results

1) Results on the First Benchmark Instance: The perfor-
mances of ‘RPSO’ and ‘Q-learning’ on the first benchmark
instance, in which an action has a large impact on the bias
at the next time step (𝜃𝑏 = 100), are presented in Figure
1 and Table II. We can see that ‘Q-learning’ achieves a
consistently better performance than ‘RPSO’. The reason is
that the dependence of the bias in the state on the last action
is gradually learned in ‘Q-learning’, and therefore at each
time step ‘Q-learning’ tends to select an action, which results
in the bias being positive at the next time step. In contrast, an
action is selected in ‘RPSO’ solely depending on the current
reward function. When the center in the state has a negative
value, ‘RPSO’ will tend to select an action with a negative
value. As a result, the bias will oscillate between 100 and
−100.

The optimal action at each time step is straightforward to
obtain for the first benchmark instance. The optimal action at
each time step is that the action equals 5 when the center is
positive and the action equals 0 when the center is negative.
The optimal accumulated rewards at each time step, denoted
as ‘Optimal’, is also plotted in Figure 1.

2) Results on the Second Benchmark Instance: The per-
formances of ‘RPSO’ and ‘Q-learning’ on the second bench-
mark instance, in which an action has a small impact on the
bias at the next time step (𝜃𝑏 = 15), are presented in Figure
2 and Table II. The optimal action at each time step is the
same as that for the first benchmark instance. The optimal
accumulated rewards at each time step, denoted as ‘Optimal’,
is also plotted.

From Figure 2, we can see that ‘RPSO’ achieves a
consistently better performance than ‘Q-learning’. This is due
to the following three aspects. Firstly, the impact of an action

TABLE II

AVERAGE AND STANDARD DEVIATION OVER 30 RUNS OF TOTAL

REWARDS ACCUMULATED DURING DIFFERENT PHASES. THE 1ST PHASE

IS FROM TIME STEP 1 TO 1000. THE 2ND PHASE IS FROM TIME STEP

1001 TO 2000.

1st Phase 2nd Phase
Benchmark Instance Method Avg. Dev. Avg. Dev.

1st instance RPSO 30097 3.9 29897 3.8
Q-learning 92801 22575.0 105644 11719.0

2nd instance RPSO 29927 3.3 29897 2.7
Q-learning 26035 4743.5 26951 4426.9

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
x 10

5

time step

ac
cu

m
ul

at
ed

 r
ew

ar
ds

RPSO
Q−learning
Optimal

Fig. 1. The averaged accumulated rewards in Equation 1 over 30 runs at
each time step, obtained by ‘RPSO’ and ‘Q-learning’ respectively on the
first benchmark instance, together with the optimal accumulated rewards at
each time step.

on the bias at the next time step is small, so maximizing
only the current reward function still gives a relatively good
performance. Secondly, in order to converge to the true Q
values, all actions including suboptimal or even the worst
actions in each state need to be implemented many times
in ‘Q-learning’. This decreases the overall performance. In
other words, learning in ‘Q-learning’ has an overhead of
implementing poor actions in each state. Finally, within finite
time steps, the convergence rate to the true Q values in
‘Q-learning’ has a large impact on the performance. The
convergence rate is influenced by the initialised Q values,
the exploration strategy, the learning rate, and the way to
update the Q values after an action is implemented. However,
it is not straightforward as how to set the parameters in ‘Q-
learning’ properly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a unified definition of DOPs
based on the idea of multiple-decision-making over time
inspired by RL. We draw a connection between EDO and
RL, arguing that both EDO and RL are trying to solve
DOPs according to our definition of DOPs. We point out
that some types of DOPs, where previous decisions can
influence the dynamic of state or an action has to be

1556

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8
x 10

4

time step

ac
cu

m
ul

at
ed

 r
ew

ar
ds

RPSO
Q−learning
Optimal

Fig. 2. The averaged accumulated rewards in Equation 1 over 30 runs at
each time step, obtained by ‘RPSO’ and ‘Q-learning’ respectively on the
second benchmark instance, together with the optimal accumulated rewards
at each time step.

implemented to get its fitness, need more research attention
from the perspective of EDO. Moreover, a conceptualized
DOP benchmark, CMPB, is developed for the purpose of
systematically studying various types of DOPs within one
benchmark. Finally, some interesting experimental results are
obtained by testing one representative EDO method and one
representative RL method on CMPB.

The experimental studies may indicate that EDO methods,
compared to RL methods, may be better at DOPs where
actions have a small impact on the dynamic of state. In
contrast, as the impact of actions on the dynamic of state
increases, the advantage of learning in RL methods may take
over EDO methods. Yet, more comprehensive experimental
studies are needed for any concrete conclusion.

For the future work, firstly, more research attention in EDO
should be given to DOPs in which actions taken previously
can influence the later dynamic of state or an evaluation
model of the reward function is unavailable. Secondly, since
we have established a connection between EDO and RL,
arguing that both of them are trying to solve DOPs based
on our definition of DOPs, it would then be beneficial
to comprehensively compare the state-of-the-art methods in
EDO with those in RL on various types of DOPs using
CMPB, as a deep understanding can be gained about their
own advantages. Finally, it would be interesting to combine
the advantages of both EDO and RL methods in solving
DOPs.

REFERENCES

[1] V. S. Aragón and S. C. Esquivel. An evolutionary algorithm to track
changes of optimum value locations in dynamic environments. Journal
of Computer Science and Technology, 4(3):127–134, 2004.

[2] G. J. Barlow and S. F. Smith. A memory enhanced evolutionary
algorithm for dynamic scheduling problems. In Applications of
Evolutionary Computing, pages 606–615. Springer, 2008.

[3] P. Bosman. Learning and anticipation in online dynamic optimization.
Evolutionary Computation in Dynamic and Uncertain Environments,
pages 129–152, 2007.

[4] J. Branke. Memory enhanced evolutionary algorithms for changing
optimization problems. In Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, volume 3. IEEE, 1999.

[5] J. Branke. Evolutionary Optimization in Dynamic Environments.
Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[6] L. T. Bui, Z. Michalewicz, E. Parkinson, and M. B. Abello. Adaptation
in dynamic environments: a case study in mission planning. Evolu-
tionary Computation, IEEE Transactions on, 16(2):190–209, 2012.

[7] M. Clerc and J. Kennedy. The particle swarm-explosion, stability,
and convergence in a multidimensional complex space. Evolutionary
Computation, IEEE Transactions on, 6(1):58–73, 2002.

[8] A. Dutech, T. Edmunds, J. Kok, M. Lagoudakis, M. Littman, M. Ried-
miller, B. Russell, B. Scherrer, R. Sutton, S. Timmer, et al. Reinforce-
ment learning benchmarks and bake-offs ii. In Workshop at advances
in neural information processing systems conference, 2005.

[9] D. E. Goldberg and R. E. Smith. Nonstationary function optimization
using genetic algorithm with dominance and diploidy. In Proceedings
of the Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, pages 59–68. L. Erlbaum
Associates Inc., 1987.

[10] Y. Jin and J. Branke. Evolutionary optimization in uncertain
environments-a survey. Evolutionary Computation, IEEE Transactions
on, 9(3):303–317, 2005.

[11] C. Li and S. Yang. A generalized approach to construct benchmark
problems for dynamic optimization. In Simulated Evolution and
Learning, pages 391–400. Springer, 2008.

[12] Z. Michalewicz, M. Schmidt, Ma. Michalewicz, and C. Chiriac.
Adaptive business intelligence: three case studies. In Evolutionary
Computation in Dynamic and Uncertain Environments, pages 179–
196. Springer, 2007.

[13] R. W. Morrison and K. A. De Jong. A test problem generator for non-
stationary environments. In Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, volume 3, pages 2047–2053 Vol.
3. IEEE, 1999.

[14] T. T. Nguyen. Continuous dynamic optimisation using evolutionary
algorithms. PhD thesis, University of Birmingham, 2011.

[15] T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic
optimization: A survey of the state of the art. Swarm and Evolutionary
Computation, 6:1–24, 2012.

[16] H. Pohlheim and A. Heißner. Optimal control of greenhouse climate
using real-world weather data and evolutionary algorithms. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference,
volume 2, pages 1672–1677, 1999.

[17] P. Rohlfshagen and X. Yao. Dynamic combinatorial optimisation
problems: an analysis of the subset sum problem. Soft Computing,
15(9):1723–1734, 2011.

[18] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. Cambridge Univ Press, 1998.

[19] K. Trojanowski and Z. Michalewicz. Searching for optima in non-
stationary environments. In Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, volume 3. IEEE, 1999.

[20] R. K. Ursem, T. Krink, M. T. Jensen, and Z. Michalewicz. Analysis
and modeling of control tasks in dynamic systems. Evolutionary
Computation, IEEE Transactions on, 6(4):378–389, 2002.

[21] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[22] K. Weicker. An analysis of dynamic severity and population size.
In Parallel Problem Solving from Nature–PPSN VI, pages 159–168.
Springer, 2000.

[23] S. Yang, H. Cheng, and F. Wang. Genetic algorithms with immigrants
and memory schemes for dynamic shortest path routing problems in
mobile ad hoc networks. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 40(1):52–63, 2010.

[24] S. Yang and X. Yao. Dual population-based incremental learning for
problem optimization in dynamic environments. In 7th Asia Pacific
Symposium on Intelligent and Evolutionary Systems: 49-56, 2003,
2003.

[25] S. Yang and X. Yao. Population-based incremental learning with asso-
ciative memory for dynamic environments. Evolutionary Computation,
IEEE Transactions on, 12(5):542–561, 2008.

1557

