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Abstract— In differential evolution (DE), the optimal value of
the control parameters is problem-dependent. Many improved
DE algorithms have been proposed with the aim of improving
the effectiveness for solving general problems. As a very known
adaptive DE algorithm, JADE adjusts the crossover probability
CR of each individual by a norm distribution, in which the
value of standard deviation is fixed, based on its historical
record of success. The fixed and small standard deviation
results in that the generated CR may not suitable for solving
a problem. This paper proposed an improvement for the
adaptation of CR, in which the standard deviation is adaptive.
The diversity of values of CR was improved. This improvement
was incorporated into the JADE algorithm and tested on a set
of 25 scalable benchmark functions. The results showed that
the adaptation of CR improved the performance of the JADE
algorithm, particularly in comparisons with several other peer
algorithms on high-dimensional functions.

I. INTRODUCTION

D IFFERENTIAL EVOLUTION (DE), introduced by
Price and Storn [1], is a simple yet powerful evolu-

tionary algorithm (EA) for global optimization problems.
Nowadays DE has become one of the most frequently used
EAs for solving global optimization problems [2], mainly
because it has good convergence property and is principally
easy to understand. DE has been modified and extended
with several new versions [3], [4]. Its effectiveness and
efficiency have been successfully demonstrated in many real-
life application fields.

DE creates a new candidate solution by combining the
information of a parent individual and several other individ-
uals of the population. There are many different trial vector
generation strategies for DE, each of which seems to be
suitable for some particular tasks or for solving a certain
type of problems [5], [6]. There are three control parameters
in DE: the amplification factor of the difference vector—
F , the crossover control parameter—CR, and the population
size—NP . All these three parameters significantly affect the
performance of DE algorithms [7]–[9]. The optimal choice
of the three control parameters in DE often depends on the
problems to be solved. For a specific problem, one may
need to spend a huge amount of time to try and fine-tune
the corresponding parameters. To address this issue, several
adaptive and self-adaptive DE algorithms regarding F and
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CR were developed to solve general problems efficiently
[3], [4], [10].

Liu and Lampinen proposed a fuzzy adaptive differential
evolution (FADE) [11], using fuzzy logic controllers to adapt
the control parameters F and CR for the mutation and
crossover operations. Qin and Suganthan proposed a self-
adaptive DE (SaDE), where the choice of learning strategy
and the two control parameters F and CR does not require
predefining [12]. In SaDE suitable learning strategy and
parameter settings are gradually self-adapted according to
population learning experience. Teo proposed a DE algorithm
with a self-adaptive population size NP (abbreviated as
DESAP [13]–[15]), based on the self-adaptive Pareto DE
proposed by Abbas [16]. DESAP makes F , CR and NP
evolvable with individuals to adapt mutation, crossover pa-
rameters, and population size by normal random numbers.
Brest et al. [17] proposed a new adaptive DE, called jDE,
using a self-adapting mechanism for the control parameters
F and CR associated with each individual. jDE was further
extended by adapting two mutation strategies [18] and the
new version was named jDE-2. Another new adaptive DE,
called JADE, was proposed by Zhang et al. [19], in which
the parameters adaptation was implemented by evolving
mutation factors and crossover probabilities based on their
historical records of success.

In JADE algorithm [19], the crossover probability CRi

of each individual is independently generated according to
a normal distribution of a fixed standard deviation, whose
value is equal to 0.1. This small value of fixed standard
deviation results in that the generated normal distributed
numbers can not distribute in the whole range [0,1], which
was discussed in Sect. II-B. Therefore, the generated CR
may not suitable for solving a problem. In this paper, we
studied the adaptations of F and CR of the JADE algorithm,
and proposed an improvement for the adaptation of CR.

This paper is structured as follows. Section II contains the
main contribution of this paper including the introduction
of the adaptation of CR in the JADE algorithm and our
improvement for it. Section III presents and discusses the
experimental results on the tested benchmark functions.
Section IV concludes the paper with several final remarks.

II. THE IMPROVED JADE ALGORITHM

In this section, we introduce the adaptive schemes for
F and CR of the JADE algorithm [19], and propose an
improvment for the adaptation of CR for JADE.

A. Adaptations of F and CR in JADE

DE employs the mutation operation to produce a mutant
vector vi,G with respect to an individual xi,G, so-called
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target vector, at each generation G. For each D-dimensional
target vector xi,G, its associated mutant vector vi,G =
{vi,1,G, vi,2,G, . . . , vi,D,G} can be generated via a certain
mutation strategy.

x1,2,Gx1,1,G x1,D,G CR1,G…

x2,2,Gx2,1,G x2,D,G CR2,G…

… … … … …

xNP,2,GxNP,1,G xNP,D,G CRNP,G…

F1,G

F2,G

…

FNP,G

Fig. 1. Individual encoding of the JADE algorithm, where NP is the
population size.

In the JADE algorithm, each individual in the population is
extended with parameter values. Fig. 1 shows the individual
encoding of the JADE algorithm. The control parameters F
and CR are adjusted based on their historical records of
success. Both of them are adjusted at the individual level.
Potential good values of these encoded control parameters
lead to good individuals which, in turn, are more likely
to survive and produce offspring and, hence, these good
parameter values are propagated.

At each generation, the crossover probability CRi of
each individual xi is independently generated according to a
normal distribution of mean μCR and standard deviation 0.1

CRi = randni(μCR, 0.1) (1)

and then truncated to [0,1]. The mean μCR is initialized to
be 0.5 and then updated at the end of each generation as

μCR = (1− c) · μCR + c ·meanA(SCR) (2)

where SCR is the set of all successful crossover probabilities
CRi at a generation, c is a positive constant between 0 and
1 and meanA is the usual arithmetic mean.

Similarly, at each generation, the mutation factor Fi of
each individual xi is independently generated according to
a Cauchy distribution with location parameter μF and scale
parameter 0.1

Fi = randci(μF , 0.1) (3)

and then truncated to be 1 if Fi ≥ 1 or regenerated if Fi ≤
0. The location parameter μF of the Cauchy distribution is
initialized to be 0.5 and then updated at the end of each
generation as

μF = (1− c) · μF + c ·meanL(SF ) (4)

where SF is the set of all successful mutation factors in a
generation, meanL is the Lehmer mean

meanL(SF ) =

∑
F∈SF

F 2

∑
F∈SF

F
(5)

B. Improved Adaptation of CR in JADE

In the JADE algorithm [19], the crossover probability CRi

of each individual is independently generated according to
a normal distribution with a fixed standard deviation, whose
value is equal to 0.1.

Fig. 2 illustrates the probability density function for the
normal distribution of mean μ and standard deviation σ.
In the figure, it can seen that 68% of values drawn from
a normal distribution are within one standard deviation σ
away from the mean μ. Similarly, about 95% of the values
lie within two standard deviations from the mean, and about
99.7%, nearly all, of the values lie within three standard de-
viations from the mean. This fact is known as the 68-95-99.7
rule, or the 3-sigma rule.

−2σ −1σ 1σ−3σ 3σμ 2σ

34.1% 34.1%

13.6%
2.1%

13.6% 0.1%0.1%
2.1%

Fig. 2. The graph of probability density function for the normal distribution
of mean μ and standard deviation σ.

Nearly all normal distributed numbers are within [μ− 3 ·
σ, μ+3·σ]. Therefore, for the JADE algorithm [19], nearly all
crossover probabilities CRi are generated within the range
[μCR − 0.3, μCR + 0.3] (see Eq. (1)). For example, at the
beginning of evolution, μCR=0.5. The crossover probabilities
CRi are generated within the range [0.2, 0.8], which can not
cover the whole range [0, 1]. If the best crossover probability
lies in [0, 0.2] or in [0.8, 1], this adaptation of CRi can
not generate suitable values. For adapting the values of Fi,
although the scale parameter of Cauchy distribution is the
fixed value 0.1, the Cauchy distributed numbers can cross
the range [0, 1].

To improve the adaptation of CRi, we propose a method
in which the standard deviation σCR is adaptive:

σCR = max(μCR, 1− μCR). (6)

The value of σCR is within [0.5, 1). The normal distributed
numbers can cover the range [0, 1].

At each generation, the crossover probability CRi of each
individual is generated as follows

CRi = randni(μCR, σCR) (7)

and then truncated to [0, 1].

C. The Improved JADE Algorithm

The JADE algorithm, called JADE2, applies the improved
adaptation of CR (see Section II-B) at each iteration (see the
CRi in the step 8 in Algorithm 1 which is the only difference
between JADE2 and JADE). Algorithm 1 presents the pseudo
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Algorithm 1 JADE2 Algorithm
1: Set μCR=0.5, μF =0.5 and A=∅;
2: Generate uniform random individuals for the initial pop-

ulation P0;
3: Evaluate the fitness for each individual in P0;
4: G = 1;
5: while the stop criterion is not satisfied do
6: SF =∅, SCR=∅;
7: for each individual xi,G ∈ PG do
8: Generate CRi = randni(μCR, σCR), Fi =

randci(μF , 0.1);
9: Randomly choose x

p
best,G as one of the 100p% best

vectors;
10: Randomly choose xr1,G �= xi,G from the current

population PG;
11: Randomly choose x̃r2,G �= xr1,G �= xi,G from

PG

⋃
A;

12: vi,G = xi,G + Fi · (xp
best,G − xi,G) + Fi · (xr1,G −

x̃r2,G);
13: jrand=rndint(1,D);
14: for j=1 to D do
15: if rnd(0,1)< CRi or j == jrand then
16: ui,j,G = vi,j,G;
17: else
18: ui,j,G = xi,j,G;
19: end if
20: end for
21: if ui,j,G �∈ [xlow,j , xup,j ] then
22: Use Eq. (8) to map ui,j,G to be in the search

range [xlow,j , xup,j ];
23: end if
24: Evaluate the offspring ui,G;
25: if ui,G is not worse than xi,G then
26: xi,G+1 = ui,G; xi,G → A; CRi → SCR; Fi →

SF ;
27: else
28: xi,G+1 = xi,G;
29: end if
30: end for
31: Randomly remove solutions from A so that |A| ≤

NP ;
32: if uF and uCR are not empty then
33: μCR = (1− c) · μCR + c ·meanA(SCR);
34: μF = (1− c) · μF + c ·meanL(SF );
35: end if
36: G = G+ 1;
37: end while

code of JADE2. In JADE algorithm, at a generation, if no
non-worse trial vector is generated, the set SF is empty. In
this case, the divisor in Eq. (5) is equl to 0. This is an error.
In the experiments, for all the JADE algorithms including the
improved JADE algorithm, the error is corrected by judging
whether μF and μCR are empty (see the step 32 in Algorithm
1). μCR and μF are only updated in the case that μF and

μCR are not empty.
When ui,j exceeds the search range after the mutation, we

map ui,j to be legal as follows:

ui,j =

{
(Fmax · xup,j − xlow,j + ui,j)/Fmax if ui,j < xlow,j

(Fmax · xlow,j − xup,j + ui,j)/Fmax if ui,j > xup,j
(8)

where Fmax is the max value of Fi,j,G; xlow,j and xup,j
are predefined lower and upper bounds, respectively. In this
paper, this method is used for all algorithms to handle
such situation. For the JADE, JADE2 and DE/rand/1/bin
algorithms, Fmax=1.0.

III. EXPERIMENTAL STUDY

A. Comparison of Dim-jDE with Other Algorithms

1) Benchmark Functions: A set of 25 scalable benchmark
functions for the competition on IEEE CEC05 [20], are used
with dimensionality of D=30 and D=50. Table I presents the
details of these functions, including shifted functions, rotated
functions, rotated shifted functions, and the complex hybrid
composition functions proposed in [21]. A more detailed
description and parameter settings of these functions can
be found in [20]. In these functions, f1–f5 are unimodal
functions, f6–f12 are basic multimodal functions, f13–f14
are expanded multimodal functions, and f15–f25 are hybrid
composition functions. Note that, functions f7 and f25 have
no boundary constraint. Therefore, for these two functions,
we do not re-map individuals that are beyond of the initial
bounds by Eq. (8) for all algorithms in this paper.

2) Peer Algorithms: To investigate the effect of the
improved adaptation of CR, JADE2 is compared with
DE/rand/1/bin [1] and JADE [19]. We use the JADE algo-
rithm with an archive in this paper since it showed promising
results compared with JADE without an archive in [19].
The maximal number of fitness evaluations MaxFEs =
10000×D is used as the stop criteria for all the algorithms
on each function. The parameter settings of all the algorithms
are as follows:
a) DE/rand/1/bin: F=0.5 and CR=0.9 as used or rec-

ommended in [1], [6], [22]. NP=100 for D=30 and
NP=200 for D=50, as used in [12], [17], [19].

b) JADE: c=0.1, p=0.2 as recommended in [19]. NP=100
for D=30 and NP=200 for D=50, as used in [17], [19].

c) JADE2: The parameters use the same settings as JADE.
3) Performance Comparison: Table II summarizes the av-

erage error results of 30 independent runs for each algorithm
on each function with D=30 and D=50. For each function,
the best value of the results obtained by all the algorithms is
shown in bold font. b/n/w summarizes the statistical results:
b, n, and w denote the number of functions for which JADE2
performs significantly better, not significantly different and
significantly worse than its peer, respectively. Note that, for
the results in Table II, we only show three significant digits.
Therefore, although some results shown in the two tables are
same, the values of these results are different.

For the 30-dimensional problems in Table II, it can be seen
that there are 8 functions for which JADE2 archives the best
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TABLE I
CEC05 BENCHMARK FUNCTIONS. D DENOTES THE DIMENSIONALITY OF THE TEST PROBLEM, S DENOTES THE RANGES OF THE VARIABLES, AND

fmin IS THE FUNCTION VALUE OF GLOBAL OPTIMUM.

F Name S fmin

f1 Shifted Sphere Function(F1) [−100, 100]D -450
f2 Shifted Schwefel’s Problem 1.2(F2) [−100, 100]D -450
f3 Shifted Rotated High Conditioned Elliptic Function(F3) [−100, 100]D -450
f4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness(F4) [−100, 100]D -450
f5 Schwefel’s Problem 2.6 with Global Optimum on Bounds(F5) [−100, 100]D -310
f6 Shifted Rosenbrock’s Function(F6) [−100, 100]D 390
f7 Shifted Rotated Griewank’s Function without Bounds(F7) [0, 600]D -180
f8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds(F8) [−32, 32]D -140
f9 Shifted Rastrigin’s Function(F9) [−5, 5]D -330
f10 Shifted Rotated Rastrigin’s Function(F10) [−5, 5]D -330
f11 Shifted Rotated Weierstrass Function(F11) [−0.5, 0.5]D 90
f12 Schwefel’s Problem 2.13(F12) [−π, π]D -460
f13 Expanded Extended Griewank’s plus Rosenbrock’s Function(F13) [−5, 5]D -130
f14 Shifted Rotated Expanded Scaffer’s F6(F14) [−100, 100]D -300
f15 Hybrid Composition Function(F15) [−5, 5]D 120
f16 Rotated Hybrid Composition Function(F16) [−5, 5]D 120
f17 Rotated Hybrid Composition Function with Noise in Fitness(F17) [−5, 5]D 120
f18 Rotated Hybrid Composition Function(F18) [−5, 5]D 10
f19 Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum(F19) [−5, 5]D 10
f20 Rotated Hybrid Composition Function with the Global Optimum on the Bounds(F20) [−5, 5]D 10
f21 Rotated Hybrid Composition Function(F21) [−5, 5]D 360
f22 Rotated Hybrid Composition Function with High Condition Number Matrix(F22) [−5, 5]D 360
f23 Non-Continuous Rotated Hybrid Composition Function(F23) [−5, 5]D 360
f24 Rotated Hybrid Composition Function(F24) [−5, 5]D 260
f25 Rotated Hybrid Composition Function without Bounds(F25) [2, 5]D 260

TABLE II
AVERAGE ERROR VALUES ARCHIVED FOR 25 30-DIMENSIONAL AND 50-DIMENSIONAL CEC05 BENCHMARK FUNCTIONS OVER 30 INDEPENDENT

RUNS: THE MEAN BEST RESULT AND CORRESPONDING STANDARD DEVIATION VALUE.

F
D=30 D=50

JADE2 JADE DE/rand/1/bin JADE2 JADE DE/rand/1/bin

f1 0.00e+000±0.00e+000 0.00e+000±0.00e+000 0.00e+000±0.00e+000 0.00e+000±0.00e+000 1.33e-014±2.45e-014† 8.59e-008±4.46e-008†
f2 4.23e-013±5.44e-013 0.00e+000±0.00e+000‡ 1.90e-004±1.96e-004† 2.88e-003±1.64e-003 3.43e-009±4.27e-009‡ 1.03e+004±2.48e+003†
f3 0.00e+000±0.00e+000 0.00e+000±0.00e+000 0.00e+000±0.00e+000 0.00e+000±0.00e+000 3.60e-014±2.79e-014† 3.78e-005±1.97e-005†
f4 3.30e-005±7.22e-005 3.90e-010±1.08e-009‡ 4.10e-002±3.14e-002† 5.16e+001±3.01e+001 9.40e-001±2.07e+000‡ 3.40e+004±6.90e+003†
f5 2.32e-004±2.10e-004 2.85e-006±5.78e-006‡ 3.84e-001±4.28e-001† 4.57e+001±2.54e+001 4.59e+002±8.68e+002† 6.13e+003±1.14e+003†
f6 1.33e-001±7.28e-001 3.13e+000±8.12e+000† 3.25e+000±1.36e+000† 1.91e+001±2.24e+000 6.97e+000±2.06e+000‡ 4.10e+001±5.43e-001†
f7 3.61e-003±5.99e-003 5.50e-003±7.48e-003 0.00e+000±0.00e+000‡ 1.08e+000±2.71e-001 1.40e-003±4.65e-003‡ 2.42e+000±8.65e-001†
f8 2.09e+001±4.96e-002 2.09e+001±2.20e-001 2.09e+001±5.85e-002 2.11e+001±3.87e-002 2.11e+001±4.25e-002 2.11e+001±4.12e-002
f9 0.00e+000±0.00e+000 0.00e+000±0.00e+000 1.27e+002±2.04e+001† 7.43e+001±4.92e+000 2.71e-005±1.67e-005‡ 3.76e+002±1.62e+001†
f10 7.30e+001±9.08e+000 5.39e+001±7.26e+000‡ 1.83e+002±1.00e+001† 2.08e+002±1.31e+001 1.55e+002±1.30e+001‡ 3.92e+002±1.71e+001†
f11 2.85e+001±1.46e+000 2.66e+001±1.47e+000‡ 3.91e+001±1.30e+000† 5.84e+001±2.13e+000 5.38e+001±2.20e+000‡ 7.28e+001±2.03e+000†
f12 3.66e+004±9.61e+003 1.75e+004±5.49e+003‡ 4.96e+003±4.75e+003‡ 3.78e+005±4.41e+004 1.76e+005±2.36e+004‡ 1.95e+006±2.67e+005†
f13 2.34e+000±3.38e-001 1.69e+000±1.93e-001‡ 1.26e+000±2.94e-001‡ 4.84e+000±1.04e+000 3.50e+000±5.15e-001‡ 4.90e+000±1.29e+000
f14 1.28e+001±2.38e-001 1.27e+001±1.77e-001 1.35e+001±1.36e-001† 2.26e+001±1.71e-001 2.25e+001±1.99e-001 2.32e+001±1.39e-001†
f15 1.00e+002±4.16e-013 1.00e+002±3.47e-013† 1.20e+002±1.09e+002† 4.00e+002±2.89e-013 4.32e+002±1.23e+002† 4.10e+002±3.05e+001†
f16 1.00e+002±5.52e-013 1.00e+002±2.89e-014† 1.00e+002±4.38e-013† 5.03e+002±3.10e+002 9.11e+002±2.42e+001† 1.51e+002±1.14e+002‡
f17 1.22e+002±1.10e+002 3.74e+002±3.06e+002† 1.12e+002±6.30e+000‡ 8.69e+002±7.08e+000 9.48e+002±1.96e+001† 1.01e+003±1.78e+001†
f18 3.00e+002±8.58e-013 3.77e+002±2.35e+002† 3.00e+002±2.46e-012† 5.20e+002±3.44e+002 8.94e+002±3.37e+002† 3.01e+002±5.90e-001
f19 3.00e+002±8.25e-013 3.78e+002±2.38e+002† 3.00e+002±1.51e-012† 6.70e+002±3.55e+002 1.04e+003±1.52e+002† 3.01e+002±9.89e-001‡
f20 7.20e+002±3.74e+002 1.02e+003±1.98e+002† 3.00e+002±2.79e-011‡ 6.36e+002±4.19e+002 1.13e+003±9.87e+000† 3.01e+002±8.54e-001
f21 1.15e+003±1.05e+001 1.16e+003±2.19e+001† 1.14e+003±6.35e+000‡ 1.12e+003±1.12e+001 1.21e+003±2.48e+001† 1.13e+003±1.52e+001
f22 1.17e+003±1.20e+001 1.17e+003±1.10e+001 9.18e+002±3.49e+002‡ 1.12e+003±6.74e+000 1.16e+003±6.13e+000† 1.14e+003±6.03e+000†
f23 1.19e+003±8.05e+000 1.20e+003±1.03e+001† 1.19e+003±6.21e+000‡ 1.16e+003±8.70e+000 1.26e+003±1.46e+001† 1.16e+003±7.40e+000
f24 1.09e+003±4.05e+000 1.09e+003±5.36e+000‡ 1.12e+003±2.77e+000† 1.17e+003±4.65e+000 1.18e+003±5.19e+000† 1.20e+003±3.24e+000†
f25 1.20e+003±1.12e+001 1.20e+003±1.03e+001 1.03e+003±4.25e+002 1.28e+003±7.19e+000 1.30e+003±1.04e+001† 1.35e+003±6.04e+000†

b/n/w — 9/8/8 13/4/8 — 14/2/9 17/6/2
† JADE2 performs significantly better than the algorithm at a 0.05 level of significance by the paired samples Wilcoxon signed rank test.
‡ JADE2 performs significantly worse than the algorithm at a 0.05 level of significance by the paired samples Wilcoxon signed rank test.
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Fig. 3. The results for the test function f5 when D=50 over 30 independent runs.
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Fig. 4. The results for the test function f18 when D=50 over 30 independent runs.

error; while there are 11 functions for which DE/rand/1/bin
archives the smallest error. From the statistical significant
results, we can see that JADE2 performs much better than
DE/rand/1/bin. JADE2 performs slightly better than JADE.
For the 50-dimensions problems, there are 10 functions for
which JADE2 got the best results. And JADE2 performs
significantly better than DE/rand/1/bin and much better than
JADE. Through comparing the results in Table II, JADE2
is much more superior than the other algorithms when the
dimension of problems is high. From the above results,
we can conclude that the improved adaptation of CR can
improve the performance of the JADE algorithm, especially
for high-dimensional problems.

Fig. 3 and Fig. 4 show the results of f5 and f18
over 30 independent runs, respectively. In these figures,
JADE(CR=0.1), JADE(CR=0.5) and JADE(CR=0.9) are the
JADE algorithms in which the probability of each individual
are not adaptive, and in these three algorithms all individuals
have the fixed crossover probability CR=0.1, CR=0.5 and
CR=0.9, respectively.

For f5, JADE(CR=0.9) performs better than
JADE(CR=0.5), and JADE(CR=0.5) performs better
than JADE(CR=0.1) (see Fig. 3a). This indicates that the
larger value of crossover probability, the JADE algorithm
performs better on this problem. After 200000 function
evaluations, although JADE2 has a slightly smaller mean
value of CRi of all individuals than JADE (see Fig. 3b),
JADE2 has a larger standard deviation value of CRi (see
Fig. 3c). JADE2 can generate large value of CRi with a

large probability. Therefore, JADE2 performs better than
JADE (see Fig. 3a).

For f18, JADE(CR=0.9) and JADE(CR=0.1) perform
worse than JADE(CR=0.5) (see Fig. 4a). This indicates that
large or small values of CRi are not the best for solving
f8. At a generation, for JADE2, the mean value of CRi of
all individuals is equal to about 0.5, the middle value of
the range [0,1] (see Fig. 4b). JADE2 has a larger standard
deviation value of CRi than JADE (see Fig. 4c). JADE2 can
generate CRi whose value covers the range [0,1], which is
why JADE2 performs better than JADE (see Fig. 4a).

The above results show that JADE2 can diversify the
values of CRi of the population. Therefore, for JADE2 there
are more suitable CRi to generate better trial vectors.

B. The Advantage of Improved Adaptation of CR

In this section, we will study the improved adaptation of
CR and show the advantage of JADE2 compared with JADE.
Take a 2-dimensional Schwefel function [23] for example,
which is a classical multimodal minimum optimization func-
tion. The 2-dimensional Schwefel function is as follows:

f(x) =

D∑

i=1

(
− xi sin

(√
|xi|
))

, xi ∈ [−500, 500], (9)

D=2 here. The global optimum of the Schwefel function is
x ≈{420.9687,. . .,420.9687}.

The mean and standard deviation of individuals’ variables
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Fig. 5. The results of JADE algorithm on the 2-dimensional Schwefel function with NP=5 in a typical run.
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Fig. 6. The results of JADE2 algorithm on the 2-dimensional Schwefel function with NP=5 in a typical run.

in the j-th dimension at the G-th generation is:

mj,G =
1

NP

NP∑
i=1

xi,j,G, (10)

stdj,G =

√√√√ 1

NP

NP∑
i=1

(xi,j,G −mj,G)2, (11)

where mj,G and stdj,G are the mean and standard deviation
of the population in the j-th dimension at generation G,
respectively.

Fig. 5 and Fig. 6 show a typical run of JADE [19] and
JADE2 (see Algorithm 1) algorithms for the 2-dimensional
Schwefel function with NP=5. Note that, the initial popula-
tion of JADE and JADE2 algorithms are the same.

For the JADE algorithm, the values of CR of all individ-
uals in population are larger than 0.3 (see Fig. 5a). Because
of this slightly large value of CR, the value of stdj on each
dimension drops sharply to 0 (see Fig. 5b). The population
converges at a local optimum (see Fig. 5c). In Fig. 5c,
when the number of function evaluations is equal to about
40, the population converges at the global optimum on the
second dimension, but not on the first dimension. Because
the population diversity on the first dimension is very poor
(see Fig. 5b), the population can not get better any more.

For the JADE2 algorithm, the values of CR of all in-
dividuals in population can cover the range [0,1] (see Fig.
6a). The value of CR can be small at some generations.
Although the population converges slowly (see Fig. 6b), the
population can converge at the global optimum (see Fig. 6c).
When the number of function evaluations is equal to about
80, the population converges at the global optimum on the

second dimension, but not on the first dimension (see Fig.
6c). Because the population diversity on the first dimension
is high at this moment (see Fig. 6b), the population can get
better and converges at the global optimum finally.

From this example, it can be seen that the improved
adaptation of CR can enhance the diversity of values of CR
and it can generate more suitable CR to produce better trial
vectors.

IV. CONCLUSIONS

The control parameters involved in DE are highly de-
pendent on the problems to be solved. There are many
adaptive algorithms proposed for parameters adaptation. As
a very known adaptive DE algorithm, JADE adjusts the
mutation factors and crossover probabilities based on their
historical records of success. The crossover probability CR
is generated according to a normal distribution with the
fixed standard deviation 0.1. The 3-sigma rule shows that
the generated normal distributed numbers can not cover the
range [0,1]. Therefore, the generated CR may not suitable
for solving a problem.

To improve the adaptation of CR, we propose a method
in which the standard deviation is adaptive. The values of
CR generated by this normal distribution can cover the
range [0,1]. The JADE algorithm, called JADE2, applies
the improved adaptation of CR is tested on a set of 25
scalable benchmark functions. The results show that the
improved adaptation of CR can significantly improve the
performance of the JADE algorithm, especially for high-
dimensional function optimization.
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