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A Replacement Strategy for Balancing Convergence and Diversity
in MOEA/D
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Abstract—This paper studies the replacement schemes in
MOEA/D and proposes a new replacement named global
replacement. It can improve the performance of MOEA/D.
Moreover, trade-offs between convergence and diversity can
be easily controlled in this replacement strategy. It also
shows that different problems need different trade-offs between
convergence and diversity. We test the MOEA/D with this
global replacement on three sets of benchmark problems to
demonstrate its effectiveness.

Index Terms—Multiobjective optimization, MOEA/D, selec-
tion operator, replacement.

I. INTRODUCTION

A multiobjective optimization problems (MOP) has several
conflicting objectives. Very often, no single solution can
optimize these objectives at the same time. Pareto optimal
solutions are of very practical interest to decision makers.
Improvement in one objective of a Pareto optimal solution
will lead to deterioration in at least one other objective. The
set of all the optimal Pareto optimal solutions is called the
Pareto set (PS) and their corresponding objective vectors in
the objective space is the Pareto front (PF). Most multiob-
jective optimization evolutionary algorithms (MOEAs) aim
to find a good approximation of the PF (PS) [1]-[3].

Selection is a main component in an MOEA. Popular se-
lection strategies include Pareto dominance based, indicator
based and decomposition based strategies [4]. In the mul-
tiobjective evolutionary algorithm based on decomposition
(MOEA/D) framework, an MOP in question is decomposed
into a number of simple subproblems. These subproblems
can be single objective ones (e.g. scalar objective problems,
[31, [5]), or multiobjective ones [6], which are optimized in
a collaborative manner. As so far, most proposed MOEA/D
versions adopt (u + 1)-selection scheme which selects g
individuals from a population of p parents and 1 offspring.
Therefore, the selection is also called as replacement or
update in some papers.
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Selection in MOEA/D plays a vital role in the information
exchange among subproblems. We hope the useful informa-
tion can be transmitted to the appropriate subproblems to
improve them, at the same time will not mislead other un-
suitable subproblems. Several selection schemes in MOEA/D
have been proposed and studied. It has been shown that
selection in MOEA/D also plays a key role in balancing the
population diversity and convergence in the search process.
Moreover, It is clearly that solving different MOPs may
need different combinations of efforts for diversity and
convergence at different search stages. Therefore, it would
be worthwhile developing a selection scheme which can
make the communication among subproblems more efficient,
meanwhile can achieve different combinations of diversity
and convergence efforts easily by adjusting a control param-
eter. This paper represents our first attempt along this line.

In this paper, we propose a global replacement scheme
for the selection in MOEA/D. In our proposed scheme,
when the algorithm generates a new solution z?,.,, from the
search on subproblem ¢, the most appropriate subproblems
will be selected from the whole population. Then the new
solution will replace the current solutions of some of these
subproblems. We have demonstrated that MOEA/D with
global replacement scheme works well on some difficult
test problems. Our simulation results also show that the
replacement neighborhood size (neighborhood should have
mentioned before) is a very sensitive parameter for balancing
diversity and convergence. Meanwhile, it has been shown that
different problems need different trade-offs between diversity
and convergence. In other words, the new scheme has the
advantage to balance convergence and diversity in solving
MOPs by using the MOEA/D algorithm.

The rest of the paper is organized as follows. Section II
briefly introduces the MOEA/D framework. Section III gives
the details of the proposed global replacement scheme in
MOEA/D. Section IV presents the statistical results. And the
paper is concluded in Section V.

II. MOEA/D
A. Multiobjective Optimization Problem
An MOP can be defined mathematically as follows.

minimize F(x) = (fi(z), fo(2), -, fm(2))T

subject to x € () M

where x = (11,...,2,)7 is a decision variable vector, (2 is

the feasible region in the decision space, and F' : Q@ — R™

consists of m objective functions f;(z)(i =1,2,---,m).
The following are definitions of Pareto optimality.
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Two examples of the special cases may occurred in the evolution

o Letz,y €, x is said to dominate y, denoted by x < y,
if and only if f;(x) < fi(y) for all 4 € {1,2,--- ,m},
and f;(x) < f;(y) for at least one j € {1,2,--- ,m}.

e A point z* € Q) is called Pareto optimal if there is no
other z € 2 which dominates x*.

o The set of all the Pareto optimal points is called the
Pareto set (PS) and the Pareto front (PF) is defined as
PF = {F(z)|x € PS}.

A Pareto optimal solution is a best trade-off candidate

solution for a decision maker.

B. Decomposition Approaches

Several decomposition approaches have been used and
studied in the MOEA/D framework [3], [7]-[10]. This paper
uses the Tchebycheff approach. In this approach, a scalar
optimization subproblem is defined as:

minimize g(e/2%) = max (@) ==}
subject to = € ()
where A = (A, Ag, -+
subproblem, i.e., A\; > 0 for all ¢ =

,Am)T is the weight vector of this
1,2,---,m and

m
> A = 1. 27 is a reference point. z; = min{f;(z)|z € Q}

=1

for each ¢ = 1,--- ,m. The corresponding direction vec-

tor of this subproblem in the objective space should be
11 1\T

(T17)\72’.“ 7m) .

C. Generating Weighting Vectors

In the case when no preference information of the decision
maker is available, it is desirable to find uniformly distributed
solutions along the PF. Therefore, we should set weight
vectors such that the optimal solutions of their subproblems
are uniformly distributed along the PF. Several methods
for generating weight vectors for different decomposition
approaches in MOEA/D have been proposed [10], [11]. In
this paper, we use the method developed in [12] to set the
weight vectors.

D. Two Neighborhoods

In MOEA/D, neighborhood relations among its subprob-
lems are defined by the Euclidean distances between their

corresponding direction vectors. These relationships can be
used for selection of parent solutions and replacement of old
solutions. As suggested in [13], [14] , MOEA/D should use
two different neighborhoods for these two purposes (i.e. the
mating neighborhood and the replacement neighborhood).
Moreover, some effort has been made to use different neigh-
borhood sizes during different search stages [15].

E. MOEA/D Framework

For each subproblem i at each generation, MOEA/D
adopted in this paper works as follows:

1) Set the mating neighborhood size 7},, and the replacement
neighborhood size T, for subproblem ¢. The mating pool
P can be composed by the solutions selected from the
mating neighborhood with a large probability § and whole
population with a probability (1 — §).

2) Randomly select parent solutions from the mating pool
P, and then perform the reproduction operators on them
to generate a new solution z¢,,,. Compute F(z%.,,).

3) Decide which subproblems should be updated. Replace
the current solutions of these subproblems by zf., if
x! ., is better than them.

III. GLOBAL REPLACEMENT IN MOEA/D

In the original version of MOEA/D, the new solution
xt . of subproblem i is used to replace the solutions of
its neighboring subproblems B(i). However, it is uncertain
whether the new solution z?,,, is most suitable for these
subproblems. As shown in Fig. 1(a), %, is not good for
B(1), but very good for some other subproblems. So it is very
likely that z¢ , will be discarded in the update stage unless
a very big replacement neighborhood is used. However, a
big replacement neighborhood can easily lead to the loss of
population diversity distinctly. In the second example shown
in Fig. 1(b), which is MOP1 used in [6], some solutions with
high quality are very easily found at very early search stages,
and then they will replace most current solutions with the
original replacement scheme even a very small replacement
neighborhood is adopted. Consequently many subproblems
will be trapped at their local optimal solutions. Therefore,
the original replacement scheme makes MOEA/D inefficient
and ineffective for the kinds of problems like the examples
in Fig. 1.

To overcome the above shortcomings, we propose a
new replacement scheme called the global replacement for
MOEA/D. For a newly generated solution z?,,,,, it works as
follows:

step 1: Find the most appropriate subproblem of z},,,,.

step 2: Determine the replacement range.
step 3: Replace the current solutions.

At step 1, we can use the objective functions of subprob-
lems or the distance between z},.,, and the direction vectors
to find the most appropriate subproblem j for z7,.,. The
former is adopted in this paper and it can be represented as

. . te/ i k _x*
g =arg min {g(Zpe A", %)}
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At step 2, T, closest subproblems to subproblems j are
selected to form the replacement neighborhood, i.e., B, (j)
here. And the replacement range is controlled by the replace-
ment neighborhood size T,

At step 3, solutions of subproblems B,(j) will be re-
placed by ... Actually, we can only discard the worst
solution from the group of z¢., and the current solutions
of subproblems B, (j). However, here we replace all the
possible solutions of subproblems B,.(j) in order to facilitate
the analysis of its performance. For all k € B,(j), if
gte(x%ewl/\k72*) < gte(xk|/\k’7 Z*)’ set Ik = "Eizew'

In the above scheme, the useful information can be
transmitted to the suitable subproblems even a very small
neighborhood is used. So it makes the information transfer
among subproblems more efficient. In addition, we can easily
find that a big replacement neighborhood means that many
solutions may be replaced by a new solution and then the
diversity will decrease, and vice versa. Therefore, we can
control the trade-off between diversity and convergence via
the replacement neighborhood size with global replacement.

IV. EXPERIMENTAL STUDIES

To show the effectiveness of the proposed global replace-
ment, MOEA/D with global replacement (MOEA/D-GR) is
compared with original MOEA/D-DE. Both algorithms use
the differential evolution (DE) operator as the reproduction
operator for a fair comparison. The only difference between
two algorithms is the replacement scheme.

A. Test Problems

Three sets of benchmark problems with different char-
acteristics are used in this paper. The first set includes
MOP1-MOP7 proposed in [6]. The second set is ZDT and
DTLZ problems [16], [17], and the third one includes F1-
F9 proposed in [5]. In MOP1-MOP7, some Pareto optimal
solutions are much easier to obtain than others at the early
stage of evolution. Population diversity is very important for
solving these problems. While in ZDT and DTLZ problems,
the PS shapes are simple lines or hyperplanes. When a
few Pareto optimal solutions are found, other solutions are
easily obtained by searching along the PS. For this reason,
convergence is very important for solving them. F1-F9 has
very complicated PS shapes and it is difficult to search along
the PS, so the population diversity is also important.

B. Performance Metric

In our experimental studies, two widely used performance
metrics the inverted generational distance metric (IGD) and
the Hypervolume indicator (/z) [18], [19] are adopted in
assessing the performance of the compared algorithms.

a) IGD-metric [18], [19]: Let P* be a set of uniformly
distributed Pareto optimal points along the PF in the
objective space. Let P be an approximate set to the
PF obtained by an algorithm. The inverted generational
distance from P* to P is defined as

> vep- d(v, P)
[P
Where d(v, P) is the minimum Euclidean distance be-
tween v and the points in P. If |P*| is large enough
IGD(P*, P) could measure both convergence and diver-
sity of P in a sense. Because the IGD metric has an
assumption that the true PF is known, so we select 500
evenly distributed points in PF and let these points be
P* for each test problem with two objectives, and 1,000
points for each test problem with three objectives.

b) Iy-metric [20]: Let y* = (y§,v5, - ,y),) be a point
in the objective space which is dominated by any Pareto
optimal objective vectors. Let S be the obtained approx-
imation to the PF in the objective space. Then the Iy
value of .S (with regard to y*) is the volume of the region
dominated by S and bounded by y*:

IGD(P*,P) = 3)

(S, y*) = volume (| J [y1(2), y5] X - [ym (@), y},])

yes
“
In our experiments, y* = (1.0, 1.0) for bi-objective test
problems, and y* = (1.0,1.0,1.0) for three objective
ones.

In general, If the points in P are very close to the PF and
no part of the whole PF will be missed, the /GD(P*, P)
will have a small value. Instead, the higher the Iz value, the
better approximation to the true PF.

C. Parameter Settings

1) Control parameters in reproduction operator: Because
the same reproduction operators are used in two algo-
rithms, so the control parameters in DE and polynomial
mutation are same with [5].

2) The population size N: Both two algorithms have the
same population in our experiments, the population size
is set to be 100 for the ZDT problems, 300 for DTLZ
problems, F1-F5, F7-F9 and MOP1-MOPS5, and 595 for
F6 and MOP6-MOP7.

3) Number of runs and stopping condition: Each algorithm
is run 30 times independently for each test problem.
The algorithms stop after a given number of function
evaluations. The maximal number of function evalua-
tions is set to be 25,000 for ZDT problems, 100,000
for DTLZ problems, 150,000 for F1-F5 and F7-F9,
300,000 for MOP1-MOP5 and F6, and 900,000 for
MOP6 and MOP7.

4) The neighborhood sizes: Because the replacemen-
t neighborhood and the mating neighborhood are the
same in MOEA/D-DE. To be fair, two neighborhoods
are also of the same size in MOEA/D-GR. So T, =
T = 0.1 x N in both algorithms.

5) Other control parameters: In MOEA/D-DE, the maxi-
mal number of solutions replaced by a offspring solution
is set to be n, = 2. Because all the solutions can be
replaced in MOEA/D-GR, so it needs no parameters.
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Fig. 2. Plots of the final populations with the lowest IGD-metric values found by MOEA/D-DE in 30 runs in the objective space on MOP1-MOP?7.
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TABLE I

IGD-METRIC VALUES OF SOLUTIONS FOUND BY MOEA/D-DE AND
MOEA/D-GR oN MOP1-MOP7

MOP7

TABLE I
Ir VALUES OF SOLUTIONS FOUND BY MOEA/D-DE AND
MOEA/D-GR oN MOP1-MOP7

Plots of the final populations with the lowest IGD-metric values found by MOEA/D-GR in 30 runs in the objective space on MOP1-MOP?7.

IGD-value MOEA/D-DE MOEA/D-GR I 7-value MOEA/D-DE MOEA/D-GR
Problem mean min std mean min std Problem mean max std mean max std
MOPI 0.3132 | 0.1593 | 0.0765 | 0.0210 | 0.0170 | 0.0051 MOPI 0.1699 | 0.4487 | 0.1404 | 0.6381 | 0.6434 | 0.0063
MOP2 0.3061 | 0.1741 | 0.0655 | 0.0637 | 0.0033 | 0.0730 MOP2 0.0236 | 0.1415 | 0.0370 | 0.2499 | 0.3280 | 0.0952
MOP3 0.5572 | 0.4774 | 0.0496 | 0.0497 | 0.0043 | 0.0821 MOP3 0.0012 | 0.0004 | 0.0545 | 0.1682 | 0.2090 | 0.0699
MOP4 0.2832 | 0.2434 | 0.0234 | 0.0824 | 0.0083 | 0.0758 MOP4 0.1465 | 0.1803 | 0.0187 | 0.3958 | 0.5065 | 0.1106
MOP5 0.3142 | 0.2936 | 0.0076 | 0.0177 | 0.0135 | 0.0044 MOP5 0.3536 | 0.3536 | 0.0000 | 0.6417 | 0.6464 | 0.0034
MOP6 0.2996 | 0.2253 | 0.0174 | 0.0446 | 0.0384 | 0.0039 MOP6 0.5026 | 0.6001 | 0.0211 | 0.7742 | 0.7814 | 0.0067
MOP7 0.3705 | 0.3225 | 0.0146 | 0.1075 | 0.0798 | 0.0311 MOP7 0.2139 | 0.2335 | 0.0049 | 0.3345 | 0.3958 | 0.0406
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Fig. 4. Mean IGD of MOEA/D-GR with different replacement neighborhood sizes on MOP1-MOP7.

TABLE III
IGD-METRIC VALUES OF SOLUTIONS FOUND BY MOEA/D-DE AND
MOEA/D-GR ON ZDT AND DTLZ PROBLEMS

TABLE IV
I VALUES OF SOLUTIONS FOUND BY MOEA/D-DE AND
MOEA/D-GR oN ZDT AND DTLZ PROBLEMS

0.8N

IGD-value MOEA/D-DE MOEA/D-GR I r-value MOEA/D-DE MOEA/D-GR

Problem mean min std mean min std Problem mean max std mean max std
ZDT1 0.0127 | 0.0053 | 0.0071 | 0.0054 | 0.0043 | 0.0011 ZDT1 0.6463 | 0.6578 | 0.0105 | 0.6575 | 0.6601 | 0.0021
7ZDT2 0.0149 | 0.0060 | 0.0038 | 0.0050 | 0.0042 | 0.0007 7ZDT2 0.3064 | 0.3219 | 0.0061 | 0.3243 | 0.3266 | 0.0017
7DT3 0.0271 | 0.0135 | 0.0132 | 0.0123 | 0.0110 | 0.0006 ZDT3 0.7258 | 0.7639 | 0.0284 | 0.7675 | 0.7743 | 0.0043
7DT4 0.3149 | 0.0660 | 0.2252 | 0.0176 | 0.0053 | 0.0275 ZDT4 0.3191 | 0.5764 | 0.1821 | 0.6389 | 0.6577 | 0.0392
7ZDT6 0.0132 | 0.0054 | 0.0075 | 0.0047 | 0.0032 | 0.0013 ZDT6 0.2512 | 0.2611 | 0.0090 | 0.2624 | 0.2652 | 0.0020

DTLZ1 0.4852 | 0.0690 | 0.5424 | 0.2587 | 0.0447 | 0.0638 DTLZI1 0.7536 | 0.9756 | 0.3843 | 0.9267 | 0.9744 | 0.1194

DTLZ2 0.0287 | 0.0282 | 0.0003 | 0.0287 | 0.0282 | 0.0003 DTLZ2 0.4391 | 0.4397 | 0.0003 | 0.4367 | 0.4392 | 0.0015

D. Experimental Result on MOP1-MOP7

The statistical results on MOP1-MOP7 are presented and
compared in Table I and Table II. It can be clearly ob-
served that MOEA/D-GR has much better performance than
MOEA/D-DE in terms of both metrics on all the seven test

problems. Fig. 2 and Fig. 3 show the final populations with
the lowest IGD-metric values obtained by MOEA/D-DE and
MOEA/D-GR on MOP1-MOP7 in the 30 runs. From the
comparison of Fig. 2 with Fig. 3, we can easily find that
MOEA/D-DE has resulted in the loss of diversity and can
only find several points of the PFs. In contrast, MOEA/D-
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TABLE V
IGD-METRIC VALUES OF SOLUTIONS FOUND BY MOEA/D-DE AND
MOEA/D-GR oON F1-F9

The replacement neighborhood size

The replacement neighborhood size

Mean IGD of MOEA/D-GR with different replacement neighborhood sizes on F1-F9.

TABLE VI
I VALUES OF SOLUTIONS FOUND BY MOEA/D-DE AND
MOEA/D-GR oN F1-F9

IGD-value MOEA/D-DE MOEA/D-GR Igr-value MOEA/D-DE MOEA/D-GR

Problem mean min std mean min std Problem mean max std mean max std
F1 0.0013 | 0.0013 | 0.0000 | 0.0013 | 0.0013 | 0.0000 Fl1 0.6647 | 0.6647 | 0.0000 | 0.6647 | 0.6648 | 0.0000
F2 0.0037 | 0.0032 | 0.0004 | 0.0089 | 0.0028 | 0.0206 F2 0.6603 | 0.6611 | 0.0006 | 0.6576 | 0.6619 | 0.0113
F3 0.0043 | 0.0030 | 0.0022 | 0.0154 | 0.0027 | 0.0262 F3 0.6606 | 0.6621 | 0.0015 | 0.6524 | 0.6625 | 0.0170
F4 0.0067 | 0.0036 | 0.0061 | 0.0315 | 0.0029 | 0.0434 F4 0.6577 | 0.6614 | 0.0063 | 0.6425 | 0.6622 | 0.0264
F5 0.0101 | 0.0068 | 0.0020 | 0.0197 | 0.0063 | 0.0293 F5 0.6527 | 0.6574 | 0.0033 | 0.6457 | 0.6584 | 0.0161
F6 0.0254 | 0.0240 | 0.0011 | 0.0256 | 0.0240 | 0.0011 F6 0.4344 | 0.4375 | 0.0020 | 0.4236 | 0.4293 | 0.0022
F7 0.0013 | 0.0013 | 0.0000 | 0.0014 | 0.0013 | 0.0001 F7 0.6646 | 0.6647 | 0.0001 | 0.6645 | 0.6646 | 0.0001
F8 0.0017 | 0.0013 | 0.0008 | 0.0466 | 0.0019 | 0.0258 F8 0.6633 | 0.6645 | 0.0020 | 0.6035 | 0.6627 | 0.0388
F9 0.0042 | 0.0032 | 0.0007 | 0.0037 | 0.0029 | 0.0004 F9 0.3266 | 0.3279 | 0.0010 | 0.3275 | 0.3284 | 0.0006

GR can almost approximate these PFs. By comparing these
results, it demonstrate that MOEA/D-DE can not maintain
diversity of population for these special problems while
MOEA/D-GR can avoid this situation.

E. Experimental Result on ZDT and DTLZ problems

The results on the ZDT and DTLZ problems are presented
in Table III and Table IV. The results show that MOEA/D-
GR performs significantly better on all the problems except
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Fig. 6.

DTLZ2. For DTLZ2, two algorithms have similar perfor-
mances in terms of IGD-metric while MOEA/D-GR slightly
performs slightly worse in terms of Iz -metric.

F. Experimental Result on FI1-F9

Table V Table VI give the results on the FI-F9. It is
clear that the best results (i.e. minimum IGD-metric values
and maximal [g-metric values) obtained by MOEA/D-GR
in all the 30 runs are better than MOEA/D-DE on almost
all the problems. However, the mean IGD-metric values of
MOEA/D-DE are better than MOEA/D-GR for almost all
the problems. It indicates that MOEA/D-GR has better search
ability on the best run but is less stable than MOEA/D-DE on
this set of test problems. The stability of MOEA/D-GR may
be improved if it just allows a limited number of solutions
are replaced by a offspring solution as in MOEA/D-DE.

The replacement neighborhood size

Mean IGD of MOEA/D-GR with different replacement neighborhood sizes on ZDT and DTLZ problems.

G. Effects of Replacement Neighborhood Size on Different
Problems

This subsection investigates the effect of the replacement
neighborhood size on the algorithm performance on different
problems. 7 is set to be {0.01,0.02,0.1,0.5,1} x N respec-
tively. Figs. 4-6 plot the average IGD values in 30 indepen-
dent runs of the MOEA/D-GR with different replacement
neighborhood sizes on different problems.

It is clear from Fig. 4 that only a very tiny replacement
neighborhood can produce a acceptable result for MOP1-
MOP7. It is because most subproblems are very easily
trapped at a local optimal solutions. A small replacement
neighborhood can avoid it.

As shown in Fig. 5, the effects of the replacement neigh-
borhood size depends on problems. On F1 and F7, the
replacement neighborhood size has little impact on algorithm
performances. On F2-F5 and F9, a very small replacement
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neighborhood (smaller than 10% of the population size) is
needed to obtain good performances. On F8, which have
many local PSs, a very small replacement neighborhood
works very well. On F6 with three objectives, very big or
very small sizes of replacement neighborhood cannot pro-
duce good results. It should be around 10% of the population
size.

From Fig. 6, it can be observed that MOEA/D-GR works
very well when the replacement neighborhood is larger than
10%N on ZDT and DTLZ problems. It means that more
effort should be spent on converge in MOEA/D for ZDT
and DTLZ problems.

In conclusion, different problems need different trade-offs
between convergence and diversity, meanwhile the global re-
placement can easily control the trade-off by the replacement
neighborhood size.

V. CONCLUSION

In this paper, we proposed a new replacement strategy
named global replacement under the framework of MOEA/D.
We studied this strategy experimentally on three different
sets of benchmark problems. Experimental results showed
that the global replacement can improve the performance of
MOEA/D. Moreover, the trade-off between convergence and
diversity can be easily controlled by the replacement neigh-
borhood size. We also demonstrated that different problems
need different trade-offs between convergence and diversity.
Therefore, self-adaption of the replacement neighborhood
size is worthwhile exploring in the future.
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