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Abstract— The performance of the Kalman filter (KF), which
is recognized as an outstanding tool for dynamic system state
estimation, heavily depends on its parameter R, called the
measurement noise covariance matrix. However, it’s difficult to
get the exact value of R before the filter starts, and the value of
R is likely to change with the measurement environment when
the filter is working. To solve this problem, a new parameter
adaptive Kalman filter is proposed in this paper. In this new
Kalman filter, the initial value of R is offline decided by
Evolutionary Algorithm (EA), and the value of R decided
by EA is online updated by Fuzzy Inference System (FIS).
A simulation experiment based on target tracking is carried
out, and the results demonstrate that the new adaptive Kalman
filter proposed in this paper (HydGeFuzKF) has a stronger
adaptability to time-varying measurement noises than regular
Kalman filter (RegularKF), Sage-Husa adaptive Kalman filter
(SageHusaKF), the adaptive Kalman filter only based on genetic
algorithm (GeneticKF) and the adaptive Kalman filter only
based on fuzzy inference system (FuzzyKF).

I. INTRODUCTION

KALMAN FILTER (KF) is one of the most popular
methods for estimating the states of dynamic system

from an incomplete and noisy measurement. As a recursion
algorithm, Kalman filter has a small requirement on calcu-
lation and memory space, which makes it more favorable
in the real-time system application. Since it was proposed
in 1960s, Kalman filter has been widely applied in many
fields, such as navigation, signal processing, control system
and information fusion. It also has many improved variants
such as Extended Kalman Filter (EKF) [1] and Unscented
Kalman Filter (UKF) [2].

The Kalman filter works well in the condition that the a
priori statistics of the stochastic errors in both dynamic pro-
cess and measurement models are assumed to be available,
which is very difficult in practical applications, especially
the measurement noise covariance R. First, it is not easy
to get accurate noise statistics data before the filter starts
to work. And second, the noise statistics may change with
time when the filter is working. To solve this problem, many
adaptive mechanisms are used into Kalman filter, which is
called Adaptive Kalman Filter (AKF). According to the filter
results, adaptive Kalman filter can optimize or estimate its
noise statistics parameters adaptively to adjust to the change
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of process and measurement noise. The traditional adaptive
Kalman filter algorithms include Sage-Husa Kalman filter
[3] based on maximum a posteriori probability estimation,
Bayes adaptive filter [4] based on Bayesian estimation,
Robust Kalman filter [5] and so on. Mehra [6] classified
the different methods of adaptive filter into four categories:
Bayesian, maximum likelihood, correlation and covariance
matching.

In recent years, Evolutionary Algorithms (EA) and Fuzzy
Inference System (FIS) have been successfully used in adap-
tive Kalman filter. In literature, Szabat [7], Salvatore [8],
Jatoth [9], and Mosavi [10] published some of the earlier
work on using evolutionary algorithms to optimize the initial
values of the parameters of Kalman filter, but they did not
consider that the initial values they obtained may change
when filter is working. Ali [11], Jwo [12], Yadaiah [13], Shi
[14] and Talel [15] used fuzzy inference system to adjust
the parameters of Kalman filter in real time to meet the
change of process and measurement noise, but they did not
pay any attention on how to decide the initial values of these
parameters.

However, the initial values of the parameters and their
online adjustment are both very important to the Kalman
filter, especially the measurement noise covariance matrix R.
So in this paper, we proposed a new adaptive Kalman filter
by combining evolutionary algorithm and fuzzy inference
system. In this new adaptive Kalman filter, we utilized
the evolutionary algorithm to determine the initial value of
parameter R. Furthermore, the fuzzy inference system is
used to adjust the value of R with time based on the filter
performance.

The rest of this paper is organized as follows: Section
II introduces the Kalman filter algorithm and its parameter
adaptability problem. Section III introduces the new adaptive
Kalman filter we proposed (HydGeFuzKF) by combining EA
and FIS. Some simulation results are presented in Section IV
to show its performance. Finally, Section V concludes the
paper.

II. KALMAN FILTER

A. Kalman Filter Algorithm

Kalman filter is one of the most popular algorithms in the
control area. It is always been used to estimate the state of a
dynamic system. The system model and measurement model
for a simple linear discrete-time Kalman filter are represented
as:

xk = Φxk−1 + ωk (1)

2893

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



zk = Hxk + νk (2)

where xk ∈ Rn is the system state vector, ωk ∈ Rn is
the system noise vector, zk ∈ Rm is the measurement
vector to system state, and νk ∈ Rm is the measurement
noise vector. Φ is the state transition matrix, which reflects
the mathematical or physical relationship between system
state xk and xk−1. H is the measurement matrix, which
represents the relationship between the measurement zk and
system state xk . The vector ωk and νk are both white noise
sequences with zero means and mutually independent:

E[ωkω
T
i ] =

{

Q, i = k

0, i �= k
; (3)

E[νkν
T
i ] =

{

R, i = k

0, i �= k
; (4)

E[ωkν
T
i ] = 0, for all i and k, (5)

where non-negative definite matrix Q is the system noise
covariance matrix, positive definite matrix R is the measure-
ment noise covariance matrix, E[•] represents expectation,
and superscript “T” denotes matrix transpose.

The purpose of Kalman filter is to estimate the actual value
of xk in equation (1). Based on the model equations (1)-
(5), the key five equations of discrete-time Kalman filter is
summarized as follows:

x̂−k = Φx̂k−1; (6)

P−k = ΦPk−1Φ
T +Q; (7)

Kk = P−k H
T (HP−k H

T +R)−1; (8)

x̂k = x̂−k +Kk(zk −Hx̂
−
k ); (9)

Pk = (I −KkH)P−k . (10)

In the above equations, x̂k is the estimation value of the
system state xk, Pk is the error covariance matrix defined
by E[(xk− x̂k)(xk− x̂k)

T ], and weighting matrix Kk is the
Kalman gain matrix. The Kalman filter algorithm starts with
an initial condition value x̂0 and P0. Equations (6)-(7) are
the time update equations of Kalman filter from step k-1 to
k. These equations generate a priori estimation of system
state at step k. Equations (8)-(10) are the measurement
update equations of the algorithm. They incorporate the
measurement value zk into a priori estimation to obtain an
improved a posteriori estimation, which is the output of
Kalman filter at step k.

The procedure of Kalman filter algorithm is showed by
Algorithm 1.

Algorithm 1 Kalman Filter
Set the parameters Φ, H , Q and R;
Initialize the x̂0, P0, k = 1;
while (need to estimate the system state) do

Time Update:
x̂−k = Φx̂k−1;
P−k = ΦPk−1Φ

T +Q;
Get the measurement zk;
Measurement Update:
Kk = P−k H

T (HP−k H
T +R)−1;

x̂k = x̂−k +Kk(zk −Hx̂
−
k );

Pk = (I −KkH)P−k ;
k = k + 1;

end while

B. Parameter Estimation Problem of Kalman Filter

Kalman filter is a very powerful method to estimate the
system state. But it only works well in the condition that
the parameters Φ, H , Q and R in the equations (6)-(10) are
precisely known. Inaccurate values of these parameters will
reduce the filtering accuracy, increase the filtering error, and
even cause filter divergence.

Generally, we can get the Φ and H by building accurate
system and measurement models, and the value of Q is stable
in a given system in most cases. The most difficult, and
also important is to obtain the value of R, because of its
variability. First, there is no direct method to estimate its
value. Second, its value will change with time. For example
in the navigation system, one very important application of
Kalman filter, once the external environment of the target
which is being navigated has changed, the value of R will
change immediately. So in the HydGeFuzKF we proposed,
evolutionary algorithm and fuzzy inference system is used to
estimate the value of R, both before the filter starts to work
and when it is working.

III. THE NEW ADAPTIVE KALMAN FILTER ALGORITHM:
HYDGEFUZKF

In the HydGeFuzKF proposed in this paper, the initial
value of the measurement noise covariance matrix R is
optimized offline by genetic algorithm, and the optimal value
obtained by genetic algorithm is adjusted online by fuzzy
inference system.

A. Offline Optimization of R by Genetic Algorithm

Genetic algorithm (GA), a very popular branch of evolu-
tionary algorithm, was first developed by Holland in 1970s.
Modeled on the natural biological evolution process, GA
is a random search procedure to find the global optimal
solution for some optimization problems. It works well,
especially in dealing with complicated nonlinear problems.
In the HydGeFuzKF, we utilize real-coded GA to decide the
initial value of parameter R. The procedure is outlined as
follows:

Step 1. Encoding. The measurement noise νk is a m-
dimension vector and its covariance matrix R is a positive
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definite matrix. So the m diagonal elements of the parameter
R are coded into a whole chromosome, which is a long real-
valued string and is given as follows:

chromosome = [r1, r2, . . . , ri, ri+1, . . . , rm−1, rm] (11)

where ri is the i-th diagonal element of matrix R.
Step 2. Population Initialization. Generate an initial pop-

ulation of the chromosomes by randomly selecting values
between the upper bound and lower bound of the element of
matrix R.

Step 3. Fitness Evaluation. In the current generation, each
of the chromosomes are decoded back to the corresponding
values of R. Then, these values are separately used to
different Kalman filters to yield the fitness function.

The fitness function is designed by the mean of the residual
vectors εk of Kalman filter. At filter step k, the residual εk
is defined as:

εk = z̃k = zk − ẑ
−
k = zk −Hx̂

−
k (12)

where zk is the measurement at step k, H is the measurement
matrix, x̂−k is the predictive value of state vector xk, and
ẑ−k defined by Hx̂−k is the estimation of measurement zk.
From the definition we can see that the εk includes the
new information from measurement zk. From equation (9),
if εk = 0, then the predictive value of state vector xk is the
estimation value. That means the estimation at step k-1 is
very accurate. In certain extend, the residual εk symbolizes
the filtering error. So the fitness function is designed as
follows:

fitness =
1

N

N
∑

k=1

εTk εk (13)

where N is the total step number of filtering. A smaller
value of the fitness function indicates a more outstanding
chromosome.

Step 4. Selection. According to the value of fitness func-
tion, rank the chromosomes by ascending order. Then copy
the Ps × S chromosomes which are in the front of the
population to replace the Ps×S ones which are in the back
of the population, where Ps is the probability of selection
between 0 and 0.5, and S is the size of population.

Step 5. Crossover. In this step, part-discrete crossover
method is used to exchange the information between two
chromosomes.

Step 6. Mutation. Non-uniform mutation method [16] is
utilized in this step to increase the diversity of the population.

Step 7. Iteration. The real-coded GA repeats the Step 3 -
6 until the maximum number of iterations is reached.

The flow chart of using genetic algorithm to decide the
initial value of parameter R is illustrated in Fig. 1.

The parameters of the real-coded GA used in the simula-
tion experiments in Section IV are set as follows:

(1) size of the population: 20
(2) maximum number of iterations: 300
(3) probability of selection: 0.2
(4) probability of crossover: 0.3
(5) probability of mutation: 0.2
(6) the range of the elements of matrix R: [0.04,400]

Fig. 1. The flow chart of using GA to decide the initial value of R

B. Online Adjustment of R by Fuzzy Inference System

Fuzzy logic was first developed in the 1960s for rep-
resenting uncertain and imprecise knowledge. It is an ap-
proximate but very effective method to describe the state of
some systems which are too complex or not easily to be
analyzed mathematically. In order to improve the estimation
performance of the filter, we utilize a fuzzy inference system
to carry out the online adjustment of the parameter R in the
HydGeFuzKF.

The fuzzy inference system used for the adjustment of R
is based on a adaptive approach called covariance-matching
techniques [6]. Its basic idea is to make the actual value of
the covariance of the residual εk consistent with its theo-
retical value. From Kalman filter equations, the theoretical
covariance of residual εk is

Ct = HP−k H
T +R. (14)

The actual covariance of residual εk is approximated by its
sample covariance

Ca =
1

M

M
∑

i=1

εiε
T
i (15)

where M is the window size which is chosen empirically
to give some statistical smoothing. When filtering, if the
value of R is accurate, Ct and Ca are basically the same. In
this paper, we defined a variable called Degree of Matching
(DoM ) to indicate the degree of matching between Ct and
Ca. The variable DoM is defined as:

DoM =
trace(Ca)

trace(Ct)
(16)

where trace(•) represents calculating the trace of the matrix
in the bracket.
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In the HydGeFuzKF, assume matrix R is a time-varying
parameter and its value at step k is obtained by

Rk = αkRk−1 (17)

where αk is the adjustment factor at step k and R1 is the
initial value of measurement noise covariance matrix which
is obtained by genetic algorithm.

Select DoM as the input of the fuzzy inference system
and αk the output. According to the covariance-matching
techniques, the actual value of the covariance of the residual
εk should be made to consistent with its theoretical value,
viz., the value of DoM should be basically equal to 1.
Based on equation (14)-(17), we can meet the requirement
of covariance-matching techniques by adjusting the value of
αk. When DoM is larger than 1, we need a bigger R to
increase the value of Ct, so the fuzzy inference system will
output a αk which is larger than 1. When DoM is smaller
than 1, we need a smaller R to decrease the value of Ct, so
the fuzzy inference system will output a αk which is smaller
than 1. When DoM is equal to 1, the value of R has no
need to change, so αk will be equal to 1.

The fuzzy set of the input variable DoM is described by
three linguistic variables, namely {Large1 (larger than 1),
Equal1 (equal to 1) and Small1 (smaller than 1)}, so is the
fuzzy set of the output variable αk. The rule base of the
fuzzy inference system is described as follows:

1. IF (DoM is Large1) THEN (αk is Large1)
2. IF (DoM is Equal1) THEN (αk is Equal1)
3. IF (DoM is Small1) THEN (αk is Small1)
The membership functions for DoM and αk are shown in

Fig. 2. Centroid method is used in the process of defuzzifi-
cation.
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k

The flow chart of using fuzzy inference system to adjust
the value of R online is illustrated in Fig. 3.

Fig. 3. The flow chart of using FIS to adjust the value of R online

IV. SIMULATION EXPERIMENT

In this section, simulation experiment has been carried out
to compare the performances of the following five Kalman
filter algorithms:

HydGeFuzKF: The new adaptive Kalman filter algorithm
we proposed in this paper.

GeneticKF: In this algorithm, the initial value of R is
decided by genetic algorithm offline, but there is no any
online adjustment.

FuzzyKF: In this algorithm, the value of R is adjusted by
fuzzy inference system online, but the initial value of R is
selected randomly.

RegularKF: The regular Kalman filter algorithm, in which
the initial value of R is selected randomly and there is no
any online adjustment.

SageHusaKF: The Sage-Husa adaptive Kalman filter al-
gorithm [3] based on maximum a posteriori probability
estimation.

A. Simulation Model Based on Target Tracking

The experiment is based on a simulation of rocket target
tracking. Assume a rocket is doing uniformly accelerated
motion escaping from the Earth. Its acceleration is 20m/s2.
The fluctuations of engine thrust always cause some fluctu-
ations of the acceleration. A radar on the ground is tracking
the rocket and it gives the observation of the distance of the
rocket from the ground every second. The observations are
noisy. Now we need to estimate the displacement, velocity
and acceleration of the rocket every second using Kalman
filter.

So the system state at k-th second is xk = [dk, vk, ak]
T ,

where dk indicates the displacement of the rocket at k-
th second, vk indicates the velocity and ak indicates the
acceleration. According to the physical model of uniformly
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accelerated motion, the system model is

xk =

⎡

⎣

1 1 0.5
0 1 1
0 0 1

⎤

⎦× xk−1 + wk−1 (18)

where wk−1 is zero-mean Gaussian white noise with covari-
ance matrix Q = diag([0, 0, 0.1]) caused by engine thrust
fluctuations. The measurement model is

zk = [1 0 0]× xk + νk (19)

where zk is the observation of the rocket displacement at k-th
second and νk is the measurement noise with covariance ma-
trix R. The initial conditions in the simulation are assumed
to be x0 = [1000, 50, 20]T , x̂0 = [990, 0, 0]T and the initial
error covariance matrix is given by P0 = diag([30, 20, 10]).

We need generate two sets of data by simulation for the
experiment. The first set of data is used for genetic algorithm
to decide the initial value of R. This set of data is simulated
from 0 to 200s with the measurement noise covariance being
four. The second set of data is used for estimating the state
of the rocket. This set of data is simulated from 0 to 300s,
and from 0 ∼ 100s the measurement noise covariance R =
4, from 100 ∼ 150s the covariance is 5R, from 150 ∼ 200s
the covariance is 10R, from 200 ∼ 250s the covariance is
15R and from 250 ∼ 300s the covariance changes back to
R.

B. Experiment Results and Analysis

The comparison of GeneticKF and HydGeFuzKF is shown
in Fig. 4, Fig. 5 and Fig. 6. In Fig. 4 the y-coordinate is the
displacement estimation error defined by d̂k − dk, in Fig. 5
the y-coordinate is the velocity estimation error defined by
v̂k − vk and in Fig. 6 the y-coordinate is the acceleration
estimation error defined by âk − ak, where d̂k , v̂k and âk
are the estimates of filter, dk, vk and ak are the real state
value of the rocket. In all the three figures, the x-coordinate
represents the filter steps from 0 ∼ 300s. HydGeFuzKF and
GeneticKF share a same optimized initial value of R, so the
performances of the two filters at the beginning are almost
the same. But HydGeFuzKF has much smaller error than
GeneticKF when the value of R changes significantly from
100 ∼ 300s, because of its online adjustment mechanism
based on fuzzy inference system.

The comparison of FuzzyKF and HydGeFuzKF is shown
in Fig. 7, Fig. 8 and Fig. 9. Both the two filters carry
out online adjustment to the parameter R, so basically they
have the same ability to meet the change of the value of
R. However, HydGeFuzKF converges faster than FuzzyKF
at the beginning of filter, which can be seen from the
ellipse parts in the figures, because the initial value of R
of HydGeFuzKF is optimized by genetic algorithm.

The comparison of RegularKF and HydGeFuzKF is shown
in Fig. 10, Fig. 11 and Fig. 12. RegularKF has neither
the offline optimization of the initial value of R nor the
online adjustment to it, so HydGeFuzKF has not only faster
convergence speed of filtering, but also greater capability to

deal with the variability problem of the value of parameter
R than RegularKF.

The comparison results shown in Fig. 13, Fig. 14 and Fig.
15 have proven that HydGeFuzKF has better performance
than SageHusaKF too.
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Fig. 4. Comparison of GeneticKF and HydGeFuzKF on the estimation of
rocket displacement
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Fig. 5. Comparison of GeneticKF and HydGeFuzKF on the estimation of
rocket velocity
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Fig. 6. Comparison of GeneticKF and HydGeFuzKF on the estimation of
rocket acceleration

Each filter algorithm runs 20 times and calculate their root
mean square error (RMSE) of filtering. The results are shown
in Table. I respectively, where the smallest error each time is
marked in bold. From Table. I we can see, the HydGeFuzKF
we proposed got the smallest error 18 times. It has more
capabilities to reduce the filtering error than RegularKF,
SageHusaKF, FuzzyKF and GeneticKF.
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TABLE I

COMPARISON OF FIVE KALMAN FILTER ALGORITHMS ON RMSE

Run time RegularKF SageHusaKF FuzzyKF GeneticKF HydGeFuzKF
1 6.1956 6.4922 5.8032 6.3100 5.8066
2 6.5292 6.3861 6.5429 6.3109 5.8103
3 6.4670 6.3882 6.4553 6.3103 5.8065
4 6.5925 6.3847 6.6103 6.3104 5.8075
5 6.2136 6.4102 6.1444 6.3105 5.8080
6 6.3117 6.5036 5.8097 6.3103 5.8065
7 6.1677 6.4189 6.0800 6.3102 5.8065
8 6.9137 6.3855 6.9392 6.3103 5.8065
9 6.7531 6.3838 6.8055 6.3103 5.8065
10 6.2093 6.4109 6.1378 6.3106 5.8091
11 6.6767 6.3838 6.7035 6.3107 5.8093
12 6.4712 6.3880 6.4545 6.3092 5.8149
13 6.6304 6.5159 5.7624 6.3101 5.8065
14 6.3078 6.3985 6.2621 6.3106 5.8090
15 6.3916 6.5083 5.8565 6.3102 5.8065
16 6.7339 6.3837 6.7714 6.3103 5.8065
17 6.9741 6.3866 6.9997 6.3102 5.8065
18 6.6188 6.3843 6.6893 6.3099 5.8064
19 6.7284 6.3837 6.7642 6.3097 5.8064
20 6.5076 6.3867 6.5228 6.3102 5.8065

mean 6.5197 6.4142 6.4057 6.3102 5.8076
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Fig. 7. Comparison of FuzzyKF and HydGeFuzKF on the estimation of
rocket displacement

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

4

6

8

10

filter step

v̂
k
−

v
k

FuzzyKF
HydGeFuzKF

Fig. 8. Comparison of FuzzyKF and HydGeFuzKF on the estimation of
rocket velocity
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Fig. 9. Comparison of FuzzyKF and HydGeFuzKF on the estimation of
rocket acceleration

0 50 100 150 200 250 300
−15

−10

−5

0

5

10

15

filter step

d̂
k
−

d
k

RegularKF
HydGeFuzKF

Fig. 10. Comparison of RegularKF and HydGeFuzKF on the estimation
of rocket displacement

2898



0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6

8

filter step

v̂
k
−

v
k

RegularKF
HydGeFuzKF

Fig. 11. Comparison of RegularKF and HydGeFuzKF on the estimation
of rocket velocity
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â
k
−

a
k

RegularKF
HydGeFuzKF

Fig. 12. Comparison of RegularKF and HydGeFuzKF on the estimation
of rocket acceleration
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Fig. 13. Comparison of SageHusaKF and HydGeFuzKF on the estimation
of rocket displacement
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Fig. 14. Comparison of SageHusaKF and HydGeFuzKF on the estimation
of rocket velocity
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Fig. 15. Comparison of SageHusaKF and HydGeFuzKF on the estimation
of rocket acceleration

In the simulation based on target tracking, the initial value
of parameter R was unknown, and its value changed four
times in the tracking process. To solve this problem, Hy-
dGeFuzKF got the initial optimal value by genetic algorithm
at first, and then kept adjusting this optimal value in real-time
using fuzzy inference system. The combination of GA and
FIS is the reason why HydGeFuzKF got the better results
than another four Kalman filter algorithms.

Without a doubt, it will spend more time to run HydGe-
FuzKF than RegularKF. However, using offline optimization
mode, it only takes a little time before the filter works to run
the genetic algorithm, ensuring the real-time performance of
Kalman filter when it is tracking the target. Fuzzy inference
system is a very popular technique used in real-time systems
to adjust the system parameters, because of its low require-
ment on calculation. Besides, the times that FIS is used
can be changed by adjusting the parameter M in equation
(15). So generally, the HydGeFuzKF algorithm can satisfy
the requirement of Kalman filter on real-time capability in
practical applications.

V. CONCLUSIONS

In this paper, a new adaptive Kalman filter by combining
evolutionary algorithm and fuzzy inference system, namely
HydGeFuzKF is presented. In this new algorithm, the initial
value of the measurement noise covariance matrix R is
decided offline by evolutionary algorithm, and the optimal
initial value of R is adjusted online by fuzzy inference sys-
tem to meet the changeable measurement noise. Simulation
results indicate that the new filter algorithm we designed has
more capabilities to reduce the filtering error. It has many
potentials in practical applications.
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