
Performance of AI Algorithms for Mining
Meaningful Roles

Xuanni Du, Xiaolin Chang

School of Computer and Information Technology
Beijing Jiaotong University, China
{10283034, xlchang}@bjtu.edu.cn

Abstract—Role-based access control (RBAC) is being today’s
dominant access control model due to its potential to mitigate
the complexity and cost of access control administration.
However, the migration from the access control lists (ACL) to
RBAC for a large administration system may consume
significant efforts, which challenges the adoption of RBAC.
Role mining algorithms can significantly reduce the migration
cost by providing a partially automatic construction of an
RBAC policy.
This paper explores Artificial Intelligence (AI) techniques in
designing role mining algorithms, which can optimize policy
quality in terms of policy size, user-attribute-based
interpretability of the roles, and the combination of size and
interpretability. We propose two algorithms, genetic algorithm
(GA)-based and ant colony optimization (ACO)-based. GA-
based algorithm works by starting with a set of all candidate
roles and repeatedly removing roles. ACO-based algorithm
works by starting with an empty policy and repeatedly adding
candidate roles. We carry out extensive experiments with
publicly available access control policies. The simulation
results indicate that ①the proposed algorithms achieves better
performance than the corresponding existing algorithms. ②
GA-based approach produces better results than ACO-based
approach. �

Keywords-Role Mining; Genetic Algorithm; Ant Colony
Optimization;

I. INTRODUCTION
The emergence of new computing models and new

applications highlights the advantages of role-based access
control (RBAC) [1] in terms of the complexity and cost of
access control administration. However, the migration from
the access control lists (ACL) to RBAC for a large
administration system may consume significant efforts,
which challenges the adoption of RBAC. Role mining
algorithms can significantly mitigate the migration cost by
providing a partially automatic construction of an RBAC
policy from an ACL policy and possibly other information,
such as user attributes. In past years, lots of research efforts
have been devoted to designing role mining algorithms.

Different role mining algorithms may have different role
mining objectives. Minimizing the size of the RBAC policy
consistent with (i.e., equivalent to) given ACLs is one of the
most widely investigated objectives. However,
interpretability of roles is also critical. A security
administrator will adopt a mined role only if he/she can

identify a reasonable interpretation of this role, in which
case the role is said to be meaningful in this paper. Attribute
data of users can be applied to identify meaningful roles.
The idea is that a role is meaningful if its set of members
can be characterized by an expression involving user
attributes. Note that there are numerous reasonable variants
of the definitions of policy size and interpretability.
Different definitions may be appropriate in different
contexts.

Artificial Intelligence (AI) techniques, such as ACO (Ant
Colony Optimization) [2] and Genetic Algorithms (GA)[3],
have been applied successfully to deal with role mining
problems. But these AI-based algorithms only consider the
policy size. This paper explores Artificial Intelligence (AI)
techniques in designing role mining algorithms, which can
optimize policy quality in terms of policy size, user-
attribute-based interpretability of the roles, and the
combination of size and interpretability.

The main contribution of this paper is that we propose
two algorithms, genetic algorithm (GA)-based and ACO-
based, which can achieve the above optimization goal. GA-
based algorithm works by starting with the set of all
candidate roles and repeatedly removing roles. ACO-based
algorithm works by starting with an empty policy and
repeatedly adding candidate roles. We carry out extensive
experiments with publicly available access control policies
and synthetic user attribute data, generated in [4]. The
simulation results indicate that ①the proposed algorithms
achieves better performance than the corresponding existing
algorithms. ② GA-based approach produces better results
ACO-based algorithm.

The rest of the paper is organized as follows. Section II
presents the role mining problem and the related work.
Section III and Section IV present GA-based and ACO-
based role mining algorithms, respectively. Section V
evaluates the performance of the proposed algorithms.
Section VI presents the conclusions.

II. BACKGROUND AND RELATED WORK
This section first presents the role mining problems that

we consider. Then some related work is given.

2070

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

A. Problem Description of Role Mining from ACLs and
User Attributes

Tuples , ,U P UP< > and , , , , ,U P R UR RP RR< > are
defined to represent an ACL policy and an RBAC policy,
respectively. Here, U denotes a set of users, P denotes a
set of permissions, R represents a set of roles, UP U P⊆ ×
denotes user-permission assignment, UR U R⊆ × denotes
the user-role assignment, RP R P⊆ × denotes the
permission-role assignment, and RR R R⊆ × denotes the
role inheritance relation. , 'r r RR< >∈ is defined to
represent the situation that r is senior to 'r . Thus, r has all
permissions of 'r , and all members of r are also members
of 'r .

We also define Tuple , , , , , ,U P R UR RP RR DUP< > to
denote an RBAC policy with direct assignment.
Here, DUP U P⊆ × . Allowing direct assignment of
permissions to users provides more flexibility to handle
anomalous permissions. An RBAC policy is consistent with
an ACL policy if UR RP is equal to UP , where is
composition of relations. An RBAC policy with direct
assignment is consistent with an ACL policy if
UR RP DUP∪ is equal to UP . User-attribute data is
denoted as a tuple ,AT f< > , where AT is a set of
attributes, and f is a function such that (,)f u a is the value
of attribute a for user u . For simplicity, we assume that all
attribute values are non-negative integers.

A policy quality metric is a function from RBAC policies
(with or without direct assignment) to a totally-ordered set,
such as non-negative integers. The ordering is chosen so
that small values indicate high quality. This paper considers
two basic policy quality metrics and a combined metric of
these two basic metric. The first basic policy quality
metric is Weighted Structural Complexity (WSC), a
generalization of policy size [7]. For an RBAC policy π ,
we define WSC in Equation (1)

WSC(π) = 1 2 3 4| | | | | | | |w R w UR w RP w RR+ + + (1)

Here | |s is the size (cardinality) of Set s , and iw are user-
defined weights. For an RBAC policy with direct
assignment, the definition is the same except with an
additional item 5 | |w DUP .

The second basic policy quality metric is interpretability,
which measures how well the roles in the policy can be
characterized (interpreted) in terms of user attributes. As in
[5], the policy interpretability is quantified as attribute
mismatch, which measures how well the sets of members of
the roles can be characterized using user-attribute
expressions. A user-attribute expression e is defined to
denote a function from the set AT of attributes to sets of
values. A user u satisfies an attribute expression
e iff (,) () for f u a e a a AT∈ ∀ ∈ . We refer to Set ()e a as

the conjunct for attribute a . Let Ue denote the set of users
that satisfy e . For an attribute expression e and a set U ' of
users, the mismatch of e and U ' , denoted MM(, U ')e , is

defined as () ()U \ U ' U '\ Ue e∪ . AMM(r), defined as in
Equation (2), denotes the attribute mismatch of a role r .

()min MM(,assignU())e E e r∈ (2)

Here assignU() { | , }r u u r UR= < >∈ and E is the set of all
attribute expressions. In this paper, policy interpretability
INT is the attribute mismatch of an RBAC policy π (with
or without direct assignment), i.e., INT()π = AMM()

r R
r

∈
∑ .

The combined metric is defined as in Equation (3).

WSC-INT(π)=<WSC(π), INT(π)> (3)

The combined metric is the Cartesian product of the two
basic metrics and sorted by lexicographic ordering.

The problem of role mining from ACLs is: given an ACL
policy ACLπ and a policy quality metric QM, find an RBAC
policy RBACπ that is consistent with ACLπ and has the best
quality, in terms of QM, among policies consistent with

ACLπ . The problem of role mining with direct assignment
from ACLs is the same except that RBACπ is an RBAC
policy with direct assignment. The problem of role mining
from ACLs and user attributes (with or without direct
assignment) is the same as for role mining from ACLs,
except that the input also includes user-attribute data, which
may be used in the policy quality metric.

B. Related Work

Numerous role mining algorithms were proposed. This
subsection only discusses the most closely related work.

Zhang et al.'s Graph Optimization (GO) algorithm [6]
and Molloy et al.'s Hierarchical Miner (HM) [7] considered
WSC. However, these literatures did not consider
interpretability, which hinders the results of role mining
from being used in practice [5]. Molloy et al.'s Attribute
Miner (AM) [7] took policy interpretability into account.
They proposed the metric: Weighted Structural Complexity
with Attributes (WSCA), to evaluate Attribute Miner.
Colantonio et al. [8] proposed two metrics to measure the
interpretability of roles. These metrics could be combined
with INT()π when the required information is available.
Colantonio et al. [9] considered user attributes into account
during role mining by applying the attributes to partition the
set of users. But they did not consider metrics to directly
evaluate the interpretability of the resulting roles or RBAC
policies.

The most closely related to our algorithms is Xu et al. [4].
They considered the same policy quality metrics as in this
paper. Elimination algorithm proposed in [4] worked by first
generating a set of all candidate roles and then repeatedly
removing roles. Selection algorithm proposed in [4] worked
by first generating an empty policy and repeatedly adding
candidate roles. The difference of our algorithms from the
algorithms proposed [4] lies in the decision about which role
is removed or added. The order in which roles are

2071

considered for removal and selected is important. HM did
not explicitly control the order in which roles are considered.
This led to the worst performance than the Elimination
algorithm proposed in [4]. Xu et al. proposed three basic
role quality metrics, which are used to decide the order in
which roles are considered for removal or adding. Different
from the greedy approach in [4], our algorithms add some
randomness in the removing and adding processes. Our
simulation results validate the effectiveness of such
approach.

III. GA- ELIMINATION ALGORITHM
Genetic Algorithm (GA) is a randomized search

technique which borrows the evolutionary ideas [3]. In the
following, we present GA-based Elimination algorithm.

A. GA-Elimination Algorithm

GA-Elimination algorithm consists of two phases. The
first phase is generating roles (called as candidate roles),
same as the first phase of the Elimination algorithm
proposed in [4]. We assume there are N candidate roles and
sort these roles in the descending priority order. The priority
is assumed to be ready in default. We define a N -length
integer vector CanRH , in which the thi item denotes the

thi role. The values of all items in CanRH are set to 1. Each
chromosome i is associated with two vector. One is

()1 2, , , N
i i i iH h h h= , which is a N -length integer vector.

k
ih =1/0，where 0 denotes that this role may be deleted in

the next generation. The other is ()1 2, , , N
i i i iS s s s= , which

is a N -length integer vector. For chromosome i, k
is =1 if

the thk role is chosen; otherwise, k
is =0.

The second phase of GA-Elimination algorithm is
described in Algorithm1, in which Algorithm2 is applied to
update each chromosome’s iS . In each generation, the elitist
selection scheme is applied to guarantee that the fittest
member of each generation is copied directly into the next
generation. The elite strategy retains the good chromosome
and ensures that it is not eliminated through the mechanism
of crossover and mutation. Thus, the features of the
offspring chromosomes are at least as good as their parents.
The simple one-point crossover is applied to explore the
combinations of the current solution pool. A single
crossover site is selected at random over the vector length,
and the bits on the right side of the site are exchanged
between the two selected chromosomes with pre-defined
crossover probability cp . Mutation operator is applied to each
chromosome but each bit is mutated with a pre-defined
probability mp . Selection, crossover and mutations aim to
generate a new population of chromosomes. Then
Algorithm2 is invoked to check whether a better RBAC
model can be found. Note that each invocation of
Algorithm2 does not change iH .

The fitness function ()f x is defined as WSC-INT. The
variable pbest is defined to denote the local best solution,
namely the solution with the best fitness value in the current

iteration. The variable gbest is defined to denote the best
value obtained so far.

We define inUPGA for each role i to denote whether this
role can be deleted. inUPGA is computed based on two
matrices, ()R

irΖ and ()VΖ Ψ , defined in the following.
()R

irΖ is a user-permission matrix based on a role vector ir ,
consisting of related users and permissions. Each user in a
role vector ir has all the permissions in ir . ()VΖ Ψ is a
user-permission matrix based on all role vectors Ψ contains.
We use the following example to explain role vector,

()R
irΖ , ()VΖ Ψ and the computation of inUPGA . We make

the following assumption:

①There are three candidate roles { 1r , 2r , 3r }, four users
{U1, U2, U3,U4} and 4 permissions {P1, P2, P3, P4}.

② 1r ={U1,U2,U4,P1,P2,P4}; 2r ={U1,U3,P2,P3,P4};

3r ={U2,P1}.

Based on the above definitions, we get canRH ={1,1,1}.
We get 1()R rΖ , 2()R rΖ and 3()R rΖ as following:

 P1 P2 P3 P4

1()R rΖ =

U1
U2
U3
U4

1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(a)

 P1 P2 P3 P4

2()R rΖ =

U1
U2
U3
U4

0 1 1 1
0 0 0 0
0 1 1 1
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (b)

 P1 P2 P3 P4

3()R rΖ =

U1
U2
U3
U4

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (c)

Fig.1. 1()R rΖ , 2()R rΖ and 3()R rΖ

Each user in 1r , namely U1, U2 and U4, has P1, P2 and
P4 permissions. Thus, the first, second and last row in
Fig.1(a) is (1,1,0,1). Ψ consists of three role vectors,
namely 1r , 2r and 3r . Then we get ()VΖ Ψ as follows by
adding 1()R rΖ , 2()R rΖ and 3()R rΖ :

2072

 P1 P2 P3 P4

()VΖ Ψ =

U1
U2
U3
U4

1 2 1 2
2 1 0 1
0 1 1 1
1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Now we describe how to compute inUPGA . We define

Λ to denote a set, consisting of all the non-zero elements in
()R

irΖ . If there exists an element in Λ , whose
corresponding value in ()VΖ Ψ is less than 2, inUPGA is set
to zero. Otherwise set to 1. For example, for role

2r , Λ ={<U1,P2>,<U1,P3>,<U1,P4>,<U3,P2>,<U3,P3>,<U
3,P4>}. Since the value of <U1,P3> in ()VΖ Ψ =1,

2 0nUPGA = . On the other hand, for role 3r ,
Λ ={<U2,P1>}. Since the value of <U2,P1> in ()VΖ Ψ =2,

3 1nUPGA = .

Algorithm 1 : input=(RH)

step1: Initialize a population of chromosomes. We
generate m pairs of iH and iS . For each iH , the

value of j
ih is set 1 or 0 randomly. We use

Algorithm2 to update each iS . Set pbest equal to

iS with the best WSC-INT. Set gbest =pbest.

step2: Generate new population by selection, crossover
and mutation. Put the chromosome, which has the
best WSC-INT, directly into the population. We
randomly select a pair of chromosome from the left
chromosomes until there is a single or no
chromosome. If there a single chromosome left, we
use mutation to update its k

ih . For each pair

chromosomes (iH , jH), we use crossover and

mutation to update their k
ih . For the 1m − new

chromosomes, we use Algorithm2 to update their

iS and use the result of iS to update iH .

step3: Get pBest and update gBest. Compute WSC-INT of
each chromosome in the population according to

iS and update pbest. If () ()f gBest f pBest> then
gbest = pbest.

step4: Repeat step2-step3 until the maximum number of
iterations is reached. All the roles whose k

gbests is 1
are outputted as the final role set.

Algorithm 2 : Input=(iH ， iS ， canRH)

step1: Let iS = canRH . Traverse all roles in iH . If

inUPGA of role i is 1 and the corresponding k
ih is

zero, the put this role into Set delRH. Sort elements in
delRH in ascending order by roleQ .

step2: Remove role. For each role x in delRH, we do the
following things. First, let ξ equal to WSC-INT of

iS and let 0x
is = . If ξ is less than WSC-INT of iS ,

set k
is =1.

Note that these two things are done based on the
updated iS each time.

step3: Restore role. Sort elements in delRH in descending
order by roleQ . For each role x in delRH, we do the

following operations. Let ξ equal to WSC-INT of iS .

Set 1x
is = and calculate WSC-INT, If WSC-INT is

larger than ξ, set k
is =0.

Note that the above operations are done based on the
updated iS each time.

step4: Return iS .

IV. ACO-BASED SELECTION ALGORITHM
Ant Colony Optimization (ACO) is a meta-heuristic

inspired by the behavior of ant colonies [2]. Several ACO
variants have been proposed. This section explores the
application of a classical approach presented [10]. We
present ACO-Selection algorithm in the following.

A. ACO-Selection Algorithm

ACO-selection algorithm consists of two phases. The first
phase is same as in GA-Elimination algorithm. Each ant i
produces a solution and is associated with a vector, donated
by ()1 2, , , N

i i i iA a a a= , which is a N -length integer

vector. For ant i, k
ia =1 if the thk role is chosen; otherwise,

k
ia =0. Each role has a priority, denoted as an integer. The

higher the priority, the larger the integer is. roleQ is a role
quality metric proposed in [2]. It maps roles to an ordered set with
the interpretation that large values denote high quality

Each candidate role j is associated with a pheromone trail
jτ , representing the desirability of selecting role j. The

initial value of each pheromone trail is set to a large value
(we set to 100 in our experiments) in order to increase the
exploration space of solutions during the first iteration. At
each iteration, every ant first updates the pheromone trail
values in two steps (see step 2 of Algorithm3): (i)
Evaporate jτ of all substrate nodes. (ii) Reinforce jτ of the
substrate nodes which contribute to the building of the local
best solution (pBest). Then every ant explores new solutions
according to the new pheromone trails.

2073

Algorithm3 : input=(canRH)
step1: Generate the initial population of ants. Initialize a

certain number of ants by Algorithm4. We calculate
the WSC-INT of each ant and then set pbest to

iA with the best WSC-INT. set pbest gbest= .

step2: Update the pheromone trail. Before reiterating the
process from iteration t to t + 1, the pheromone trails
of all candidate roles are first evaporated. That is,

(1) ()j jt tτ ρ τ+ = ⋅ , 0<j<size(canRH) and 0<ρ<1.
Then the pheromone trail of each candidate role
participating in the construction of pbest is reinforced
by Equation (4). φ is a constant parameter.

(1) (1)
()j jt t

f pbest
ϕτ τ+ = + + (4)

step3: Evolution. Update each ant solution by using
Algorithm4. We calculate the fitness function value of
each ant and then update pbest. If

() ()f pbest f gbest< then gbest pbest= .

step4: Repeat step3-step4 until the maximum number of
iterations is reached. Output gbest .

Algorithm4 : SG (iA ， canRH)

step1: Put in iT the roles whose value is zero in iA Sort the

roles in iT in descending order by roleQ . Compute
nUPACO . If nUPACO ==0，goto step5.

step2: Add role. Let ξ equal to WSC-INT of iA Dequeue a

role (assumed to be j) with the highest priority from iT
Role j is selected with the probability jp , defined in
Equation (5).

() ()

() ()()
i

j j
j

j j
w T

p
α β

α β

τ η

τ η
∈

=
∑ (5)

Here α and β are parameters that determine the relative
importance of pheromone trail and priority. jη denotes

the priority of role j. Set 1j
ia = . If WSC-INT of

iA is larger than ξ, then set 0j
ia = .

step3: Compute nUPACO . Repeat step2 until nUPACO =0

step4: Prune role. Sort elements in iT in ascending order by

roleQ . For each role x in iT , we do the following

operations. Let ξ equal to WSC-INT of iA . Set

0x
ia = and calculate WSC-INT, If WSC-INT is

larger than ξ, set 1x
ia = .

step4: Return iA .

We define () ()() ()V V
inUPACO g canRH g A= Ζ − Ζ . ()g y

function aims to compute the sum of all element of Matrix y.
We use the example of Section III to explain. We assume

iA ={1,0,0} and then we get ()jZ A as following:

Thus, () ()() ()V V
inUPACO g canRH g A= Ζ − Ζ =7. When 3r is

added to iA , then iA ={1,0,1} and

Now () ()() ()V V
inUPACO g canRH g A= Ζ − Ζ =1.

V. PERFORMANCE EVALUATION
This section aims to evaluate the performance of our

algorithms. The simulation results in [4] indicated that
Elimination and Selection algorithms proposed in [2]
performed better than GO[6], HM[7], and AM[6]. Thus, we
compare with Elimination and Selection algorithms.

By now there is no publicly available real ACL policies
with user attribute data. We apply publicly available real
ACL policies together with synthetic user attribute data,
generated in [4]. We modify the software [11] and
implement our proposed algorithms. All the datasets used
for evaluations are set as in [4].

In GA-Elimination algorithm, cp =0.8 and mp =0.05. In
ACO-Selection algorithm, φ=10000, α =1, β =2 and ρ
=80%.

 A. Comparison of Elimination algorithm and GA-
Elimination algorithm in terms of WSC-INT

This sub-section compares our algorithms with each other,
compares the GA-EA with prior work, and explores the
effects of different policy quality metrics and role quality
metrics.

Fig.2 shows WSC and interpretability (using the High-
fit attribute data) of policies produced by Elimination
algorithm [4] and GA-Elimination algorithm. The weight
vector for WSC contains all ones except that the weight for
direct assignment is infinity (in other words, direct
assignment is prohibited). Fig.3 shows the result when
allowing direct assignments, with a WSC weight vector
contains all ones. We can see that GA-EA achieves smaller
or equal WSC than elimination algorithm on every dataset,

2074

while simultaneously achieving good policy interpretability
when the direct assignment is prohibited or permitted.

Dataset
Elimination Algorithm GA-Elimination

Algorithm

INT WSC INT WSC

healthcare 9 140 8 133

domino 7 371 6 370

emea 36 3644 34 3640

apj 130 3827 122 3820

firewall-1 17 1340 15 1338

firewall-2 4 944 4 943

Americas-
small 182 6214 180 6200

Fig.2. Comparison of elimination algorithm with policy quality metric
WSC-INT, and GA-Elimination algorithm, when direct user-

permission assignment is prohibited.

Dataset
Elimination Algorithm GA-Elimination

Algorithm

INT WSC INT WSC

healthcare 9 140 8 133

domino 7 371 6 370

emea 36 3644 34 3640

apj 130 3827 122 3820

firewall-1 17 1340 15 1338

firewall-2 4 944 4 943

Americas-
small 182 6214 180 6200

Fig.3. Comparison of Elimination algorithm with policy quality metric
WSC-INT, and GA-Elimination algorithm, when direct user-

permission assignment is prohibited.

Dataset
Selection Algorithm ACO-Selection Algorithm

INT WSC INT WSC

healthcare 56 1880 48 1833

domino 9 1001 6 989

emea 18 148 13 144

apj 19 730 16 720

firewall-1 454 4880 448 4799

firewall-2 46 7270 38 7110

Americas-
small

398 8900 380 8789

Fig.4. Comparison of Selection algorithm with ACO-Selection algorithm

 B. Comparison of Selection Algorithm and ACO-Selection
algorithm in terms of WSCA

This sub-section compares Selection Algorithm and
ACO-Selection algorithm in terms of WSC-INT. The
simulation results indicated that ACO-Selection algorithm
achieves better performance than Selection algorithm [4]
on every dataset.

 C. Comparison of Elimination Algorithm and GA-
Elimination Algorithm in terms of WSCA

This sub-section compares Elimination algorithm and
GA-Elimination algorithm in terms of WSCA [7]. WSCA
was proposed in [9] to evaluate Attribute Miner [9]. The
simulation results indicated that Elimination algorithm
worked better than Attribute Miner [9]. Thus, Fig.5 (a) and
(b) only give the results of Elimination algorithm and GA-
Elimination algorithm under high-fit and low-fit scenarios,
respectively. We can see that GA-Elimination algorithm
achieves smaller or equal WSC than Elimination algorithm
on every dataset.

Dataset Elimination Algorithm GA-Elimination
Algorithm

healthcare 718 689

domino 1440 1438

emea 4150 4142

apj 34392 34290

firewall-1 3953 3900

firewall-2 1044 1009

Americas-small 28890 28700
(a) High-fit

Dataset Elimination Algorithm Genetic-Elimination
Algorithm

healthcare 652 589

domino 701 690

emea 4220 4103

apj 9989 9967

firewall-1 4218 4100

firewall-2 2498 2480

Americas-small 29303 26100
(b) Low-fit

Fig.5. Comparison of Elimination algorithm and GA-Elimination algorithm
in terms of WSCA

VI. CONCLUSION
In this paper we investigate the abilities of two AI

techniques in mining meaningful roles. According to the
features of genetic algorithm and ant colony optimization,
we proposed GA-Elimination algorithm and ACO-Selection
algorithm. We describe the design of the selection,
crossover and mutation operators used in the GA-

2075

Elimination algorithm in detail. We present the details of
pheromone trails. Extensive simulation results validate the
capability of the proposed algorithms.

ACKNOWLEDGMENT

The work described in this paper has been supported in
part by Program for New Century Excellent Talents in
University (NCET-11-0565), Program for the Fundamental
Research Funds for the Central Universities (2012JBZ010),
Program for Changjiang Scholars and Innovative Research
Team in University (No.IRT 201206).

References
[1]. David F. Ferraiolo, and D. Richard Kuhn, “Role based access

control,” In 15th National Computer Security Conference, pages
554-563, 1992.

[2]. M. Dorigo, and G.D. Caro, The Ant Colony Optimization Meta-
Heuristic. In David Corne, Marco Dorigo, and Fred Glover, editors,
New Ideas in Optimization, pages 11–32. McGraw-Hill, London,
1999.

[3]. D. E. Goldberg, Genetic Algorithms in Search Optimization and
Machine Learning. Reading, MA: Addison Wesley, 2005.

[4]. Z. Xu, and S. D. Stoller, “Algorithms for mining meaningful roles,”
In Proc. 17th ACM Symposium on Access Control Models and
Technologies (SACMAT), 2012.

[5]. A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R.
E. Tarjan, “Fast exact and heuristic methods for role minimization
problems,” In Proc. 13th ACM Symposium on Access Control
Models and Technologies , 2008.

[6]. D. Zhang, K. Ramamohanarao, and T. Ebringer, “Role engineering
using graph optimization,” In Proc. 12th ACM Symposium on
Access Control Models and Technologies (SACMAT 2007), pages
139-144, 2007.

[7]. I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. B. Calo,
and J. Lobo, “Mining roles with multiple objectives,” In ACM
Trans. Inf. Syst. Secur., 13(4):36, 2010.

[8]. A. Colantonio, R. Di Pietro, A. Ocello, and N. V.Verde,” A formal
framework to elicit roles with business meaning in rbac systems,” In
SACMAT '09: Proc. 14th ACM symposium on Access control
models and technologies, pages 85-94. ACM, 2009.

[9]. A. Colantonio, R. Di Pietro, and N. V. Verde. A business-driven
decomposition methodology for role mining. Computers & Security,
2012.

[10]. M. Guntsch, and M.n Middendorf, “A Population Based Approach
for ACO,” In Proc. of Evo Workshops2002: EvoCOP, EvoIASP,
EvoSTim, volume 2279, pages 71–80, Kinsale, Ireland, 3-4 2002.

[11]. http://www.cs.stonybrook.edu/~stoller/MiningMeaningfulRoles.

2076

