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Abstract—Role-based access control (RBAC) is being today’s 
dominant access control model due to its potential to mitigate 
the complexity and cost of access control administration. 
However, the migration from the access control lists (ACL) to 
RBAC for a large administration system may consume 
significant efforts, which challenges the adoption of RBAC. 
Role mining algorithms can significantly reduce the migration 
cost by providing a partially automatic construction of an 
RBAC policy. 
This paper explores Artificial Intelligence (AI) techniques in 
designing role mining algorithms, which can optimize policy 
quality in terms of policy size, user-attribute-based 
interpretability of the roles, and the combination of size and 
interpretability. We propose two algorithms, genetic algorithm 
(GA)-based and ant colony optimization (ACO)-based. GA-
based algorithm works by starting with a set of all candidate 
roles and repeatedly removing roles. ACO-based algorithm 
works by starting with an empty policy and repeatedly adding 
candidate roles. We carry out extensive experiments with 
publicly available access control policies. The simulation 
results indicate that ①the proposed algorithms achieves better 
performance than the corresponding existing algorithms. ② 
GA-based approach produces better results than ACO-based 
approach. �

Keywords-Role Mining; Genetic Algorithm; Ant Colony 
Optimization;  

I. INTRODUCTION 
The emergence of new computing models and new 

applications highlights the advantages of role-based access 
control (RBAC) [1] in terms of the complexity and cost of 
access control administration. However, the migration from 
the access control lists (ACL) to RBAC for a large 
administration system may consume significant efforts, 
which challenges the adoption of RBAC. Role mining 
algorithms can significantly mitigate the migration cost by 
providing a partially automatic construction of an RBAC 
policy from an ACL policy and possibly other information, 
such as user attributes. In past years, lots of research efforts 
have been devoted to designing role mining algorithms.  

Different role mining algorithms may have different role 
mining objectives. Minimizing the size of the RBAC policy 
consistent with (i.e., equivalent to) given ACLs is one of the  
most widely investigated objectives.  However, 
interpretability of roles is also critical. A security 
administrator will adopt a mined role only if he/she can 

identify a reasonable interpretation of this role, in which 
case the role is said to be meaningful in this paper. Attribute 
data of users can be applied to identify meaningful roles. 
The idea is that a role is meaningful if its set of members 
can be characterized by an expression involving user 
attributes. Note that there are numerous reasonable variants 
of the definitions of policy size and interpretability. 
Different definitions may be appropriate in different 
contexts.  

Artificial Intelligence (AI) techniques, such as ACO (Ant 
Colony Optimization) [2] and Genetic Algorithms (GA)[3], 
have been applied successfully to deal with role mining 
problems. But these AI-based algorithms only consider the 
policy size. This paper explores Artificial Intelligence (AI) 
techniques in designing role mining algorithms, which can 
optimize policy quality in terms of policy size, user-
attribute-based interpretability of the roles, and the 
combination of size and interpretability.  

The main contribution of this paper is that we propose 
two algorithms, genetic algorithm (GA)-based and ACO-
based, which can achieve the above optimization goal. GA-
based algorithm works by starting with the set of all 
candidate roles and repeatedly removing roles. ACO-based 
algorithm works by starting with an empty policy and 
repeatedly adding candidate roles. We carry out extensive 
experiments with publicly available access control policies 
and synthetic user attribute data, generated in [4]. The 
simulation results indicate that ①the proposed algorithms 
achieves better performance than the corresponding existing 
algorithms. ② GA-based approach produces better results 
ACO-based algorithm.  

The rest of the paper is organized as follows. Section II 
presents the role mining problem and the related work. 
Section III and Section IV present GA-based and ACO-
based role mining algorithms, respectively. Section V 
evaluates the performance of the proposed algorithms. 
Section VI presents the conclusions.  

II. BACKGROUND AND RELATED WORK 
This section first presents the role mining problems that 

we consider. Then some related work is given. 

2070

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



A. Problem Description of Role Mining from ACLs and 
User Attributes 

Tuples , ,U P UP< >  and , , , , ,U P R UR RP RR< >  are 
defined to represent an ACL policy and an RBAC policy, 
respectively. Here, U  denotes a set of users, P  denotes a 
set of permissions, R  represents a set of roles, UP U P⊆ ×  
denotes user-permission assignment, UR U R⊆ ×  denotes 
the user-role assignment, RP R P⊆ ×  denotes the 
permission-role assignment, and RR R R⊆ ×   denotes the 
role inheritance relation. , 'r r RR< >∈  is defined to 
represent the situation that r  is senior to 'r . Thus, r has all 
permissions of 'r , and all members of r  are also members 
of 'r . 

We also define Tuple , , , , , ,U P R UR RP RR DUP< > to 
denote an RBAC policy with direct assignment. 
Here, DUP U P⊆ × . Allowing direct assignment of 
permissions to users provides more flexibility to handle 
anomalous permissions. An RBAC policy is consistent with 
an ACL policy if UR RP is equal to UP , where is 
composition of relations. An RBAC policy with direct 
assignment is consistent with an ACL policy if 
UR RP DUP∪  is equal to UP .  User-attribute data is 
denoted as a tuple ,AT f< > , where AT  is a set of 
attributes, and f  is a function such that ( , )f u a is the value 
of attribute a  for user u . For simplicity, we assume that all 
attribute values are non-negative integers. 

A policy quality metric is a function from RBAC policies 
(with or without direct assignment) to a totally-ordered set, 
such as non-negative integers. The ordering is chosen so 
that small values indicate high quality. This paper considers 
two basic policy quality metrics and a combined metric of 
these two basic metric. The first basic policy quality 
metric is Weighted Structural Complexity (WSC), a 
generalization of policy size [7]. For an RBAC policy π , 
we define WSC  in Equation (1)  

WSC(π ) = 1 2 3 4| | | | | | | |w R w UR w RP w RR+ + +          (1) 

 

Here | |s  is the size (cardinality) of Set s , and iw  are user-
defined weights. For an RBAC policy with direct 
assignment, the definition is the same except with an 
additional item 5 | |w DUP . 

The second basic policy quality metric is interpretability, 
which measures how well the roles in the policy can be 
characterized (interpreted) in terms of user attributes. As in 
[5], the policy interpretability is quantified as attribute 
mismatch, which measures how well the sets of members of 
the roles can be characterized using user-attribute 
expressions. A user-attribute expression e  is defined to 
denote a function from the set AT of attributes to sets of 
values. A user u satisfies an attribute expression 
e iff ( , ) ( ) for f u a e a a AT∈ ∀ ∈ . We refer to Set ( )e a  as 

the conjunct for attribute a . Let Ue  denote the set of users 
that satisfy e . For an attribute expression e and a set U ' of 
users, the mismatch of  e  and U ' , denoted MM( , U ')e , is 

defined as ( ) ( )U \ U ' U '\ Ue e∪ . AMM( r ), defined as  in 
Equation (2), denotes the attribute mismatch of a role r . 

( )min MM( ,assignU( ))e E e r∈                                          (2) 

 

Here assignU( ) { | , }r u u r UR= < >∈ and E is the set of all 
attribute expressions. In this paper, policy interpretability 
INT is the attribute mismatch of an RBAC policy π  (with 
or without direct assignment), i.e., INT( )π = AMM( )

r R
r

∈
∑ . 

The combined metric is defined as in Equation (3). 

WSC-INT(π )=<WSC( π ), INT(π )>                       (3) 

 

The combined metric is the Cartesian product of the two 
basic metrics and sorted by lexicographic ordering. 

The problem of role mining from ACLs is: given an ACL 
policy ACLπ  and a policy quality metric QM, find an RBAC 
policy RBACπ  that is consistent with ACLπ and has the best 
quality, in terms of QM, among policies consistent with 

ACLπ . The problem of role mining with direct assignment 
from ACLs is the same except that RBACπ  is an RBAC 
policy with direct assignment. The problem of role mining 
from ACLs and user attributes (with or without direct 
assignment) is the same as for role mining from ACLs, 
except that the input also includes user-attribute data, which 
may be used in the policy quality metric. 

B. Related Work 

Numerous role mining algorithms were proposed. This 
subsection only discusses the most closely related work. 

Zhang et al.'s Graph Optimization (GO) algorithm [6]  
and Molloy et al.'s Hierarchical Miner (HM) [7] considered 
WSC. However, these literatures did not consider 
interpretability, which hinders the results of role mining 
from being used in practice [5]. Molloy et al.'s Attribute 
Miner (AM) [7] took policy interpretability into account. 
They proposed the metric: Weighted Structural Complexity 
with Attributes (WSCA), to evaluate Attribute Miner. 
Colantonio et al. [8] proposed two metrics to measure the 
interpretability of roles. These metrics could be combined 
with INT( )π  when the required information is available. 
Colantonio et al. [9] considered user attributes into account 
during role mining by applying the attributes to partition the 
set of users. But they did not consider metrics to directly 
evaluate the interpretability of the resulting roles or RBAC 
policies. 

The most closely related to our algorithms is Xu et al. [4]. 
They considered the same policy quality metrics as in this 
paper. Elimination algorithm proposed in [4] worked by first 
generating a set of all candidate roles and then repeatedly 
removing roles. Selection algorithm proposed in [4] worked 
by first generating an empty policy and repeatedly adding 
candidate roles. The difference of our algorithms from the 
algorithms proposed [4] lies in the decision about which role 
is removed or added. The order in which roles are 
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considered for removal and selected is important. HM did 
not explicitly control the order in which roles are considered. 
This led to the worst performance than the Elimination 
algorithm proposed in [4]. Xu et al. proposed three basic 
role quality metrics, which are used to decide the order in 
which roles are considered for removal or adding. Different 
from the greedy approach in [4], our algorithms add some 
randomness in the removing and adding processes. Our 
simulation results validate the effectiveness of such 
approach. 

III. GA- ELIMINATION ALGORITHM 
Genetic Algorithm (GA) is a randomized search 

technique which borrows the evolutionary ideas [3]. In the 
following, we present GA-based Elimination algorithm. 

A. GA-Elimination  Algorithm 

GA-Elimination algorithm consists of two phases. The 
first phase is generating roles (called as candidate roles), 
same as the first phase of the Elimination algorithm 
proposed in [4]. We assume there are N candidate roles and 
sort these roles in the descending priority order. The priority 
is assumed to be ready in default. We define a N -length 
integer vector CanRH , in which the thi item denotes the 

thi role. The values of all items in CanRH are set to 1. Each 
chromosome i is associated with two vector. One is 

( )1 2, , , N
i i i iH h h h= , which is a N -length integer vector. 

k
ih =1/0，where 0 denotes that this role may be deleted in 

the next generation. The other is ( )1 2, , , N
i i i iS s s s= , which 

is a N -length integer vector. For chromosome i, k
is =1 if 

the thk role is chosen; otherwise, k
is =0. 

The second phase of GA-Elimination algorithm is 
described in Algorithm1, in which Algorithm2 is applied to 
update each chromosome’s iS . In each generation, the elitist 
selection scheme is applied to guarantee that the fittest 
member of each generation is copied directly into the next 
generation. The elite strategy retains the good chromosome 
and ensures that it is not eliminated through the mechanism 
of crossover and mutation. Thus, the features of the 
offspring chromosomes are at least as good as their parents. 
The simple one-point crossover is applied to explore the 
combinations of the current solution pool. A single 
crossover site is selected at random over the vector length, 
and the bits on the right side of the site are exchanged 
between the two selected chromosomes with pre-defined 
crossover probability cp . Mutation operator is applied to each 
chromosome but each bit is mutated with a pre-defined 
probability mp . Selection, crossover and mutations aim to 
generate a new population of chromosomes. Then 
Algorithm2 is invoked to check whether a better RBAC 
model can be found. Note that each invocation of 
Algorithm2 does not change iH . 

The fitness function ( )f x is defined as WSC-INT. The 
variable pbest is defined to denote the local best solution, 
namely the solution with the best fitness value in the current 

iteration. The variable gbest is defined to denote the best 
value obtained so far. 

We define inUPGA for each role i to denote whether this 
role can be deleted. inUPGA  is computed based on two 
matrices, ( )R

irΖ   and ( )VΖ Ψ , defined in the following. 
( )R

irΖ  is a user-permission matrix based on a role vector ir , 
consisting of related users and permissions. Each user in a 
role vector ir  has all the permissions in ir . ( )VΖ Ψ  is a 
user-permission matrix based on all role vectors Ψ contains. 
We use the following example to explain role vector, 

( )R
irΖ , ( )VΖ Ψ  and the computation of inUPGA . We make 

the following assumption:  

①There are three candidate roles { 1r , 2r , 3r  }, four users 
{U1, U2, U3,U4} and 4 permissions {P1, P2, P3, P4}.  

② 1r ={U1,U2,U4,P1,P2,P4}; 2r ={U1,U3,P2,P3,P4}; 

3r ={U2,P1}.  

Based on the above definitions, we get canRH ={1,1,1}. 
We get 1( )R rΖ , 2( )R rΖ and 3( )R rΖ  as following: 

 

  P1 P2 P3 P4 

1( )R rΖ = 

U1
U2
U3
U4

1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(a) 
 

    P1 P2 P3 P4 

2( )R rΖ = 

U1
U2
U3
U4

0 1 1 1
0 0 0 0
0 1 1 1
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  (b) 
 

   P1 P2 P3 P4 

3( )R rΖ = 

U1
U2
U3
U4

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  (c) 

Fig.1. 1( )R rΖ , 2( )R rΖ and 3( )R rΖ  

 

Each user in 1r , namely U1, U2 and U4, has P1, P2 and 
P4 permissions. Thus, the first, second and last row in 
Fig.1(a) is (1,1,0,1).  Ψ consists of three role vectors, 
namely 1r , 2r and 3r . Then we get ( )VΖ Ψ as follows by 
adding 1( )R rΖ , 2( )R rΖ and 3( )R rΖ : 
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                 P1 P2 P3 P4 

( )VΖ Ψ = 

U1
U2
U3
U4

1 2 1 2
2 1 0 1
0 1 1 1
1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
Now we describe how to compute inUPGA . We define 

Λ to denote a set, consisting of all the non-zero elements in 
( )R

irΖ . If there exists an element in Λ , whose 
corresponding value in ( )VΖ Ψ  is less than 2, inUPGA is set 
to zero. Otherwise set to 1. For example, for role 

2r , Λ ={<U1,P2>,<U1,P3>,<U1,P4>,<U3,P2>,<U3,P3>,<U
3,P4>}. Since the value of <U1,P3> in ( )VΖ Ψ =1, 

2 0nUPGA = . On the other hand, for role 3r , 
Λ ={<U2,P1>}. Since the value of <U2,P1> in ( )VΖ Ψ =2, 

3 1nUPGA = . 
 

 

Algorithm 1  : input=(RH) 

step1: Initialize a population of chromosomes. We 
generate m pairs of iH  and iS . For each iH , the 

value of j
ih  is set 1 or 0 randomly. We use 

Algorithm2 to update each iS .  Set pbest equal to 

iS with the best WSC-INT. Set gbest =pbest. 

step2: Generate new population by selection, crossover 
and mutation. Put the chromosome, which has the 
best WSC-INT, directly into the population. We 
randomly select a pair of chromosome from the left 
chromosomes until there is a single or no 
chromosome. If there a single chromosome left, we 
use mutation to update its k

ih . For each pair 

chromosomes ( iH , jH ), we use crossover and 

mutation to update their k
ih . For the 1m −  new 

chromosomes, we use Algorithm2 to update their 

iS and use the result of  iS  to update iH . 

step3: Get pBest and update gBest.  Compute WSC-INT of 
each chromosome in the population according to 

iS and update pbest. If ( ) ( )f gBest f pBest>  then 
gbest = pbest. 

step4: Repeat step2-step3 until the maximum number of 
iterations is reached. All the roles whose k

gbests  is 1 
are outputted as the final role set. 

 
 
 
 
 
 
 

Algorithm 2  : Input=( iH ， iS ， canRH ) 

step1: Let iS = canRH . Traverse all roles in iH . If 

inUPGA  of role i is 1 and the corresponding k
ih is 

zero, the put this role into Set delRH. Sort elements in 
delRH in ascending order by roleQ . 

step2: Remove role. For each role x in delRH, we do the 
following things. First, let ξ equal to WSC-INT of 

iS and let 0x
is =  . If ξ  is less than WSC-INT of iS , 

set  k
is =1.  

Note that these two things are done based on the 
updated iS each time. 

step3: Restore role. Sort elements in delRH in descending 
order by roleQ . For each role x in delRH, we do the 

following operations. Let ξ equal to WSC-INT of iS . 

Set 1x
is = and calculate WSC-INT, If WSC-INT is 

larger than ξ, set  k
is =0.  

Note that the above operations are done based on the 
updated iS each time. 

step4: Return iS . 

IV. ACO-BASED SELECTION ALGORITHM 
Ant Colony Optimization (ACO) is a meta-heuristic 

inspired by the behavior of ant colonies [2]. Several ACO 
variants have been proposed. This section explores the 
application of a classical approach presented [10]. We 
present ACO-Selection algorithm in the following. 

A. ACO-Selection  Algorithm 

ACO-selection algorithm consists of two phases. The first 
phase is same as in GA-Elimination algorithm. Each ant i 
produces a solution and is associated with a vector, donated 
by ( )1 2, , , N

i i i iA a a a= , which is a N -length integer 

vector. For ant i, k
ia =1 if the thk role is chosen; otherwise, 

k
ia =0. Each role has a priority, denoted as an integer. The 

higher the priority, the larger the integer is. roleQ  is a role 
quality metric proposed in [2]. It maps roles to an ordered set with 
the interpretation that large values denote high quality  

Each candidate role j is associated with a pheromone trail 
jτ , representing the desirability of selecting role j. The 

initial value of each pheromone trail is set to a large value 
(we set to 100 in our experiments) in order to increase the 
exploration space of solutions during the first iteration. At 
each iteration, every ant first updates the pheromone trail 
values in two steps (see step 2 of Algorithm3): (i) 
Evaporate jτ of all substrate nodes. (ii) Reinforce jτ of the 
substrate nodes which contribute to the building of the local 
best solution (pBest). Then every ant explores new solutions 
according to the new pheromone trails.  
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Algorithm3  : input=( canRH ) 
step1: Generate the initial population of ants. Initialize a 

certain number of ants by Algorithm4. We calculate 
the WSC-INT of each ant and then set pbest to 

iA with the best WSC-INT. set pbest gbest= . 

step2: Update the pheromone trail. Before reiterating the 
process from iteration t to t + 1, the pheromone trails 
of all candidate roles are first evaporated. That is, 

( 1) ( )j jt tτ ρ τ+ = ⋅ , 0<j<size(canRH) and 0<ρ<1. 
Then the pheromone trail of each candidate role 
participating in the construction of pbest is reinforced 
by Equation (4). φ is a constant parameter. 

( 1) ( 1)
( )j jt t

f pbest
ϕτ τ+ = + +                                 (4)    

step3: Evolution. Update each ant solution by using 
Algorithm4. We calculate the fitness function value of 
each ant and then update pbest. If 

( ) ( )f pbest f gbest<  then gbest pbest= . 

step4: Repeat step3-step4 until the maximum number of 
iterations is reached. Output gbest . 

 
 
 
Algorithm4  : SG ( iA ， canRH ) 

step1: Put in iT  the roles whose value is zero in iA  Sort the 

roles in iT  in descending order by roleQ . Compute 
nUPACO . If nUPACO ==0，goto step5. 

step2: Add role. Let ξ equal to WSC-INT of iA  Dequeue a 

role (assumed to be j) with the highest priority from iT  
Role j is selected with the probability jp , defined in 
Equation (5).  

  
( ) ( )

( ) ( )( )
i

j j
j

j j
w T

p
α β

α β

τ η

τ η
∈

=
∑                                             (5)   

Here α and β are parameters that determine the relative 
importance of pheromone trail and priority. jη denotes 

the priority of role j. Set 1j
ia = .  If WSC-INT of 

iA is larger than ξ, then set 0j
ia = . 

step3: Compute nUPACO . Repeat step2 until nUPACO =0 

step4: Prune role. Sort elements in iT in ascending order by 

roleQ . For each role x in iT , we do the following 

operations. Let ξ equal to WSC-INT of iA . Set 

0x
ia = and calculate WSC-INT, If WSC-INT is 

larger than ξ, set  1x
ia = . 

step4: Return iA . 

We define ( ) ( )( ) ( )V V
inUPACO g canRH g A= Ζ − Ζ . ( )g y  

function aims to compute the sum of all element of Matrix y. 
We use the example of Section III to explain.  We assume 

iA ={1,0,0} and then we get ( )jZ A  as following: 

 
 

Thus, ( ) ( )( ) ( )V V
inUPACO g canRH g A= Ζ − Ζ =7. When 3r  is 

added to iA , then iA ={1,0,1} and  

 

Now ( ) ( )( ) ( )V V
inUPACO g canRH g A= Ζ − Ζ =1. 

V. PERFORMANCE EVALUATION 
This section aims to evaluate the performance of our 

algorithms. The simulation results in [4] indicated that 
Elimination and Selection algorithms proposed in [2] 
performed better than GO[6], HM[7], and AM[6]. Thus, we 
compare with Elimination and Selection algorithms.  

By now there is no publicly available real ACL policies 
with user attribute data. We apply publicly available real 
ACL policies together with synthetic user attribute data, 
generated in [4]. We modify the software [11] and 
implement our proposed algorithms. All the datasets used 
for evaluations are set as in [4]. 

In GA-Elimination algorithm, cp  =0.8 and mp =0.05.  In 
ACO-Selection algorithm, φ=10000, α =1, β =2 and ρ 
=80%. 

 A. Comparison of Elimination algorithm and GA-
Elimination algorithm in terms of WSC-INT 

This sub-section compares our algorithms with each other, 
compares the GA-EA with prior work, and explores the 
effects of different policy quality metrics and role quality 
metrics.  

Fig.2 shows WSC and interpretability (using the High-
fit attribute data) of policies produced by Elimination 
algorithm [4] and GA-Elimination algorithm. The weight 
vector for WSC contains all ones except that the weight for 
direct assignment is infinity (in other words, direct 
assignment is prohibited). Fig.3 shows the result when 
allowing direct assignments, with a WSC weight vector 
contains all ones. We can see that GA-EA achieves smaller 
or equal WSC than elimination algorithm on every dataset, 

2074



while simultaneously achieving good policy interpretability 
when the direct assignment is prohibited or permitted.  

 

 

Dataset 
Elimination Algorithm GA-Elimination 

Algorithm 

INT WSC INT WSC 

healthcare 9 140 8 133 

domino 7 371 6 370 

emea 36 3644 34 3640 

apj 130 3827 122 3820 

firewall-1 17 1340 15 1338 

firewall-2 4 944 4 943 

Americas-
small 182 6214 180 6200 

Fig.2. Comparison of elimination algorithm with policy quality metric 
WSC-INT, and GA-Elimination algorithm, when direct user-

permission assignment is prohibited.                        

 

 

Dataset 
Elimination Algorithm GA-Elimination 

Algorithm 

INT WSC INT WSC 

healthcare 9 140 8 133 

domino 7 371 6 370 

emea 36 3644 34 3640 

apj 130 3827 122 3820 

firewall-1 17 1340 15 1338 

firewall-2 4 944 4 943 

Americas-
small 182 6214 180 6200 

Fig.3. Comparison of Elimination algorithm with policy quality metric 
WSC-INT, and GA-Elimination algorithm, when direct user-

permission assignment is prohibited. 

  

Dataset 
Selection Algorithm ACO-Selection Algorithm 

INT WSC INT WSC 

healthcare 56 1880 48 1833 

domino 9 1001 6 989 

emea 18 148 13 144 

apj 19 730 16 720 

firewall-1 454 4880 448 4799 

firewall-2 46 7270 38 7110 

Americas-
small 

398 8900 380 8789 

Fig.4. Comparison of Selection algorithm with ACO-Selection algorithm 

 B. Comparison of Selection Algorithm and ACO-Selection 
algorithm in terms of WSCA 

This sub-section compares Selection Algorithm and 
ACO-Selection algorithm in terms of WSC-INT. The 
simulation results indicated that ACO-Selection algorithm 
achieves better performance than Selection algorithm [4]  
on every dataset.  
 

 C. Comparison of Elimination Algorithm and GA-
Elimination Algorithm in terms of WSCA 

This sub-section compares Elimination algorithm and 
GA-Elimination algorithm in terms of WSCA [7]. WSCA 
was proposed in [9] to evaluate Attribute Miner [9]. The 
simulation results indicated that Elimination algorithm 
worked better than Attribute Miner [9]. Thus, Fig.5 (a) and 
(b) only give the results of Elimination algorithm and GA-
Elimination algorithm under high-fit and low-fit scenarios, 
respectively. We can see that GA-Elimination algorithm 
achieves smaller or equal WSC than Elimination algorithm 
on every dataset. 

 
 

Dataset Elimination Algorithm GA-Elimination 
Algorithm 

healthcare 718 689 

domino 1440  1438 

emea  4150 4142 

apj 34392 34290 

firewall-1 3953 3900 

firewall-2  1044   1009 

Americas-small 28890 28700 
(a) High-fit 

 

Dataset Elimination Algorithm Genetic-Elimination 
Algorithm 

healthcare  652 589 

domino  701   690 

emea 4220 4103 

apj 9989 9967 

firewall-1 4218 4100 

firewall-2 2498 2480 

Americas-small 29303 26100 
(b) Low-fit 

Fig.5. Comparison of Elimination algorithm and GA-Elimination algorithm 
in terms of WSCA 

VI. CONCLUSION 
In this paper we investigate the abilities of two AI 

techniques in mining meaningful roles. According to the 
features of genetic algorithm and ant colony optimization, 
we proposed GA-Elimination algorithm and ACO-Selection 
algorithm. We describe the design of the selection, 
crossover and mutation operators used in the GA-
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Elimination algorithm in detail. We present the details of 
pheromone trails.  Extensive simulation results validate the 
capability of the proposed algorithms.  
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