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Abstract— The correctness of program verification systems is
of great importance, as they are used to formally prove that
safety- and security-critical programs follow their specification.
One of the contributing factors to the correctness of the whole
verification system is the correctness of the background axiom-
atization, which captures the semantics of the target program
language. We present a framework for the maximization of the
proportion of the axiomatization that is used (“covered”) during
testing of the verification tool. The diverse set of test cases found
not only increases the trust in the verification system, but it can
also be used to reduce the time needed for regression testing.

I. INTRODUCTION

Formal verification is the act of proving or disproving that
an algorithm or its implementation is correct with respect to
its formal specification. The formal mathematical approaches
include, amongst others, model checking, deductive verifica-
tion, and program derivation [5, 8, 11].

The correctness of the program verification systems them-
selves is imperative if they are to be used in practice. In prin-
ciple, instead of or in addition to testing, parts of verification
tools (in particular the axiomatization and the calculus) can
be formally verified. For example, the Bali project [18], the
LOOP project [14], and the Mobius project [3], all aimed
at the development of fully verified verification systems.
Similarly, components of the KeY verification system [5]
for Java were verified using the Maude tool [1]. One may
employ formal methods to prove a system or its calculus to
be correct. But—as for any other type of software system—
testing and cross-validation are of great importance; this is
further discussed in [4].

Metaheuristic and other search-based approaches to test
case generation have been in use for over a decade (see
[16, 19] for an overview). In our situation of verification
system testing, all tests have to be programs (along with
their formal specifications) that can be verified successfully,
whether it is with or without human interaction. Due to
their inherent complexity, creating such test cases by hand
is already a challenging problem for experienced verification
engineers. Currently, it is unknown how tests can be gener-
ated automatically from scratch using existing methods.

Within the verification systems, the so-called axiomati-
zation carries the formal definitions of the target program
language, among other things. This makes it a core com-
ponent of the systems. The correctness of this component is
of outmost importance, especially when safety- and security-
critical programs are to be formally verified.
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Our goal is to increase the proportion of the axiomatization
that is actively used in successful verification attempts [7, 9].
As a consequence, new bugs (“regressions“) are more likely
to be found in regression testing, when the implementation of
the verification system (and its axiomatization) is changed.
The large number of axioms (typically 100’s) and the time
consuming verification process (sometimes minutes) make
this a challenging problem for iterative search approaches.

We present a framework that allows to increase the ax-
iomatization coverage for regression testing of verification
systems. We focus on systematic local searches with random-
ized components, as the time-consuming coverage determi-
nation does not allow for approaches that typically require
many evaluations, such as population-based evolutionary al-
gorithms or ant-colony optimization [2, 12]. Furthermore, the
vast number of infeasible ways of reusing existing test cases
renders the problem inappropriate for disruptive approaches,
such as simulated annealing and even the simple (1+1)
evolutionary algorithms.

The structure of this article is as follows: First, we outline
the specific problem in Section II, and in Section III we
formulate it as an optimization problem. In the subsequent
Section IV, we describe our approaches, and we present and
discuss the results in Section V. The paper concludes in
Section VI with a summary of key findings and a description
of potential future areas of work.

II. TARGET OF OPTIMIZATION: PROGRAM VERIFICATION
SYSTEMS

A. Modern Program Verification Tools

Every program verification system has to perform (at least)
two rather separate tasks: (a) handling the program-language-
specific and specification-language-specific constructs, and
reducing or transforming them to classical logic expressions,
(b) theory reasoning and reasoning in classical logics, for
handling the resulting expressions and statements over data
types. One can either handle these tasks in one monolithic
logic/system, or one can use a combination of subsystems.

In this article, we concentrate on verification systems that
allow for auto-active verification. In auto-active verification,
the requirement specification, together with all relevant in-
formation to find a proof (e.g., loop invariants) is given to
the verification tool right from the start of the verification
process—interaction hereafter is not possible. While some
tools such as VCC [10] and Caduceus [13] allow only this
type of interaction, other such as the KeY tool [5], offer
in addition a mode where user interaction is possible also
during the proof construction stage.
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Program verification tools have to capture the program lan-
guage semantics of the programs to be verified. In some tools
(e.g., as with logical frameworks like Isabelle/HOL [17])
these semantics are mostly stored as one huge axiomatization
or a set of calculus rules and separate from the actual proof
system. At this end of the spectrum of program verification
systems, (at least) one rule is defined per program language
construct (e.g., control flow statements or evaluation of
arithmetic expressions) in order to conduct proofs about
program correctness. The task of the actual implementation
part of the verification tool is then mostly to apply these
rules, respectively axioms and it can be kept generic and
thus comparatively small.

To assure the correctness of program verification tools, it
is necessary to validate both parts: the implementation, as
well as the axiomatization. Only testing the implementation
is not sufficient, even if a high code coverage is achieved. For
example, it was noted in [7] that the axiomatization coverage
was as low as 1% for some tests (for the given verification
system), while code coverage was never less than 25%. This
means that there is a certain amount of “core code” exercised
by all tests, while there is only a small number of “core
axioms” used by many tests.

B. Test Cases

We consider in this article system tests, i.e., the verification
tool is tested as a whole. Though the correctness of a tool,
of course, depends on the correctness of its components and
it makes sense to also test these components independently,
not all components are easy to test individually. For example,
it is possible (and useful) to unit-test an SMT solver that is
used by a tool. But the verification condition generator is
hard to test separately as it is very difficult to specify its
correct behaviour—more difficult than specifying the correct
behaviour of the verification system as a whole. In the
following, we concentrate on functional tests that can be
executed automatically, i.e., usability tests and user-interface
properties are not considered.

As is typical for verification tools following the auto-active
verification paradigm, we assume that a verification problem
consists of a program to be verified and a requirement
specification that is added in form of annotations to the
program. Which annotations are compatible to a program,
i.e., which annotation types exist and in which program
contexts a particular annotation is allowed, depends on the
given annotation language. Typical annotations are, e.g.,
invariants, pre-/postcondition pairs, and assertions of various
kinds. If P is a program and A is a set of annotations, then
we call the pair P+A. Besides the requirement specification,
a verification problem usually contains additional auxiliary
annotations that help the system in finding a proof. We
assume that all other auxiliary input (e.g., loop invariants)
are made part of the testing input, such that the test can be
executed automatically.

Possible outcomes of running a verification tool on a test
P+(REQ ∪ AUX ) (a verification problem consisting of a

program P , a requirement specification REQ , and auxiliary
annotations AUX ) are
proved: A proof has been found showing that the program P

satisfies REQ ∪AUX .
not provable: There is no proof (either P does not satisfy

REQ or AUX is not sufficient); the system may provide
additional information on why no proof exists, e.g., by a
counter example or by showing the current proof state.

timeout: No proof could be found given the allotted resource
(time and space).

For example, let us consider the following test case for
KeY, with its Java program code in Lines 4-8 and its post-
condition in Line 11. The test goal is to check if KeY
correctly deals with a division by zero:

1 \programVariables { int a, b; }
2 \problem{
3 \< {
4 try{
5 b=a/a;
6 }
7 catch(Exception e){
8 b=1;
9 }

10 } \>
11 b=1
12 }

Note that the test case writer chose a particular way to test
a single feature, Consequently, KeY needs to reason, for
example about variable initialisation and exception handling
as well, in addition to integer division.

III. PROBLEM FORMULATION

In this section, we present how we determine the amount
of testing done, and how we intend to improve it.

A. Axiomatization Coverage

Measuring code coverage is an important method in soft-
ware testing to judge the quality of a test suite. This is also
true for testing verification tools. However, code coverage is
not an indicator for how well the declarative logical axioms
and definitions—that define the semantics of programs and
specifications and that make up an important part of the
system—are tested.

To solve this problem, we use the notion of axiomatiza-
tion coverage [7]. It measures to which extent a test suite
exercises the axioms (that capture the program language
semantics) used in a verification system. The idea is to
compute the percentage of axioms that are actually used in
the proofs for the verification problems that make up a test
suite. The higher the coverage of a test suite is, the more
likely it is that a bug that is introduced in a new version of
the verification system is discovered.

We use the following version of axiomatization coverage:
the percentage of axioms needed to successfully verify
correct programs. An axiom is defined to be needed to verify
a program, if it is an element of a minimal axiom subset,
using which the verification system is able to find a proof.
That is, if the axiom is removed from the subset, the verifier
is not able anymore to prove the correctness of the program.
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Definition 1 ([7]): A test case P+(REQ ∪AUX ) covers
the axioms in a set Th if Th ` P+(REQ ∪ AUX ) but
Th ′ 6` P+(REQ ∪AUX ) for all Th ′ ( Th .

As a consequence, the axiom coverage of a test suite with
respect to a system depends on resource constraints (e.g.,
number of proof steps allowed, timeout or memory limi-
tations) and the implementation of the verification system,
most notably the proof search strategy. In addition, axiom
coverage of a test suite has to be recomputed not only when
the axiomatization or test suite changes but also whenever
parts of the implementation of the verification tool relevant
for proof search are modified.

Note that, in general, the minimal set of axioms covered
by a given verification problem is not unique. We will exploit
this lack of uniqueness later-on.

B. Computing Axiomatization Coverage in Practice

We have implemented a framework that allows for the
automated execution and evaluation of tests for verification
systems that computes the completeness version of axioma-
tization coverage.

To compute an approximation of the axiom coverage for a
completeness test case P+(REQ ∪AUX ), the procedure is
as follows. In a first step, P+(REQ∪AUX ) is verified with
the verification tool using the complete axiom base available.
Besides gathering information on resource consumption of
this proof attempt (e.g., number of proof steps and time
needed), information on which axioms are actually used in
the proof are recorded as set T .1 In a reduction step, we start
from the empty set C of covered axioms. For each axiom t
in the set of axioms T used in the first proof run, an attempt
to prove P+(REQ ∪AUX ) using axioms C ∪ (T \ {t}) is
made. If the proof does not succeed, t is added to the set
C. Axiom t is removed from T and the next proof iteration
starts until T = ∅.

After a single iteration of this computation, the resulting
set of axioms C is only an approximation of the coverage
of P+(REQ ∪ AUX ), as not every applied axiom was not
necessarily crucial in the proof process. This is the approach
taken in [7]. In contrast to this, we repeat the above procedure
with C as input as long as the result is different from
the input. Eventually, this fixed-point algorithm finds a true
minimal set of axioms necessary to construct the proof.

It currently takes several minutes to compute a single
minimal axiom set for an average test case. This is acceptable
if the coverage is not computed too often, but a considerable
speed-up should be possible using heuristics for choosing
the axioms to remove from the set. Divide and conquer
algorithms, e.g., akin to binary search, seem to be suited
to reduce computation times at first glance. However, they
do not help in practice: as the reduction step does not start
from the whole axiomatization but rather from the subset
T of axioms actually used in a proof, only relatively few
axioms remain that are not covered and can be discarded in

1“Used” does not imply that the application of the axiom was necessary
to find the proof.

the iterative proof runs. For divide and conquer algorithms
to be successful, large sets of axioms that could be discarded
at once are needed. See Section VI for further ideas.

In our case, where we will iteratively maximize the
axiomatization coverage, the computation of a single min-
imal axiom set is similar to what is often referred to as
“an evaluation”. As we shall see in Section V, evaluation
times typically take several minutes, but can in very few
cases exceed 24 hours (despite adjusted internal timeouts).
Consequently, this renders our problem infeasible for many
population-based approaches and other iterative approaches
that would require large numbers of evaluations.

C. Maximizing Axiomatization Coverage

We increase the amount of testing done by generating
additional tests from existing tests. We achieve this by
preventing the verification system to use certain parts of the
axiomatization. Thus, we force the system to find alternative
ways of constructing a correctness proof for a given test
case P+(REQ ∪ AUX ), while using only a subset of the
total set of axioms. We will refer to this subset of allowed
axioms as the whitelist WL. Now, the notion of what a
test case constitutes actually changes: it becomes a tuple of
〈P+(REQ ∪ AUX ),WL〉, of a program P with a require-
ment specification REQ and auxiliary annotations AUX , and
a whitelist WL.

The introduction of the whitelists allows us to reuse
existing test cases. This is a big advantage over writing new
test cases, which is a very time consuming process even
for experienced verification engineers. On the other hand,
our approach cannot fully replace the need to extend test
suites through additional test cases. For example, take axioms
for bitwise XOR-operations or for certain simplifications of
inequalities. Even though many parts of the axiomatization
will be reused over and over, it may not be possible to cover
these, if the corresponding characteristics are never found in
any of the existing test cases.

With our additional generated test cases, it is for example
possible to identify axioms that are still not used at all, for
which the reasons can then be investigated separately. Such
analysis can help to focus the efforts of manual test creation
to parts of the axiomatization that are not exercised.

One could ask whether it is possible to maximize the num-
ber of axioms covered in a more direct way. We conjecture
that it is either not possible, or just with significant effort.
One would need to know in advance which combinations
of axioms would “just suffice”, and this would require an
oracle.

IV. METAHEURISTIC APPROACH

In the following, we describe the verification system that
is the subject of our study. Subsequently, we present our
heuristic approaches to the problem. The approaches can be
applied to the testing of further verification systems, if these
can provide information on which axioms were used during
the construction of the proof; this is typically the case.
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A. The KeY System
As the target for our case study we have chosen the

KeY tool [5], a verification system for sequential Java Card
programs. In KeY, the Java Modeling Language (JML) is
used to specify properties about Java programs with the
common specification constructs like pre- and postconditions
for methods and object invariants. Like in other deductive
verification tools, the verification task is modularized by
proving one Java method at a time.

In the following, we will briefly describe the workflow of
the KeY system—in our case, we assume the user has chosen
one method to be verified against a single pre-/postcondition
pair. First, the relevant parts of the Java program, together
with its JML annotations are translated to a sequent2 in Java
Dynamic Logic, a multimodal predicate logic [5]. Validity
of this sequent implies that the program is correct with
respect to its specification. Proving the validity is done using
automatic proof strategies within KeY, which apply sequent
calculus rules implemented as so-called taclets.

The set of taclets provided with KeY captures the seman-
tics of Java. Additionally, it contains taclets that deal with
first order logic formulas. The development version of KeY
as of 16 August 2012, contains 1520 taclets and rules that
we will call axioms to facilitate reading. However, not all
of them are available at a time when performing a proof, as
some exist in several versions, depending on proof options
chosen (e.g., handling integer arithmetic depends on whether
integer overflows are to be checked or not).

The automatic proof search is combined with interactive
steps of the user, in case a proof is not found automatically.
As already mentioned, the interactive part of KeY is irrel-
evant to us, as we restrict test cases to those that can be
proven automatically—otherwise, finding a minimal set of
taclets needed to prove a program correct is infeasible.

Results of a verification attempt in KeY are the following:
either the generated Java Dynamic Logic formula is valid
and KeY is able to prove it; or the generated formula is not
valid and the proof cannot be closed; or KeY runs out of
resources.

B. Algorithms
As stated above, we are aiming at maximizing the ax-

iomatization coverage through the creation of test cases
〈P+(REQ ∪ AUX ),WL〉. The test suite that we will con-
sider contains already pairs P+(REQ ∪ AUX ), such that
we can focus on the search for whitelists. This process can
be very time consuming (several hours) due to the reduction
phases. Furthermore, it is very often the case that infeasible
whitelists are created, as they miss elements that are crucial
for the construction of the eventual proof. Even a very
“careful” random generation of whitelists is rarely successful.

Therefore, we choose conservative approaches in which
we try to use the knowledge gained so far. In addition,

2A sequent has the form Γ ` Σ. Both Γ and Σ are sets of logical
formulae, where Γ is called antecedent and Σ called succedent. The intuitive
semantics of a sequent is that the conjunction of the formulae in the
antecedent imply the disjunction of the formulae in the succedent.

we introduce varying degrees of randomization, to allow for
different search directions.

All approaches have the following idea in common. Given
a minimal set of axioms M for a given pair P+(REQ ∪
AUX ), the approaches try to remove axioms m ∈ M from
the current whitelist WL (first iteration: all 1520 axioms).
If the subsequent verification of 〈P+(REQ ∪ AUX ),WL〉
is successful, then the verification system has found an
alternative path to prove the correctness. Consequently, a
new minimal set M ′ can be found, which will of course
only contain the elements that are in WL, and it will contain
previously uncovered axioms. For the next iteration, M ′ will
be the starting point. Effectively, we iteratively check if some
axioms can be replaced by others.

The approaches differ in the way they shorten the
whitelists, when given a minimal set of axioms M :

1) APPROACH 1 “depth-first in order enumeration“: the
elements in M are explored in lexicographical order in
a depth-first fashion. This naive approach is structured
and the resulting sequence of minimal sets allows for
an easy analysis of dependencies.

2) APPROACH 2 “depth-first random order enumeration“:
the elements in M are explored in random order. The
motivation for this slight different to APPROACH 1 is
the following: (1) the axiomatization contains groups
of axioms that can be used interchangeably in the proof
search, and (2) in case several unrelated test cases use
the same groups of axioms, then chances are that this
approach will not rediscover the same replacements for
group of axioms over and over again.

3) APPROACH 3 “depth-first random step sizes“: up to
six randomly picked elements from M are removed
from the current whitelist. Iteratively, the step size is
reduced by 50% (rounded up) in case the whitelist
does not allow for a successful proof, because it is
too restrictive. We use APPROACH 2 as a fall-back
strategy, in case all larger “jumps” are unsuccessful.
Even though verification attempts are more likely to fail,
the whitelists should become shorter, thus motivating
the verification system to “work around” our artificially
imposed restrictions in order to construct a proof.

4) APPROACH 4 “breadth-first in order enumeration“: in
contrast to APPROACH 1, the elements in M are ex-
plored in a breadth-first fashion. Here, the focus is on
finding alternative groups of individual axioms first,
whereas APPROACH 1 focusses on the creation of
shorter and shorter whitelists.

5) APPROACH 5 “breadth-first random order enumeration“:
analogous to APPROACH 2, the elements are explored
in a random order to reduce the number of rediscoveries
of equivalent groups of axioms.

Note that APPROACH 1–3 were already presented in [6],
and they are now compared with two depth-first approaches.

By construction, all five methods are de facto complete as
they perform either depth-first or breadth-first searches. They
will exhaustively enumerate the feasible whitelists that can
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Approach successful
trials

covered
axioms

sequence of whitelist length
development

APPROACH 1 28/651 120 〈1520, . . . , 1493〉
APPROACH 2 12/110 91 〈1520, . . . , 1509〉
APPROACH 3 8/158 123

〈1520, 1517, 1516, 1514,
1513, 1512, 1509〉

APPROACH 4 19/42 92 〈1520, 1519〉
APPROACH 5 21/41 94 〈1520, 1519〉

TABLE I: Example test case. Listed are the ratios of successful
to failed whitelist trials, the number of axioms covered by the
union of all minimal sets, and the sequence of whitelist lengths
that were discovered (immediate repetitions omitted). Dots indicate
decrements by one up to the next shown value.
table

be reached when starting with the entire whitelist from the
initial minimal set.

Our general approach is in stark contrast to shortening the
whitelists by randomly picking axioms from the axiomatiza-
tion: removing a previously unused axiom from the whitelist
will result in the very same minimal set over and over again.
In contrast to this, we remove axioms that have been used
successfully before.

It is important to note that the search space is very
“brittle”: given a valid solution, only about 5-10% of its
neighbours turn out to be valid solutions again. We therefore
chose very conservative heuristics that would change very
little at a time. If one increases the randomness in an
unstructured way, the chances diminish very quickly of (1)
hitting a valid solution and (2) guiding the search towards
a higher coverage. Actually, as we shall later-on see, our
slightly more exploring heuristic APPROACH 3 can in fact
contribute to the overall coverage, however, this comes at
the cost of a significantly increased failure rate.

Lastly, as we keep track of the generated whitelists, we
prevent the repeated computation of minimal sets for a given
pair P+(REQ ∪AUX ). As a side-effect, this collection can
later-on be easily reused for regression testing without the
need to do the expensive searches again from start.

V. EXPERIMENTS

Using our testing framework, we automatically execute
the test cases contained in KeY’s test suite and measure the
axiomatization coverage.3

The KeY source distribution provides a test suite con-
taining 335 test cases (as of 16 August 2012) of which
319 test cases testing verification of functional properties—
the other 16 are soundness tests or are concerned with the
verification of information flow properties and were omitted
due to resource constraint. The complexity of the proof
obligations ranges from simple arithmetic problems to small
Java programs testing single features of Java, up to more
complex programs and properties taken from recent software
verification competitions.

This test and all subsequent runs are performed on Intel
Xeon E5430 CPUs (2.66GHz), on Debian GNU/Linux 5.0.8,
with Java SE RE 1.7.0. The computation time for each of

3The code is available upon request, and will be made publicly available.

the 319 test cases is limited to 24h for each approach. The
internal resource constraints are set to twice the amount of
resources needed for the first proof run recorded initially.
This allows for calculating axiom coverage in reasonable
time and ensures comparability of coverage measures be-
tween computers of different processing power.

A. Example

To start our presentation of the results, we
examplarily investigate KeY’s original test case
heap/list/ArrayList.ArrayListIterator inv.key.
Its purpose is to test the iterator functionality of an array
list implementation. Several statistics are listed in Table ??.
Note that the first minimal set contains (“covers”) only 34
elements, and that all approaches have been able to at least
double this number.

Interestingly, APPROACHES 1–3 rarely backtrack, as we
would otherwise see more “branches” in the sequence of
whitelist lengths. This is a strong indicator that the search
for new minimal sets is not finished yet. Many backtracking
points are still waiting to be explored, which is why we
included their breath-first variants APPROACH 4 and AP-
PROACH 5. The significant drop of the trials that APPROACH
2 performs is due to axioms being removed that (1) cause a
timeout (when missing), and (2) have previously improved
the performance of the proof strategy. APPROACH 3 tries out
many larger reductions of the current whitelist, and a huge
proportion of them is not successful. If it would be possible
to establish dependencies between the axioms, and logical
groups, then it should be possible to either identify these
in advance, or to learn these on the fly. Consequently, the
time spent on extensions that are unlikely to work (because
“essential” rules are to be left out) may be reduced, thus
increasing the efficiency of the framework.

It is obvious that the different approaches exercise the
verification system in different ways. Because of their nature,
APPROACH 1 and 2 iteratively block out larger and larger
parts of the axiomatization. APPROACH 3 is able to rapidly
decrease the lengths of the whitelists. In contrast to this,
APPROACHES 4 and 5 hardly reduce the lengths of the
whitelists at all, but explore just the very first branching.

B. Axiomatization Coverage Results

The coverage statistics of the different approaches are
listed in Table II. The number 611 represents the result of
the naive approach, where the full set of 1520 axioms is used
and no alternatives are sought. This is our base value. 4

The individual approaches improve the total coverage by
about 6% each. When considering all approaches together,
then the initial coverage of about 611 axioms increases to
a total of 722 axioms through the use of whitelists. This
means that the framework improve the achievable coverage

4The used KeY-Version still uses certain taclets indeterministically, de-
spite our introduction of deterministic data structures. However, we observed
no significant consequences on the overall number of taclets covered in
several repetitions of our experiments.
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APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 APPROACH 5 Union
axioms covered in the
first minimal sets

611 (40%) 611 (40%) 610 (40%) 613 (40%) 609 (40%) 615 (40%)

axiom usage in the first
minimal sets

13,978 14,028 14,081 13,900 13,998 69,982

axioms covered in all
minimal sets

701 (46%) 699 (46%) 688 (45%) 687 (45%) 684 (45%) 722 (48%)

axiom usage in all min-
imal sets

21,358 22,228 21,257 21,823 22,028 108,691

shortest whitelist found 1,480 1,467 1,446 1,512 1,512 1,446

TABLE II: Coverage statistics. The first minimal sets refer to those found first by the approaches, which initially use all 1520 axioms.
Axiom usage is the total count of axioms used by the respective sets. The Union is the result of considering all five approaches.
table
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Fig. 1: Axiom coverage counts. y-axis: number of test cases an
axiom is covered by. On the x-axis: axioms at least covered by one
test case, sorted by y values.
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Fig. 2: Average test case selectivity (”if covered then by how many
tests”) by axiom. In black: average selectivity of all test cases
covering an axiom. Deviation of this value from the average is
shown in red.
figure
autonomously by about 18%, without requiring a verification
engineer to write a single new test case.

Figures 1–4 show additional statistics about the frequency
of the axioms covered, and about the lengths of the whitelists.
Due to space contraints, we limit ourselves to the results
of APPROACH 1. The figures for the other approaches are
fairly similar to a human viewer, with slightly different “local
shapes”. Such histograms, when split by taclet group, allow
us to compare the quality of the test suite with respect to
the different groups. For example, in [7] underrepresented
taclet groups are located, e.g., relevant for Java assertions
or the bigint primitive type of JML (with coverage of each
group below 10%). This coarse classification already allows
to focus the effort of writing new test cases on constructing
specific tests for seldomly covered taclet groups. Additional
data mining, e.g., in the form of clustering, can group
similar test cases together to identify commonalities. This
is, however, beyond the scope of this paper.

The need for broader test cases, covering several combi-
nations of axioms, is supported by studies (e.g. [15]), which
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Fig. 3: For each of the 319 tests (x-axis) the total number of axioms
covered across all minimal sets is shown.
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Fig. 4: For each of the 319 tests (x-axis) the found whitelists’ mean
length and the standard deviation is shown.
figure

show that software failures in a variety of domains are often
caused by combinations of several conditions. Specialized
test cases, in comparison, might simplify the testing of
different aspects of one taclet by being able to better control
the context an axiom will presumably be applied in the proof.
As a measure for this, we use the selectivity of a test case as
the number of axioms covered by the test. The current state
of the KeY test suite with respect to this selectivity criterion
is shown in Figure 2. For each axiom, the average selectivity
of all test cases covering this taclet is shown, together with
the deviation from the average. The leftmost axioms in this
diagram are good candidates for which additional test cases
might be needed, as they are only covered by specialized
test cases. Also axioms with a high selectivity average of the
corresponding test cases but low deviation indicate need for
improvements, as only broad test cases cover these axioms.

Coming back to the optimisation approaches, we can see
in Table III that they complement each other. For example,
when we combine APPROACHES 1 and 2, they cover a total
of 719 axioms. Thus, one can see that a small degree of
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APPROACH 1 — 20 21 24 28
APPROACH 2 18 — 22 23 24
APPROACH 3 8 11 — 12 17
APPROACH 4 10 11 11 — 8
APPROACH 5 11 9 13 5 —

TABLE III: Differences between the minimal sets found. For
example, APPROACH 5 covers 11 axioms that are not covered by
APPROACH 1.
table
randomization contributes to the diversity of the outcomes.
When combining the randomized APPROACHES 2 and 3,
then only 710 axioms are covered. It seems that the search
directions differ significantly, because APPROACH 2 covers
22 axioms that are not covered by the other approach.
On the other hand, even though APPROACH 3 yields the
lowest coverage values amongst the depth-first approaches,
its outcome is still complementary to those of the otherwise
relatively similar APPROACHES 1 and 2. Similar observations
hold for APPROACHES 4 and 5.

Even though the runtimes are capped at 24 hours, it is
possible to enumerate all minimal sets for a total of 41 files
of the test suite. Consequently, the differences that we can
observe in Table II stem from the remaining 278 files. As a
side-effect, we do not have to consider these files again in
the future, when searching for additional whitelists —unless
the axiomatization itself changes.

In contrast to these 41 test cases, seven other test cases
never produced a minimal set within the allotted 24 hours.
The reason for this is that in all these cases the number
of axioms used in the first successful proof is very large
(> 140). Then, the iterative reduction process becomes very
time consuming, and cannot finish within the allotted time.
We will allot additional time to these in the future, as they
have the potential to contribute significantly to the coverage
due to the complexity of the tests.

C. Minimization of Regression Testing Time

The goal of regression testing is to uncover new bugs when
the system changes. As a result of our previous computations,
we extended the number of test cases from 319 to several
10,000’s of test cases. However, running all these on a regular
basis is very impractical due to the long overall runtime.

Each axiom is used about 150 times on average, albeit
with significant deviations from this (see column Union in
Table II), when the entire set of test cases is run. As this high
level of redundancy is not necessary for a fast regression
test, we can try to contruct a subset of tests that runs in
short time and that achieves the same overall axiomatization
coverage. Even though this new set of tests will not exercise
the verification system as comprehensively, it is very useful
as a quick check if a system change has a significant impact
on the axiomatization.
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Fig. 5: Test cases: axioms covered and time needed. Shown are (1)
all test cases created by our search, and (2) the 115 test cases for
the fast regression testing.
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In the following, let us consider APPROACH 5—similar
statements hold for the other approaches. The computations
presented in the previous section resulted in 29,323 minimal
sets and consequently the same number of actual test cases
for KeY, which is a significant increase from the original
319. In a regression test, these would take 24.2 hours to run
and they would cover 45% of KeY’s axiomatization.

For a fast regression test, we search for a subset of the
29,323 test cases that still achieves the same overall coverage.
Our approach to this problem of runtime minimization works
as follows. We start with the test case that covers the most
axioms. Then, until the desired coverage is achieved, we
iteratively add the test case that results in the maximum
increase in totally covered axioms.5

The runtime of our subset creation of about 1.5 minutes
is a good investment: the resulting reduced set of only 113
test cases finishes in about 27 minutes, which is a significant
improvement over the original 24.2 hours.

Finally, in order to achieve the overall achieved coverage
of 722 axioms, we consider the entire set of test cases
produced by all approaches. The set of all test cases and
the constructed subset for fast regression testing are shown in
Figure 5. The subset of 115 test cases takes 53 minutes to run
and covers 722 axioms. Several of the included test cases are
very time consuming, but they also help to quickly achieve
the desired coverage. Compared to the starting point of our
investigations, this is a significant increase in test quality
(according to our measurement) and a significant decrease
in regression testing time.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we address the problem of increasing the
axiomatization coverage when rigorously testing verification
systems. We compare several approaches that allow us to
reuse the existing test cases without generating new cases
by hand. The reuse is implemented through varying the
restriction on which axioms can be used for proof attempts.

The experiments reveal several interesting insights. It is
important to note that it is impractical to manually impose the

5Other investigated approaches have been unsuccessful: either the final
subset’s runtime was too long, or the runtime of the heuristic was too long.
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restrictions on verification systems under which correctness
should be proven. Randomly generated restrictions typically
are too strong and make it impossible to find a proof.
Our local search approaches, however, explore the space
of restrictions in a structured way. When we generate the
restrictions, we allow for random decisions and for a degree
of disruption. An algorithm that does both is able to obtain
a considerably more diverse set of tests. Even though our
experiments are computationally expensive, the restrictions
found so far can be reused in future coverage computations
as seeds, without having to rerun the entire search again.

We will continue our research in the following areas:
1) We plan to investigate the reasons why some axioms

are not covered, amongst others, using the help of
developers of the verification systems. Afterwards, an
experiment will be conducted where we systematically
write specific test cases aimed to increase the axiomati-
zation coverage for specific axioms. If our assumption
that axiomatization coverage is a useful measure is right,
we should be able to find further bugs with these tests.

2) The computation of a minimal set of axioms is time
consuming. If it is possible to establish dependencies
between the axioms, and logical groups, then it will be
possible to either identify these in advance, or to learn
these on the fly. Consequently, the time spent on the
coverage calculations may be reduced significantly, thus
increasing the efficiency of the framework.

3) Failures in a variety of domains are often caused
by combinations of several conditions (see studies
like [15]). We plan to combine combinatorial testing
with combinatorial search techniques. There, combina-
tions of language features and axioms are used to form
complex test cases. The knowledge gained from the
work presented here will help us to focus our efforts
in comprehensive testing.
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mann, P. Müller, E. Poll, G. Puebla, I. Stark, and
E. Vétillard. MOBIUS: Mobility, Ubiquity, Security,
Vol. 4661 of LNCS. Springer, 2006.

[4] B. Beckert and V. Klebanov. Must program verification
systems and calculi be verified? In 3rd Int. Verification
Workshop (VERIFY), Workshop at Federated Logic
Conferences (FLoC), pp. 34–41, 2006.
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