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Abstract— Cooperative behaviors are widespread in biological
and social populations. Yet the evolution of cooperation is still a
puzzle in evolutionary theory. Recent researches have indicated
that complex interactions among individuals may promote the
evolution of cooperation under weak selection. However, the se-
lection effect on cooperation has not been completely understood.
This paper aims to characterize the impact of selection on the
emergence of cooperation in evolutionary dynamics on complex
networks. By theoretical analysis and numerical simulation, it
is found that selection favors defection over cooperation for
the birth-death process, while it may favor cooperation over
defection for the death-birth process. Furthermore, we come to
the condition on which cooperation is dominant over defection.
In particular, there exists an optimal selection intensity which
favors cooperation the best for the death-birth process. The
obtained results indicate that appropriate selection can promote
the evolution of cooperation in structured populations under
some circumstances.

I. INTRODUCTION

Evolutionary game theory is a well-known framework for

studying the frequency dependent selection in the evolution

of human and animal behaviors [1]–[3]. Over the past few

decades, evolutionary game theory has been widely applied

in various areas, including the evolutionary biology, social

behavior analysis, culture evolution and the economics [4]–

[8].

The evolution of cooperation is one of the most fundamental

challenges in evolutionary game theory [3][7]. Cooperators

pay costs and provide benefits to others, while defectors pay

no cost and distribute no benefit. According to the Darwin’s

theory of evolution [9], natural selection will favor defection

over cooperation. However, in real-world biological and social

systems, cooperative behaviors are ubiquitous [10][11].

The prisoner’s dilemma game is one of the most prominent

mathematical models to investigate the evolution of coopera-

tion. In the prisoner’s dilemma game, a cooperator pays a cost

c to distribute a benefit b, where b > c > 0, while a defector

pays no cost and supplies no benefit. Hence the payoff matrix

of the prisoner’s dilemma game is given by

(

b− c −c

b 0

)

(1)
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It is apparent that defection strictly dominates cooperation in

the prisoner’s dilemma game. That is, no matter what the

opponent’s strategy is, defection is the best strategy to obtain

more payoff. This payoff matrix can be conveniently rescaled

to the following simplified form [21][22]:

(

1 0
1 + u u

)

, (2)

where u = c/b is called the cost-to-benefit ratio. It is

apparently that equation 2 is more simplified and briefly than

equation 1 in that equation 2 has one factor.

Recently, evolutionary game dynamics on complex net-

works is proposed to study the evolution of cooperation

in structured populations. In the evolutionary game process,

individuals are differed into two types: cooperators C or

defectors D. They acquire payoffs by playing the prisoner’s

dilemma game with other individuals in their neighborhoods.

The competitiveness of each individual is measured by its

fitness, which is a function of the payoff. A common used

formula is

Fitness = 1− ω + ω × Payoff. (3)

Here ω is called selection intensity, where 0 ≤ ω ≤ 1. The

selection intensity characterizes how strong the game is pres-

suring evolution. For ω = 1, Eq. (3) becomes Fitness=Payoff.

That is, individual’s fitness is completely determined by its

payoff, which is called strong selection. For ω ≪ 1, the payoff

has little to do with fitness, which is named weak selection.

In particular, for ω = 0, all individuals have the same fitness,

called neutral drift [12][13].

It has been shown that the selection intensity plays an im-

portant role in the evolution of cooperation [12][13]. However,

most recent studies investigate the emergence of cooperation

only in the special case of weak selection or strong selection

[14]–[17]. To fully understand the effect of selection on the

evolution of cooperation, it is important and meaningful to

further explore the evolutionary game dynamics with any

selection intensity instead of the significant cases of strong

selection and weak selection.

This paper aims to characterize the effect of selection on

the evolution of cooperation in evolutionary game dynamics

on complex networks. The main contributions of this paper

are in two-folds. Firstly, for the birth-death (BD) process, it is

shown that cooperation is never favored over defection for all

selection intensity. Secondly, for the death-birth (DB) process,

it is found that selection favors cooperation over defection

in some networks. Moreover, it is shown that there exists
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an optimal selection intensity which favors cooperation the

best. Intuitively, it seems that selection was unfavorable for

cooperation. However, the above results clarify the misunder-

standing and show that appropriate selection can promote the

evolution of cooperation in structured populations under some

circumstances.

This rest of this paper is organized as follows. Section II

introduces the model of evolutionary game dynamics for the

evolution of cooperation. Section III presents the theoretical

analysis of the evolutionary game dynamics on some typical

graphs. The main results are given in section IV. Some

concluding remarks are given in Section V.

II. MODEL OF NETWORKED EVOLUTIONARY GAME

DYNAMICS

In this section, we introduce the model of evolutionary

game dynamics for investigating the evolution of cooperation

in complex networks.

Consider a structured population. The interaction structure

of the population is characterized by a network, where in-

dividuals and their interactions are represented as nodes and

links, respectively [18]-[20]. Each individual can be of two

strategies: C (cooperation) or D (defection). The payoff matrix

of the prisoner’s dilemma game is shown as Eq. 2.

The individual acquires sub-payoffs by playing the above

game with each of its neighbors. And the total payoff of

an individual is the summation of all its sub-payoffs. The

fitness of individuals is determined by their payoff according

to Eq. (2). It can be observed that the fitness landscape of

the population depends completely on the strategy of each

individual and the population’s structure.

In this paper, two typical updating rules are considered: the

BD and DB processes [14]. In each step of the BD process,

an individual is selected firstly with a probability proportional

to its fitness, and then the selected individual reproduces an

offspring to replace one of its neighbors randomly. While in

the DB process, the order of birth and death is reversed. In

detail, in each step of the DB process, a random individual is

selected to die firstly, then one neighbor of the dead individual

is selected to reproduce an offspring to replace the dead

individual with a probability proportional to its fitness.

The above evolutionary process corresponds to a finite

Markov chain with two absorbing states: “all-C” and “all-

D”. In other words, no matter what the initial state is, under

the above evolutionary process, the population will end up

with either “all-C” or “all-D”. Let ρC denote the probability

of fixation at “all-C” state, given that a random single C-

individual invades a population of D-individuals. Hereafter,

we called ρC the fixation probability of C in short. Obviously,

ρC can measure the dominant level of cooperation strategy in

the evolutionary process.

Since it is a hard problem to analyze the evolutionary game

dynamics on general networks, in this work, we consider

the evolution of cooperation on five representative networks,

including the complete graph, cycle, star, lattice, and the karate

club network, as shown in Fig. 1. The lattice is square and has
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Fig. 1. Some representative network structures. The top row shows the

structures of complete graph, cycle and star with the network size N = 10.

The bottom row depicts the structures of lattice network and the karate club

network. The size of the lattice network is N = 9, and the karate club network

is a connected and undirected network with 34 nodes and 78 edges.

periodic boundary. The karate club network is a friendship

network among 34 members of a university karate club over a

period of 2 years. It is a connected, un-weighed and undirected

network with 34 nodes and 78 edges [25]. For the complete

graph, cycle, and star, the fixation probability ρC can be

analytically derived. However, for the lattice and karate club

network, due to the computation complexity, it is hard to derive

the fixation probability ρC . Thus, numerical simulations are

taken to explore the evolution of cooperation on these two

networks.

III. THEORETICAL ANALYSIS

In this section, we derive the fixation probability ρC by

theoretical methods for the complete graph, cycle, and star

for both the BD and DB processes. Based on the fixation

probability ρC , we can justify the effect of selection ω on the

dominant level of cooperation strategy in evolutionary game

dynamics on these networks. In the limitation of space, we

will only give the formulas below, the similar derivations can

be found at [14], [15].

A. Complete Graph

On the complete graph, suppose the number of individuals

is N , then any formulations of i C-individuals and N − i D-

individuals are equivalent. According to the game interaction,

the payoffs of the C-individual and D-individual are respec-

tively

P (C, i) = i− 1,

P (D, i) = i+ u(N − 1),
(4)

where i is the number of C-individuals in the population.

Therefore, the corresponding fitness of the C-individual and

D-individual are

F (C, i) = 1− ω + ωP (C, i),

F (D, i) = 1− ω + ωP (D, i).
(5)

Let P (i → j) be the transition probability from i C-

individuals to j C-individuals. Denote λi = P (i → i + 1)
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and µi = P (i → i− 1). Under both the BD and DB process,

the fixation probability of cooperation on complete graphs can

be derived as [14][23]

ρC = 1/(1 +

N−1
∑

j=1

j
∏

i=1

µi

λi

). (6)

1) BD Process: For the BD process, the transition proba-

bilities λi and µi in the complete graphs can be easily derived

as

λi =
i(N − i)F (C, i)

(N − 1)(iF (C, i) + (N − i)F (D, i))
,

µi =
i(N − i)F (D, i)

(N − 1)(iF (C, i) + (N − i)F (D, i))
.

(7)

Substituting Eqs. (4), (5) and (7) into Eq. (6), the fixation

probability ρC can be got

ρC =











0 for ω = 1
1

1 +
∑N−1

j=1

∏j

i=1

µi

λi

otherwise (8)

where
µi

λi

=
1− ω + ω(i+ u(N − 1))

1 + (i− 2)ω
.

Based on Eq. (8), the effect of selection intensity w on the

evolution of cooperation can be assessed for the BD process

on complete graphs.

2) DB Process: In a similar manner, the fixation probability

ρC for the DB process on complete graphs can be obtained

ρC =











0 for ω = 1
1

1 +
∑N−1

j=1

∏j

i=1

µi

λi

otherwise (9)

where
µi

λi

=
iFCFD + (N − i− 1)F 2

D

(i− 1)F 2
C + (N − i)FCFD

,

FC = 1 + (i − 2)ω,

FD = 1 + ω(i− 1 + u(N − 1)).

B. Cycle Graph

Note that if a cycle of D-individuals is invaded by a single

C-individual, the C-individuals always form a single con-

nected cluster during the evolutionary process [14]. Thus, the

formula (6) is also valid for the evolutionary game dynamics

on cycles. Hence, in order to get ρC , we only need to calculate

the transition probabilities λi and µi.

1) BD Process: For the BD process on a cycle of size N ,

an easy derivation of the transition probabilities gives

µi

λi

=







1+2uω
1−ω

for i = 1

1 + 2uω for 2 ≤ i ≤ N − 2
1 + ω + 2uω for i = N − 1

(10)

Substituting the above equation into Eq. (6) yields

ρC=

{

1
N

for w = 0
2uω(1−ω)

(1+2uω)N+2uω2(1+2uω)N−2−2uω2−1 otherwise

(11)

2) DB Process: Similarly, for the DB process on a cycle

of size N , the transition probabilities can be obtained as

µi

λi

=



























1−ω+uω
1−ω

for i = 1
(1+2uω)(2−ω+2uω)

2+2uω for i = 2
(1+2uω)(2−ω+2uω)

2+ω+2uω for 3 ≤ i ≤ N − 3
(1+2uω)(2+2uω)

2+ω+2uω for i = N − 2
1+ω+2uω
1+ω+uω

for i = N − 1

(12)

Substituting the above equation into Eq. (6) gives

ρC=







1
N

for w = 0
0 for w = 1
1−ω+uω

1−ω
×{T1(ω, u)+T2(ω, u,N)} otherwise

(13)

where

T1(ω, u) =
4(1 + uω)2(1 + ω)− (1 + 2uω)ω2

4ω(1− 2u)(1 + uω)2

and

T2(ω, u,N) =
(1 + 2uω)N−3(2− ω + 2uω)N−4

(2 + ω + 2uω)N−4

×

(

(2 − ω + 2uω)(2 + ω + 2uω)

4ω(2u− 1)(1 + uω)2
+

2 + 2ω + 3uω

1 + ω + uω

)

(14)

C. Star

A star of N nodes contains one hub node lying in the

center and other N − 1 leafs connecting only with the hub.

The fixation probability of cooperation on a star can be

obtained analytically. However, since the derivation is trivial

and quite tedious, it is omitted here. The fixation probability

of cooperation is directly given in the following.

1) BD Process: For the BD process on a star of size N ,

the fixation probability of cooperation is given by

ρC =
(N − 1)q1 + r0

N

(

∑N−2
j=1 qj(

∏j−1
i=1

pi

ri
) +

∏N−2
i=1

pi

ri

) . (15)

where











































pi =
1 + ω((N − 1)u+ (i − 1))

N + ω((N − 1)u+ (j −N))

qi =
N − 1 + ω(1−N)

N + ω((N − 1)u+ (i−N))

si =
(N − 1)(1 + ωu)

(N − 1)(1 + uω) + 1− ω + iω

ri =
1− ω + iω

(N − 1)(1 + uω) + 1− ω + iω

(16)

2) DB Process: For the DB process on a star of size N ,

the fixation probability of cooperation is

ρC =
(N − 1)q1 + r0

N

(

∑N−2
j=1 qj(

∏j−1
i=1

pi

ri
) +

∏N−2
i=1

pi

ri

) (17)
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where











































pi =
(N − 1)(1− ω) + (N − i− 1)uω

N(1− ω) + (N − i − 1)uω

qi =
1− ω

N(1− ω) + (N − i− 1)uω

si =
1 + uω

N + (N − i)uω

ri =
(N − 1) + (N − i− 1)uω

N + (N − i)uω

(18)

IV. NUMERICAL SIMULATIONS

We have deduced the fixation probability of cooperation

ρC for three typical networks in Section III. In this section,

numerical simulations are taken to validate the above theo-

retical results. Meanwhile, we also investigate the effect of

selection on the evolution of cooperation in another two typical

networks—the lattice network and the karate club network by

numerical simulations.

A. BD Process

Fig. 2 shows the fixation probability of cooperation ρC
as a function of selection intensity ω for the BD process

on five typical networks in Fig. 1. It is clear to see that

the theoretical and simulation results coincide quite nicely in

complete network, cycle and star. Moreover, it can be found

that, no matter what the graph is, the fixation probability of

cooperation ρC is monotonically decreasing with the increase

of selection intensity ω.

The above results indicate that cooperation is never favored

over defection for the BD process on complex networks.

Intuitively, these phenomena are caused by the evolutionary

rules of the BD process. Note that the BD process contains

two steps: firstly an individual is selected with a probability

proportional to its fitness, and then the selected individual re-

produces an offspring to replace one of its neighbors randomly.

At the first step, the individual is selected according to the

fitness of all individuals in the population. Hence, selection

takes places in a global scope. In this case, if defection is a

dominant strategy compared with cooperation, then defection

is dominant in a global perspective. According to Eq. (2),

the relative fitness of defectors increases with the selection

intensity ω. Hence, ρC must be decreasing with the increase

of ω. That is, selection is unfavorable to the evolution of

cooperation for the BD process.

B. DB Process

Fig. 3 shows the variation of the fixation probability ρC as

a function of the selection intensity ω for the DB process on

five typical networks in Fig. 1. Different from the BD process,

the effect of selection on the evolution of cooperation depends

on the population structure for the DB process. In complete

and star graphs, the fixation probability of cooperation ρC
is monotonically decreasing with the increase of selection

intensity ω. However, in cycle, lattice and the karate club

network, the fixation probability of cooperation ρC firstly

increases and then decreases with the increase of ω.

These various phenomena are also resulted from the evo-

lutionary rules of the BD process. Note that the DB process

contains two steps: firstly a random individual is chosen to

die, and then one neighbor of the dead individual is selected

to reproduce an offspring with a probability proportional to

its fitness. Compared with the BD updating rule, selection

takes effects only in a local neighborhood in the DB process.

Therefore, the effect of selection on the fixation probability of

cooperation ρC is determined not only by the fitness of each

individual but also by the structure of population.

In complete graphs, each node connects with all the other

nodes. Hence, the distinction between the local selection in

the DB process and the global selection in the BD process

is not significant. Therefore, for the DB process on complete

graphs, the fixation probability of cooperation ρC is monotone

decreasing with the selection intensity ω, which is similar in

the BD process, as shown in Fig. 2 (a) and Fig. 3 (a).

In the DB process on a star graph, the fixation probability of

cooperation ρC is also monotone decreasing with the selection

intensity ω, as shown in Fig. 3 (c). That is, selection is

unfavorable to the evolution of cooperation, as in the BD

process. However, in the DB process on star graphs, the

fixation probability of cooperation ρC decreases slowly and

steadily with the selection intensity ω, thus the influence

of selection on the emergence of cooperation is not such

significant as in the BD process.

In the DB process on cycle graphs, the fixation probability

of cooperation ρC is not monotonically decreasing with the

selection intensity ω. When the selection intensity is close to

ω0 ≈ 0.71, the fixation probability ρC reaches to its maximum.

Meanwhile, when ω ∈ [0, ω0], ρC is monotonically increasing

with ω. And when ω ∈ (ω0, 1], ρC is monotonically decreasing

with ω. It indicates that appropriate selection intensity can

promote the evolution of cooperation in the DB process on

cycle graphs.

Like in the cycle graph, the fixation probability of cooper-

ation ρC is also firstly increasing with ω and then decreasing

with the increase of ω in the lattice network and the karate

club network. Therefore, by appropriate choosing the selection

intensity ω, we can promote the cooperation level in DB

process on the lattice network and the karate club network.

The above simulation results are derived under the condition

of u = 0.1. However, it is worth noting that the conclusions

are also valid for any other cost-to-benefit ratio u. Consider the

evolutionary game dynamics on networks. It has shown that

cooperation is favored over defection if and only if σa+ b >

c + σd under weak selection in [15], where a, b, c, d are the

payoffs in game (1) and σ is a structural coefficient determined

by the population structure and game dynamics. For the DB

process, the structural coefficient of complete graph, cycle,

star and regular graph of degree k are σ = (N − 2)/N ,

σ = (3N − 8)/N , σ = 1 and σ = ((k + 1)N − 4k)/((k −
1)N), respectively. By applying the above condition into the

simplified game (3), we can conclude that cooperation cannot

favor over defection in complete network and star. However,

cooperation can favor over defection for cycle and lattice
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Fig. 2. The effect of selection on the evolution of cooperation for the BD process in complete graph, cycle, star, lattice and the karate club network. The

x-axis is selection strength ω, and the y-axis is the fixation probability ρC . The cost-to-benefit ratio is u = 0.1, and the network size N is shown in each

sub-figure. The points and lines are obtained by simulations and theoretical analysis, respectively. And the dotted lines in (d) and (e) are the direct fit of the

simulation points. In the simulation, the fixation probability ρC is determined by the proportion of runs where cooperators reached fixation out of 106 runs.
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Fig. 3. The effect of selection on the evolution of cooperation for the DB process in complete graph, cycle, star, lattice and the karate club network. x-axis

and y-axis are the selection strength ω and the fixation probability ρC , respectively. The cost-to-benefit ratio is u = 0.1, and the network size N is shown

in each sub-figure. The points and lines are obtained by simulations and theoretical analysis, respectively. And the dotted lines in (d) and (e) are the direct

fit of the simulation points. In the simulation, the fixation probability ρC is determined by the proportion of runs where cooperators reached fixation out of

106 runs.
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networks if u < (N−4)/(2N−4) and u < (N−8)/(4N−8),
respectively.

In heterogeneous networks, such as the karate club network,

it has shown that b/c > 〈knn〉 is a condition of favoring

cooperation, where 〈knn〉 is the mean degree of the nearest

neighbors [26]. Therefore, it can be derived that cooperation

is favored over defection if u < 0.1287 in DB process on the

karate club network.

V. CONCLUSION

In this paper, we have investigated the effect of selection

on the evolution of cooperation in evolutionary dynamics

on complex networks. The relationship between the fixation

probability of cooperation ρC and the selection intensity ω

have been derived for both the BD and DB processes on some

representative networks, including the complete graph, the

cycle graph, the star graph, the lattice network and the karate

club network. It is shown that cooperation is never favored in

the BD process. However, in the DB process on cycles, lattices

and the karate club network, it is found that selection can favor

cooperation over defection under some conditions. Moreover,

there exists an optimal selection intensity which facilitates

cooperation the best. The results indicate that appropriate

selection may promote the emergence of cooperation in some

real-world situations.
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[20] Y. Chen, J. Lü, X. Yu and Z. Lin,,“Consensus of discrete-time multi-

agent systems based on infinte products of general stochastic matrices,”

SIAM J. Control Optim., vol. 51, no. 4, pp. 3274-3301, 2013.

[21] M. Doebeli and C. Hauert, “Models of Cooperation Based on the

Prisoner’s Dilemma and the Snowdrift Game,” Ecol. Lett., vol. 8, no. 7,

pp. 748-766, 2005.

[22] P. Langer, M. A. Nowak and C. Hauert, “Spatial Invasion of Coopera-

tion,” J. Theor. Biol., vol. 250, no. 4, pp. 634-641, 2008.

[23] G. F. Lawler, Introduction to Stochastic Processed. Chapman and Hall,

London, UK., 1995.
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