
Computing Opposition By Involving Entire Population

Shahryar Rahnamayan, Senior Member, IEEE, Jude Jesuthasan, Farid Bourennani,
Hojjat Salehinejad, Student Member, IEEE, and Greg F. Naterer

Abstract—The capabilities of evolutionary algorithms (EAs)
in solving nonlinear and non-convex optimization problems
are significant. Among the many types of methods, differen-
tial evolution (DE) is an effective population-based stochastic
algorithm, which has emerged as very competitive. Since its
inception in 1995, many variants of DE to improve the perfor-
mance of its predecessor have been introduced. In this context,
opposition-based differential evolution (ODE) established a
novel concept in which, each individual must compete with
its opposite in terms of the fitness value in order to make an
entry in the next generation. The generation of opposite points is
based on the population’s current extreme points (i.e., maximum
and minimum) in the search space; these extreme points are
not proper representatives for whole population, compared to
centroid point which is inclusive regarding all individuals in the
population. This paper develops a new scheme that utilizes the
centroid point of a population to calculate opposite individuals.
Therefore, the classical scheme of an opposite point is modified
accordingly. Incorporating this new scheme into ODE leads to
an enhanced ODE that is identified as centroid opposition-based
differential evolution (CODE). The performance of the CODE
algorithm is comprehensively evaluated on well-known complex
benchmark functions and compared with the performance
of conventional DE, ODE, and some other state-of-the-art
algorithms (such as SaDE, ADE, SDE, and jDE) in terms of
solution accuracy. The results for CODE are promising.

I. INTRODUCTION

D IFFERENTIAL evolution (DE), an evolutionary algo-
rithm (EA) proposed by Storn and Price in 1995 [1],

[2], presents a higher performance compared to other EAs
because of its simplicity, effectiveness, and lower number
of control parameters. Over the past decade, DE has been
widely used to solve global optimization problems in various
engineering and science fields. Similar to other EAs, DE is a
population-based stochastic algorithm which can suffer from
slow convergence speed depending on the complexity of the
problem. Many researchers investigated how to accelerate
DE; a comprehensive survey of DE-related state-of-the-art
work can be found in [3]. Research works have undertaken
to improve the performance of DE by control parameter
fine-tuning and trial vector generation strategies for specific
problems [4]-[7], as well as obtaining those values and

Shahryar Rahnamayan, Farid Bourennani, and Hojjat Salehinejad are with
the Department of Electrical, Computer, and Software Engineering, Univer-
sity of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa,
ON L1H 7K4, Canada (emails: {shahryar.rahnamayan, farid.bourennaniand,
hojjat.salehinejad}@uoit.ca).

Jude Jesuthasan is with the Electrical and Computer Engineering Depart-
ment, University of Waterloo, 200 University Avenue West, Waterloo, ON
N2L 3G1, Canada (email: Jesuthasan@uwaterloo.ca)

Greg. F. Naterer is with the Faculty of Engineering and Applied Sci-
ence, Memorial University of Newfoundland, St. John’s, Canada (email:
dean.engineering@mun.ca).

strategies self-adaptively [8], [9]. Amidst all of the above
mentioned developments, Rahnamayan et al. [10] proposed
a new variant of DE known as Opposition-based Differential
Evolution (ODE) to accelerate DE convergence speed and
obtain more accurate solutions. By using opposition-based
learning concept [11], the ODE benefits from a stronger
exploration capability resulting in faster convergence. In
ODE, a scheme known as opposition-based computation
(OBC) was utilized to generate opposite of current can-
didate solutions. OBC defines an opposite-point based on
a predefined relationship between the extreme points (i.e.,
max and min) of a current population and the trial point.
Thus, applying OBC to a candidate-solution generated by
DE means that the opposite solution is calculated by using
coordinates of the candidate solution, the maximum and
the minimum of the population along each dimension as
boundary points. It has been shown that ODE outperforms
DE [11]. ODEs performance can be further improved by
having an opposition learning scheme that would account for
all members of a population rather than accounting for only
the minimum and maximum (extremes) of the population.

In this paper, a new OBC scheme, called centroid
opposition-based computation (COBC), is proposed to meet
the above features. Almost 200 OBL related papers are
published so far, but only this paper considers the entire
population in its opposition scheme, by using the center of
gravity, rather than the min and max points. The centroid is
the point where the centre of mass lies in a uniform body. For
this matter, it is assumed that the entire population of DE is
a discrete body; so the unit mass is distributed. The use of a
centroid does not only strengthen the learning process of an
algorithm, even with no boundaries, they are calculated at the
first iteration. In this paper, a new variant of ODE algorithm
that uses the COBC scheme is proposed and named centroid
opposition-based different evolution (CODE). Experimental
results have confirmed that CODE is much faster than both
ODE and DE and it also provides promising results when
compared with its other adaptive and self-adaptive versions
of DE. The concept of OBC has been used in many well-
known machine learning and optimization techniques such as
ant colony system (ACS) [14] and genetic algorithm (GA)
[33]. This idea can also be developed to increase of proposed
methods for in wireless communication systems [25], and
vehicular navigation systems [30].

The remaining of the paper is organized as follows. The
conventional DE will be briefly explained in Section II.
In Section III, a brief review of OBC is provided and the
proposed COBC approach is described. The COBC scheme

1800

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

is incorporated into DE to provide a new variant of DE
called CODE in Section IV. The performance of CODE
will be compared with DE, ODE, and other state-of-the-art
algorithms in Section V. Finally, the paper is concluded and
some further challenges are introduced in Section VI.

II. DIFFERENTIAL EVOLUTION

DE is an effective population-based optimization algorithm
which can be utilized to solve a global optimization problem
formalized as follows

Minimize f(X),X = [x1, ..., xD] ∈ R, (1)

subject to
gi(X) ≤ 0, for i = 1, ..., p, (2)

where xL
i ≤ xi ≤ xU

i for i = 1, ..., D, D is the dimension
of the problem, p is the number of constraints, and xL

i and
xU
i indicate the lower and upper bounds of the variable

xi, respectively. DE operates through four stages, described
below, in order to find the desired optimal solution.

A. Population Initialization

This initiates the search towards the global optimum by
having NP stage number of individuals in population, D di-
mensional, uniform randomly generated candidate solutions,
which are known as initial parameter vectors. Since each
parameter vector is subject to change over a limited number
of generations G, it is customary to denote the ith parameter
vector of Gth generation as follow:

Xi,G = [x1,i,G, ..., xD,i,G], (3)

where G = 0, ..., GMax and GMax indicates the maximum
number of the generations. During the initialization stage, a
component of a parameter vector xj,i,0 is initialized accord-
ing to the following equation

xj,i,0 = xL
j + randi,j(0, 1)× [xU

j − xL
j], (4)

where j = 1, .., D, i = 1, ..., NP , rand(0, 1) generates a
uniform random number in [0, 1], and xL

i and xU
i are the

lower and upper bounds of the variable xi, respectively.

B. Mutation Operator

A mutation operator generates a vector known as a donor
vector Vi,G for each vector in the current population iden-
tified as a target vector. Although there are variant DE-
mutation schemes [4], [5], the classical version is given as

Vi,G = Xi
r1,G + F (Xi

r2,G − Xi
r3,G), (5)

where i = [1, ..., NP]. Here, the indices r1, r2, r3 are
mutually exclusive integers chosen randomly from the set
{1, ..., NP}. Furthermore, the value of the amplification
factor F of the difference vector typically lies in the interval
(0, 2].

C. Crossover Operator

By shuffling a donor vector with its associated target vector
to enhance the potential diversity of the population, this phase
results in a vector known as a trial vector Ui,G defined as
follows:

Uj,i,G =

{

vj,i,G, randi,j(0, 1) ≤ Cr or j = randj
xj,i,G, otherwise

,

(6)
where randi,j(0, 1) is the jth uniformly distributed random
number generated for the ith trial vector, Cr ∈ (0, 1) is a
constant crossover rate, and randj ∈ {1, ..., D} is a random
integer number, where ensures Ui,G inherits at least one
component from Vi,G.

D. Selection

Finally, this step leads to a new generation G+ 1, which
is derived by having made the selection either to retain the
old solution xi,G or introduce a new candidate solution Ui,G

instead. For a minimization problem, it is defined as follows:

Xi,G+1 =

{

Ui,G, f(Ui,G) ≤ f(Xi,G)
Xi,G, f(Ui,G) > f(Xi,G)

, (7)

where i = 1, ..., NP . A comprehensive survey about DE can
be found in [22].

III. OPPOSITION-BASED LEARNING

Opposition-based learning (OBL) was introduced by
Tizhoosh in 2005 [12]. The main idea behind OBL is the
simultaneous consideration of an estimate and its correspond-
ing opposite estimate (i.e., guess and opposite guess) in order
to achieve a more accurate approximation for the current
candidate solution. By considering opposite individuals dur-
ing opposition-based population initialization and generation
jumping, OBL was successfully applied to DE to solve
well-known benchmark problems [13],[14], noisy problems
[15], and large scale problems [16] more effectively. A
self-adaptive ODE was also introduced in [17]. Another
version of OBL used quasi-opposite numbers rather than
opposite numbers in ODE to form the Quasi-Oppositional
DE (QODE) [18], [19]. Both ODE and QODE used a
constant generation jumping rate. The variable jumping rates
were investigated for ODE in [20]. A lower jumping rate
presented a better performance than a fixed rate, which
means opposition-based generation jumping is more benefi-
cial during exploration than exploitation. Among all proposed
opposition-based algorithms, the ODE is the most well-
known method. Weber et al. [21] divided modern DE-based
algorithms into the following two categories: (1) DE with
an integrated extra component, and (2) DE with a modified
structure. The first group includes the algorithms with a DE
framework and an extra component, such as local searchers
and/or additional operators. The second group contains types
of DE-based algorithms which modify the main structure
of the canonical DE. According to this classification, the
same authors considered the ODE in the second category
[22] with other recently proposed enhanced DE variants, such
as self adaptive control parameters [23], global-local search

1801

DE [24], and self adaptive coordination of multiple mutation
rules [25].

DE suffers from a limited amount of exploratory moves
due to its limited mutation and crossover combinations which
can be improved by embedding alternative moves [21]. Fur-
thermore, the limited amount of moves can cause undesirable
search process stagnation; a situation where diversity of the
population is still high but it does not converge to a solution
[26]. The successful extra moves can be achieved by two
ways: (a) increasing the exploratory pressure, and/or (b)
utilizing a randomization scheme [22]. In this regard, the
ODE uses the first approach by proposing a new operator,
i.e. opposition-based generation jumping which checks un-
explored areas of the decision space by utilizing the above
mentioned alternative moves [22]. These additional moves
improve the DE exploration performance and also reduce the
chance of stagnation by injecting fitter opposite individuals
during the generation jumping. The risk of stagnation of
DE is higher when the dimension of the problem increases
[22], [23]. This may explain why in general, ODE performs
better in large-scale problems [16]. Following, the traditional
min-max OBC scheme is presented and then the proposed
centroid-based OBC is introduced.

A. Min-Max Oppositional Computing

In a one-dimensional search space, let x ∈ [a, b] where
[a, b] ⊂ R. The opposite point x̌ of x is defined as follows:

x̌ = a+ b− x. (8)

In a multidimensional space, let P = [x1, ..., xD] be a
point in D-multidimensional space with xi ∈ [ai, bi] for i =
1, ..., D. Then, the opposite point P̌ = [x̌1, ..., x̌D] is defined
as

x̌i = ai + bi − xi, (9)

for i = 1, ..., D. Upon the application of OBC to a can-
didate solution at a particular generation, its opposite is
calculated according to Eq. (9). The best candidate solutions
are selected based on their corresponding fitness value. For
instance, assume that f is the given fitness function that
must be minimized, and P and P̌ are the current popu-
lation and corresponding opposite population, respectively.
By comparing the fitness values of candidate solutions of
{P̌ ∪ P}, the candidate solutions with better fitness values
are selected to go through the evolutionary process while
the other candidate solutions omitted. This process is called
opposition-based optimization. The above approach was ap-
plied during opposition-based population initialization and
generation jumping, which are described in the following
section. These two components are embedded into DE to
build ODE [10]. In this paper, the same two components
are used but with a new centroid opposition-based scheme,
which is described in the following subsection.

B. Min-Max vs. Centroid Oppositional Computing

In ODE, when an opposite candidate solution is calculated,
it is necessary to select two boundary points for each

0 200 400 600 800 1000
0

10

20

30

40

50

60

Dimension

P
ro

b
ab

il
it

y
 (

%
)

P
min−max

P
centroid

P
rand

34.10%

15.23%

Fig. 1. Monte-Carlo simulation for the min-max, centroid, and rand
oppositional-based computing (OBC) methods.

dimension. This is performed by choosing the maximum
and minimum values of a variable j from the population of
vectors. ODE uses OBC to accelerate DE which results in
efficient performance on average for a majority of benchmark
problems [10]. However, still there is a room of further
enhancement of OBC scheme. When calculating the opposite
point, two boundaries (min and max) are taken from two
extreme points in the population for every dimension and the
remaining points of the population are not considered. The
proposed COBC method takes the entire population for the
generation of the opposite which improves the ODE in terms
of convergence speed and solution accuracy. The centroid
point and centroid-opposition based point are defined as
below.

Let (X1, ...,Xn) be n points in D dimensional search
space with each point in that space carrying a unit mass.
Then the centroid of the body can be defined as follows:

M =
X1 + ...+ Xn

n
, (10)

where then we have

Mi =

n
∑

j=1

xi,j

n
. (11)

Having defined the centroid of a discrete uniform body
as M, the opposite-point X̌i of a point Xi of the body is
calculated as follows

X̌i = 2× M − Xi. (12)

It is shown using Monte-Carlo method, without using
minimum and maximum boundaries of landscape, the cen-
troid approach can be employed with a better performance
than min-max method. The simulation is conducted for
dimensions one to one-thousand and with NRun = 10, 000
number of independent runs per dimension. In each run,
NS = 50 sample points as well as one point, as an optimum,
are uniform randomly generated in interval [Xmin, Xmax].
Then, the estimated boundary based on the generated sample
points is calculated as [xmin, xmax]. In each independent run

1802

r for each dimension d, the Euclidean distance between the
opposite of a sample point and the optimal point is calculated.
Then, the minimum distance is selected as

∆r = min{δr1, ..., δ
r
NS}. (13)

By considering the min-max, centroid, and random place-
ment of opposite points (rand), approaches for comparison,
the distances using both approaches are calculated and then
cardinality (the number of runs) in which each one was
successful is calculated for centroid method as

ncentroid = card{∆r
centroid < min{∆r

min−max,∆
r
rand}},

(14)
for min-max method as

nmin−max = card{∆r
min−max < min{∆r

centroid,∆
r
rand}},

(15)
and for rand method as

nrand = card{∆r
Rand < min{∆r

min−max,∆
r
centroid}}.

(16)
By using the definitions in Eq.s (14)-(16), success proba-

bility of min-max, centroid, and rand schemes are illustrated
in Fig. 1. By having in mind the total number of runs, the
success probability for min-max, centroid, and rand schemes
are defined as following, respectively:

Pmin−max =
nmin−max

NRun
, (17)

Pcentroid =
ncentroid

NRun
, (18)

and
Prand =

nrand

NRun
, (19)

where Pcentroid + Pmin−max + PRand = 1. Therefore, for
d = 200, Pcentroid = 54.85%, Pmin−max = 39.62%, and
Prand = 5.52% and for d = 1000, Pcentroid = 55.14%,
Pmin−max = 39.34%, and Prand = 5.52%.

IV. CENTROID OPPOSITION-BASED DIFFERENTIAL
EVOLUTION

Similar to ODE, CODE has the same two main added
opposition-based components, namely opposition-based pop-
ulation initialization and opposition-based generation jump-
ing.

A. Opposition-Based Population Initialization

At this stage, after initialization of the population P of
size NP with D dimensional vectors at generation zero,
its opposite population P̌ is computed by using a COBC
scheme. Unlike an opposition point nc which is generated
using an OBC scheme, COBC can generate opposite points
outside the search space. This instance is avoided by ran-
domly initializing the opposite-point in between the centroid
point M , and the boundary point that lie in the same direction
as the opposite point. By using the scheme of opposition-
based optimization, NP fittest parameter vectors are selected
from {P ∪ P̌} to go through the evolution process.

Algorithm 1 Centroid Opposition-based Differential Evo-
lution (CODE)

1: Procedure CODE
// Opposition-based population initialization

2: Generate uniformly distributed random population P0

// Centroid point evaluation

3: for i = 1 → D do
4: Mi = 0
5: for j = 1 → NP do
6: Mi = Mi + P0,i,j

7: end for
8: end for
9: M = M/NP // End of centroid point evaluation

// Centroid opposite population calculation

10: for i = 1 → NP do
11: for j = 1 → D do
12: OP0,i,j = 2×Mj − P0,i,j

13: end for
14: end for

// End of centroid opposite population calculation

15: Randomly initialize opposite points between Mi and the bound-
ary point in the opposite direction if any opposite points are
outside the search space.

16: Select NP fittest individuals from the set {P0∪OP0} as initial
population P0

// End of opposition-based population initialization

17: while (BFV > V TR & NFC < NFCMax) do
18: for i = 1 → NP do
19: Evaluate the donor vector Vi,G

20: Evaluate the trial vector Ui,G

// Selection of parameter vectors of the next generation

21: if f(Ui,G) ≤ f(Pi,G) then
22: Pi,G+1 = Ui,G

23: else
24: Pi,G+1 = Pi,G

25: end if
// End of selection of parameter vectors of the next

generation

26: end for
// Opposition-based generation jumping

27: Update the search space to minjP , maxjP
28: if rand(0, 1) < Jr) then

// Centroid point evaluation

29: for i = 1 → D do
30: Mi = 0
31: for j = 1 → NP do
32: Mi = Mi + PG,i,j

33: end for
34: end for
35: M = M/NP // End of centroid point evaluation

// Centroid opposite population calculation

36: for i = 1 → NP do
37: for j = 1 → D do
38: OPG,i,j = 2×Mj − PG,i,j

39: end for
40: end for

// End of centroid opposite population calculation

41: Randomly initialize opposite points between Mi and the
boundary point in the opposite direction if any opposite points
are outside the search space.

42: Select NP fittest individuals from the set {P0 ∪OP0}
as current population

43: end if
// End of opposition-based generation jumping

44: end while

1803

B. Opposition-Based Generation Jumping

The similar approach of opposition-based population ini-
tialization is applied in this stage, based on a probability
value called the generation jumping rate, Jr. So NP fittest
individuals are selected from {P ∪ P̌}; P and P̌ indicate the
current and opposite population, respectively. The optimum
value for Jr lies within the range [0, 0.4] [10], and similar
to DEs other control parameters, the optimal value of Jr

is problem dependent [10]. When a centroid-opposite point
falls outside the search space, the opposite point needs to
be re-sampled to a random point so by this way it remains
a valid opposite point. This is achieved by the following
scheme. Having considered the search space as [a, b] and the
centroid point as M, the opposition point for the whole space
is calculated as

x̌ = d+ rand(0, 1)× (c− d), (20)

where

d =

{

M, x̌ > b

a, x̌ < a
, (21)

and

c =

{

b, x̌ > b

M, x̌ < a
. (22)

The detailed description of the CODE algorithm is pro-
vided in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, the CODE is compared with its two
parent algorithms (i.e., ODE and DE) and then with state-of-
the-art DE-based algorithms, namely SaDE [9], ADE [27],
SDE [12], and jDE [13]. The comparisons are based on
solution accuracy. First, the employed benchmark functions
will be explained and then control parameter settings for the
algorithms.

A. Parameter Settings and Benchmark Functions

The comparisons are conducted on 24 well-known bench-
mark functions which are selected from the CEC-2005 spe-
cial session on real parameter optimization [28] and the CEC-
2008 special session and competition on large-scale global
optimization [29]. To make the problems more complicated,
they are rotated and shifted. The rotation is achieved by
orthogonal matrices while the shifting is retained as before.
Since the test suite involves two sessions (CEC-2005 and
CEC-2008) the composition of the benchmark functions
is summarized in Table I by indicating the corresponding
explicit session and function type.

The mutation strategy and parameter settings are chosen
based on the previous work as follow:
• Population size, NP = 10×D [30]
• Differential amplification factor, F = 0.5 [2], [4],

[6], [30]
• Crossover rate, Cr = 0.9 [2], [4], [6], [30]
• Generation jumping rate (for ODE and CODE),

Jr = 0.3 [10]

TABLE I
SET OF 24 BENCHMARK FUNCTIONS FROM CEC 2005 AND CEC 2008

COMPETITION SESSIONS. ALL FUNCTIONS ARE SHIFTED EXCEPT F6
AND F11. ALL FUNCTIONS ARE ROTATED ORTHOGONALLY.

F Benchmark Function CEC
Session

Function
Type

F1 Sphere Function F1-2008 Unimodal
F2 Schwefels Problem 2.21 F2-2008 Unimodal
F3 Schwefels Problem 1.2 F2-2005 Unimodal

F4 High Conditioned
Elliptic Function F3-2005 Unimodal

F5 Schwefels Problem 1.2
with Noise in Fitness

F4-2005 Unimodal

F6 Schwefels Problem 2.6 with
Global Optimum on Bounds F5-2005 Unimodal

F7 Rosenbrocks Function F3-2008 Multimodal
F8 Rastrigins Function F4-2008 Multimodal
F9 Riewanks Function F5-2008 Multimodal
F10 Ackleys Function F6-2008 Multimodal
F11 FastFractal DoubleDip Function F7-2008 Multimodal
F12 Weierstrass Function F11-2005 Multimodal
F13 Schwefels Problem 2.13 F12-2005 Multimodal

F14 Expanded Griewanks
plus Rosenbrocks Function F13-2005 Expanded

F15 Expanded Scaffers F6 Function F14-2005 Expanded
F16 Hybrid Composition Function F16-2005 Hybrid
F17 F16 with Noise in Fitness F17-2005 Hybrid
F18 Hybrid Composition Function F18-2005 Hybrid

F19 F18 with narrow
basin global optimum F19-2005 Hybrid

F20 F18 with global optimum
on the bounds

F20-2005 Hybrid
F21 Hybrid Composition Function F21-2005 Hybrid
F22 Non-Continuous version of F21 F23-2005 Hybrid
F23 Hybrid Composition Function F24-2005 Hybrid
F24 F23 without bounds F25-2005 Hybrid

• Mutation strategy DE/rand/1/bin (classical version)
[2], [4], [30]

• Maximum number of function evaluations,
MaxNFC = 5000×D

• Value to reach, V TR = 1e− 8

B. Simulation Results

1) Comparison of DE, ODE, and CODE: Each test func-
tion has been evaluated by 30 independent runs per algorithm
to report mean, standard deviation, best, and the worst error
values (i.e., |f(x) − f(x∗)|). The results of experiments for
100-dimensional problems are reported in Table II-Table IV.
In these tables, bold faced results differentiate the algorithm
that yields better solution accuracy than the other two coun-
terparts. As shown in Table II and Table III for D=100,
while the proposed CODE algorithm showed better solution
accuracy in 19 instances out of 24, ODE and DE did better on
4 and 1 instances, respectively. Furthermore, ODE performed
in a similar way in by surpassing DE and CODE for functions
F2, F11, F15, and F24.

2) Comparison of CODE with state-of-the-art DE algo-

rithms (i.e., SaDE, ADE, SDE, and jDE): The main con-
tribution in this paper is to enhance ODE by introducing
a new scheme of opposition and not outperforming the
state-of-the-art algorithms, especially their adaptive variants.
Furthermore, the investigation of a centroid-opposition based
version of them would be worthwhile. In addition, compar-

1804

TABLE II
RESULTS FOR 100D PROBLEMS (F1-F12)

F Measure DE ODE CODE

1

Mean 2.64E+04 3.71E+04 3.88E-01
Std 2.35E+03 3.22E+03 8.23E-01
Best 2.22E+04 2.70E+04 3.90E-03

Median 2.59E+04 3.72E+04 1.06E-01
Worst 3.14E+04 4.17E+04 4.2412

2

Mean 7.11E+01 2.77E-01 3.53E+01
Std 4.4473 1.4011 9.1469
Best 6.37E+01 4.00E-03 1.66E+01

Median 7.07E+01 2.00E-02 3.41E+01
Worst 8.11E+01 7.6952 5.14E+01

3

Mean 4.18E+05 4.39E+05 4.49E+04
Std 2.34E+04 2.67E+04 6.39E+03
Best 3.65E+05 3.81E+05 3.61E+04

Median 4.18E+05 4.39E+05 4.51E+04
Worst 4.63E+05 4.99E+05 5.61E+04

4

Mean 9.99E+07 1.57E+08 5.14E+05
Std 1.03E+07 2.57E+07 2.40E+05
Best 7.36E+07 8.78E+07 1.76E+05

Median 1.02E+08 1.59E+08 4.84E+05
Worst 1.19E+08 1.93E+08 1.27E+06

5

Mean 4.53E+05 4.91E+05 5.67E+04
Std 4.57E+04 3.09E+04 7.07E+03
Best 3.23E+05 4.23E+05 4.40E+04

Median 4.56E+05 4.90E+05 5.66E+04
Worst 5.24E+05 5.48E+05 7.01E+04

6

Mean 4.44E+04 4.64E+04 1.29E+04
Std 1.55E+03 2.09E+03 2.12E+03
Best 4.13E+04 4.17E+04 9.72E+03

Median 4.45E+04 4.69E+04 1.24E+04
Worst 4.72E+04 4.92E+04 1.87E+04

7

Mean 3.60E+09 2.26E+09 4.08E+03
Std 6.54E+08 2.42E+09 5.14E+03
Best 2.08E+09 9.64E+02 4.92E+02

Median 3.72E+09 1.48E+09 1.60E+03
Worst 4.66E+09 6.83E+09 2.44E+04

8

Mean 1.02E+03 1.05E+03 3.99E+02
Std 2.71E+01 3.19E+01 2.49E+02
Best 9.37E+02 9.74E+02 5.76E+01

Median 1.02E+03 1.05E+03 5.43E+02
Worst 1.06E+03 1.10E+03 6.74E+02

9

Mean 2.40E+02 3.44E+02 1.23E-01
Std 2.62E+01 3.24E+01 1.38E-01
Best 1.70E+02 2.77E+02 8.30E-03

Median 2.42E+02 3.43E+02 8.39E-02
Worst 2.91E+02 4.05E+02 6.36E-01

10

Mean 1.49E+01 1.50E+01 6.14E-01
Std 4.11E-01 2.3743 5.71E-01
Best 1.37E+01 2.651 9.80E-03

Median 1.50E+01 1.54E+01 3.67E-01
Worst 1.55E+01 1.67E+01 1.9092

11

Mean -8.67E+02 -9.69E+02 -8.95E+02
Std 1.23E+01 1.59E+01 1.70E+01
Best -8.91E+02 -1.01E+03 -9.48E+02

Median -8.67E+02 -9.64E+02 -8.93E+02
Worst -8.46E+02 -9.44E+02 -8.69E+02

12

Mean 1.38E+02 1.26E+02 9.8313
Std 3.0908 5.0757 4.1136
Best 1.32E+02 1.16E+02 2.6565

Median 1.38E+02 1.27E+02 8.3303
Worst 1.43E+02 1.40E+02 2.04E+01

TABLE III
RESULTS FOR 100D PROBLEMS (F13-F24)

F Measure DE ODE CODE

13

Mean 1.95E+07 1.10E+07 5.96E+05
Std 7.97E+05 1.56E+06 1.65E+05
Best 1.77E+07 9.21E+06 2.52E+05

Median 1.96E+07 1.07E+07 5.81E+05
Worst 2.09E+07 1.50E+07 8.82E+05

14

Mean 1.16E+05 7.12E+01 4.47E+01
Std 4.08E+04 2.1939 1.34E+01
Best 4.67E+04 6.57E+01 1.34E+01

Median 1.04E+05 7.14E+01 4.87E+01
Worst 2.22E+05 7.47E+01 6.03E+01

15

Mean 4.66E+01 4.48E+01 4.65E+01
Std 2.20E-01 4.42E-01 2.53E-01
Best 4.62E+01 4.39E+01 4.57E+01

Median 4.67E+01 4.48E+01 4.65E+01
Worst 4.69E+01 4.56E+01 4.70E+01

16

Mean 8.89E+02 9.19E+02 3.34E+02
Std 1.60E+01 1.75E+01 1.17E+01
Best 8.53E+02 8.89E+02 3.18E+02

Median 8.90E+02 9.21E+02 3.31E+02
Worst 9.20E+02 9.54E+02 3.58E+02

17

Mean 1.04E+03 1.05E+03 4.86E+02
Std 1.17E+01 2.42E+01 1.56E+01
Best 1.01E+03 9.85E+02 4.55E+02

Median 1.04E+03 1.06E+03 4.85E+02
Worst 1.06E+03 1.08E+03 5.13E+02

18

Mean 1.09E+03 9.01E+02 9.01E+02
Std 9.3154 3.98E-01 1.5222
Best 1.07E+03 9.00E+02 9.00E+02

Median 1.09E+03 9.01E+02 9.00E+02
Worst 1.12E+03 9.02E+02 9.07E+02

19

Mean 1.09E+03 9.01E+02 9.00E+02
Std 1.51E+01 7.18E-01 2.91E-01
Best 1.05E+03 9.00E+02 9.00E+02

Median 1.09E+03 9.01E+02 9.00E+02
Worst 1.12E+03 9.04E+02 9.02E+02

20

Mean 1.09E+03 9.01E+02 9.00E+02
Std 1.45E+01 1.6344 5.82E-01
Best 1.05E+03 9.00E+02 9.00E+02

Median 1.09E+03 9.01E+02 9.00E+02
Worst 1.12E+03 9.07E+02 9.03E+02

21

Mean 8.94E+02 8.97E+02 5.00E+02
Std 9.5376 9.2578 6.98E-02
Best 8.80E+02 8.76E+02 5.00E+02

Median 8.94E+02 8.97E+02 5.00E+02
Worst 9.19E+02 9.11E+02 5.00E+02

22

Mean 8.98E+02 8.95E+02 5.19E+02
Std 8.5401 8.9486 1.6878
Best 8.74E+02 8.74E+02 5.18E+02

Median 8.99E+02 8.97E+02 5.18E+02
Worst 9.10E+02 9.13E+02 5.25E+02

23

Mean 1.28E+05 1.28E+05 1.28E+05
Std 6.8244 1.62E+01 7.00E+01
Best 1.28E+05 1.28E+05 1.28E+05

Median 1.28E+05 1.28E+05 1.28E+05
Worst 1.28E+05 1.28E+05 1.28E+05

24

Mean 8.78E+02 8.24E+02 8.50E+02
Std 1.36E+01 1.20E+01 1.19E+01
Best 8.36E+02 7.97E+02 8.16E+02

Median 8.81E+02 8.25E+02 8.49E+02
Worst 9.01E+02 8.52E+02 8.71E+02

1805

ative experiments will be conducted in this section. It is not
feat to compare CODE with adaptive/self adaptive variants
of DE. Purpose is just to assess the pros and cons of the
proposed CODE method. The high computational cost of
manual tuning of control parameters (CPs) of DE is very
well understood in the DE community. Several DE-based
variants were proposed to choose control parameters and
trial vector generation strategies self-adaptively to achieve
better performance compared to any of the manually-tuned
DEs [9], [27], [31], [32]. In Ref. [9], the DE-based state-of-
the-art algorithms such as SaDE [9], ADE [31], SDE [32],
and jDE [27] were tested on the over set of a benchmark
function. It was shown that SaDE performs better than any
of its counterparts. The results obtained for SaDE, ADE,
SDE, jDE in Ref. [9] are directly used in this section of the
paper in determining the capability of CODE.

The set of benchmark functions tested for this purpose can
be found In Ref. [9], in which functions F1 -F14 have been
selected with the following setups.
• Problem dimensions: 10
• Mutation strategy for CODE algorithms:

DE/rand/1/bin
• Differential amplification factor, F = 0.9
• Crossover rate, Cr = 0.9
• Value-to-reach, V TR = 1e− 5 [9]
• Maximum Number of Function evaluations: 1e +

5×D [9]
• Number of trial runs: 30 independent runs [9]
The numerical results are given in TABLE IV. In order to

make the comparison easier, the results are summarized in
TABLE V, where based on the total winning items they have
been ranked. The results show that the SaDE and CODE are
ranked first and second (shared with jDE), respectively.

VI. CONCLUSION AND FUTURE WORKS

Similar to multiple evolutionary algorithms, DE can suffer
from slow and/or premature convergence depending on the
complexity of the problem. Also, its sensitiveness to the
control parameters have eluded researchers from all over the
world. They have been solved to a certain extent by adopt-
ing different mutation strategies and self-adaptive tuning of
control parameters. Although incorporating opposition-based
learning in DE has proven to be efficient for most prob-
lems, there is still much room for improvement. This paper
provided a new OBC scheme to enhance the conventional
OBC. The conventional OBC scheme in ODE has slower
learning from an opposite candidate solution to its candidate
counterpart because it uses extreme members maximum
and minimum of the population. But the new OBC scheme
known as centroid OBC accounts achieves stronger learning
properties by considering all members of the population in
the learning process.

The new opposition scheme with a new variant of ODE
called CODE is evaluated using well-known challenging
benchmark functions. The performance of CODE was mea-
sured in terms of solution accuracy and compared with its
parents, DE and ODE. Furthermore, CODE’s competiveness

TABLE IV
NUMERICAL RESULTS OF CODE, SADE, ADE, SDE, AND JDE FOR

F1-F14 FUNCTIONS. SR INDICATES THE SUCCESS RATE. M INDICATES
THE MEASURE. BEST RESULT FOR EACH SPECIFIED TEST FUNCTION

(POSSIBLY SHARES WITH OTHER ALGORITHMS ALSO) IS IN BOLDFACE.

F M CODE SaDE ADE SDE jDE

1
Mean 0 0 0 0 0
Std 0 0 0 0 0
SR 100% 100% 100% 100% 100%

2
Mean 0 0 1.4E-4 0 0
Std 0 0 2.4E-4 0 0
SR 100% 100% 100% 100% 100%

3
Mean 0 0 1.5E+00 2.0E+00 1.3E-13
Std 0 0 2.6E+00 1.6E+00 7.3-13
SR 100% 100% 0% 0% 100%

4
Mean 0 0 7.0E-02 0 0
Std 0 0 5.8E-2 0 0
SR 100% 100% 0% 100% 100%

5
Mean 0 0 0 0 0
Std 0 0 0 0 0
SR 100% 100% 100% 100% 100%

6
Mean 0 0 0 0 0
Std 0 0 0 0 0
SR 100% 100% 100% 100% 100%

7
Mean 2.1E-02 0 2.5E-07 7.3E-03 5.7E-04
Std 2.7E-02 0 1.4E-06 7.5E-03 2.2E-03
SR 30% 100% 100% 40% 93%

8
Mean 1.9E-02 1.3E-02 7.9E-02 3.8E-02 2.2E-02
Std 1.4E-02 1.1E-02 4.2E-02 3.0E-02 1.7E-02
SR 100% 20% 0% 0% 07%

9
Mean 4.2E+00 0 0 6.9E-01 0
Std 3.8E+00 0 0 8.7E-01 0
SR 20% 100% 100% 50% 100%

10
Mean 4.5E+00 3.8E+00 9.4E+00 7.7E+00 5.7E+00
Std 2.6E+00 1.3E+00 2.2E+00 3.1E+00 2.1E+00
SR 0% 0% 0% 0% 0%

11
Mean 5.62E+00 0 0 1.22E+00 0
Std 2.3E+00 0 0 9.96E-01 0
SR 0% 100% 100% 27% 100%

12
Mean 9.5E+01 0 0 2.3E+01 0
Std 1.9E+02 0 0 4.8E+01 0
SR 70% 100% 100% 80% 100%

13
Mean 0 0 1.4E-01 3.0E+01 1.3E+01
Std 0 0 5.7E-01 4.6E+00 3.4E+01
SR 100% 100% 90% 70% 87%

14
Mean 1.7E-01 2.5E-01 5.8E+00 8.2E+00 1.2E+00
Std 4.6E-01 5.2E-01 4.8E+00 2.5E+01 3.2E+00
SR 87% 80% 0% 23% 53%

TABLE V
SUMMARIZED COMPARISON RESULTS FROM TABLE IV.

CODE SaDE ADE SDE jDE
Total 8 13 6 5 8
Rank 2 1 3 4 2

to state-of-the-art DE algorithms was evaluated. The results
showed that CODE significantly performs better than DE and
ODE for 100D problems and it showed promising results
(ranked second) when compared to SaDE, ADE, SDE, and
jDE algorithms. The main contribution of this paper is to
enhance opposition-based computation schemes by giving an
equal role to all individuals in the current population. The
previous version worked with only two extreme points (i.e.,
Min and Max).

1806

Future research will propose variant centroid-opposition
based mutation strategies and also a self-adaptive CODE.
This can target the effects of the new scheme over all
opposition-based algorithms which are proposed in the soft
computing field.

REFERENCES

[1] R. Storn and K. Price, “Differential evolutionA simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Berkeley, CA, Tech. Rep TR-95-012, 1995.

[2] R. Storn and K. Price, “Differential evolution-A simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, 1997, pp. 341-359.
[3] S. Das and P.N. Suganthan, “Differential Evolution: A Survey of the

State-of-the-Art,” IEEE Transactions On Evolutionary Computation,
vol. 15, no. 1, 2011, pp. 4-31.

[4] K. Price, R. Storn, and J. Lampinen, “Differential Evolution-A Prac-
tical Approach to Global Optimization,” Berlin, Germany: Springer,
2005.

[5] K. V. Price, “An introduction to differential evolution,” New Ideas in
Optimization, D. Corne, M. Dorigo, and V. Glover, Eds. London, U.K.:
McGraw-Hill, 1999, pp. 79-108.

[6] M.M. Ali and A. Trn, “Population set based global optimization
algorithms: Some modifications and numerical studies,” Computer

Operational Research, vol. 31, no. 10, pp. 1703-1725, 2004.
[7] J. Ronkkonen, S. Kukkonen, and K.V. Price, “Real parameter opti-

mization with differential evolution,” inProc. IEEE World Congress

on Computational Intelligence, vol. 1, 2005, pp. 506-513.
[8] A.E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in

evolutionary algorithms,” IEEE Transaction in Evolutionary Compu-

tation, vol. 3, no. 2, pp.124-141, 1999.
[9] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution

algorithm with strategy adaptation for global numerical optimization,”
IEEE Transaction in Evolutionary Computation, vol. 13, no. 2, pp.
398-417, Apr. 2009.

[10] S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama, “Opposition-
based differential evolution,” IEEE Transaction in Evolutionary Com-

putation, vol. 12, no.1, pp.64-79, Feb. 2008.
[11] H.R. Tizhoosh, “Opposition-based learning: A new scheme for ma-

chine intelligence,” in Proc. Int. Conf. Comput. Intell. Modelling

Control and Autom., Vienna, Austria, 2005, vol. I, pp. 695-701.
[12] H.R. Tizhoosh, “Opposition-Based Learning: A New Scheme for Ma-

chine Intelligence,” in Proc. Int. Conf. on Computational Intelligence

for Modelling Control and Automation, Vienna, Austria, Vol. I, 2005,
pp. 695-701.

[13] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, “Opposition-Based
Differential Evolution Algorithms,” in Proc. IEEE World Congress on

Computational Intelligence, Vancouver, Canada, 2006, pp. 7363-7370.
[14] A. R. Malisia and H. R. Tizhoosh, “Applying opposition-based ideas

to the ant colony system,” in IEEE Swarm Intelligence Symposium,
2007, pp. 182-189.

[15] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, “Opposition-Based
Differential Evolution for Optimization of Noisy Problems,” in Proc.

IEEE World Congress on Computational Intelligence, Vancouver,
Canada, 2006, pp. 6756-6763.

[16] S. Rahnamayan, G. Gary Wang, “Investigating in Scalability of
Opposition- Based Differential Evolution,” in Proc. 8th WSEAS In-

ternational Conference on Simulation, Modeling and Optimization,
Santander, Cantabria, Spain, September 23-25, 2008, pp. 105-111.

[17] R. Balamurugan, S. Subramanian, “Emission-constrained Dynamic
Economic Dispatch using Opposition-based Self-adaptive Differential
Evolution Algorithm,”International Energy Journal, Vol. 10, Issue 4,
December 2009.

[18] S. Rahnamayan, H.R. Tizhoosh, M.M.A Salama, “Quasi-Oppositional
Differential Evolution,” in IEEE Congress on Evolutionary Computa-

tion, Singapore, Sep. 2007, pp. 2229-2236.
[19] L. Peng, Y. Wang, “Differential Evolution using Uniform-Quasi-

Opposition for initializing the Population,” Information Technology

Journal, vol.9, no.8, 2010, pp. 1629-1634.
[20] S. Rahnamayan, H.R. Tizhoosh, M.M.A Salama, “Opposition-Based

Differential Evolution (ODE) With Variable Jumping Rate,” in Proc.

of IEEE Symposium on Foundations of Computational Intelligence,
Honolulu, Hawaii, USA, April 2007, pp. 81-88.

[21] M. Weber, V. Tirronen, F. Neri, “Scale Factor Inheritance Mechanism
in Distributed Differential Evolution,” Soft Computing-A Fusion of

Foundations, Methodologies and Applications, Springer, vol. 14, Issue
11, Sept. 2010, pp. 1187-1207.

[22] F. Neri, V. Tirronen, “Recent Advances in Differential Evolution: A
Review and Experimental Analysis,” Artificial Intelligence Review,
Springer, vol. 33, Issue 1, Feb. 2010, pp. 61-106.

[23] J. Brest, A. Zamuda, B. Bokovi, M. Maucec, V. umer, “High-
dimensional real-parameter optimization using self-adaptive differen-
tial evolution algorithm with population size reduction,” in Proc. IEEE

World Congress on Computational Intelligence, 2008, pp. 2032-2039.
[24] S. Das, A. Abraham, UK Chakraborty, “Differential Evolution with

a Neighborhood-based Mutation Operator,” in Proc. of the IEEE

Congress on Evolutionary Computation, 2009, pp. 526-553.
[25] H. Salehinejad, S. Talebi, and F. Pouladi, “A metaheuristic approach

to spectrum assignment for opportunistic spectrum access,” in Proc.

IEEE 17th International Conference on Telecommunications, 2010, pp.
234-238.

[26] J. Lampinen, I. Zelinka, “On Stagnation of the Differential Evolution
Algorithm,” in Proc. 6th international Mendel conference on soft

computing, 2000, pp. 76-83.
[27] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-

adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transaction in Evo-

lutionary Computation, vol. 10, no. 6, pp. 646-657, Dec. 2006.
[28] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger,

and S.Tiwari, “Problem definitions and criteria for the CEC 2005
special session on real-parameter optimization,” Nanyang Technol.
Univ., Singapore, Tech. Rep., No. 2005005, May 2005, IIT Kanpur,
India.

[29] K. Tang, X. Yao, P.N. Suganthan, C. MacNish, Y.P. Chen, C.M.
Chen and Z. Yang, “Benchmark functions for the CEC 2008 special
session and competition on large scale global optimization,” Nature
Inspired Comput. Applicat. Lab., USTC, China, Nanyang Technol.
Univ., Sinagapore, Tech. Rep., 2007.

[30] H. Salehinejad and S. Talebi, “Dynamic Fuzzy Logic-Ant Colony
System-Based Route Selection System,” Applied Computational Intel-

ligence and Soft Computing, vol. 2010, Article ID 428270, 13 pages,
2010.

[31] D. Zaharie, “Control of population diversity and adaptation in differen-
tial evolution algorithms,” in Proc. Mendel 9th Int. Conf. Soft Comput.,
Jun. 2003, pp. 41-46.

[32] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive
differential evolution,” Lecture Notes in Artificial Intelligence. Berlin,
Germany: Springer-Verlag, 2005, pp. 192-199.

[33] A. R. Iqbal, M.A., Khan, N.K., Mujtaba, and H., Baig, “A novel func-
tion optimization approach using opposition based genetic algorithm
with gene excitation,” Int. J. Innov. Comput. Inf. Control, vol. 7, no.
7, pp. 4263-4276, 2011.

1807

