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Abstract—Recurrent reinforcement learning (RRL) is a ma-
chine learning algorithm which has been proposed by researchers
for constructing financial trading platforms. When an analysis
of RRL trading performance is conducted using low frequency
financial data (e.g. daily data), the weakening autocorrelation
in price changes may lead to a decrease in trading profits
as compared to its applications in high frequency trading.
There therefore is a need to improve RRL for the purposes
of daily equity trading. This paper presents two parameter
update schemes (the ‘average elitist’ and the ‘multiple elitist’)
for RRL. The purpose of the first scheme is to improve out-of-
sample performance of RRL-type trading systems. The second
scheme aims to exploit serial dependence in stock returns to
improve trading performance, when traders deal with highly
correlated stocks. Profitability and stability of the trading system
are examined by using four groups of S&P stocks for the period
January 2009 to December 2012. It is found that the Sharpe
ratios of the stocks increase after we use the two parameter
update schemes in the RRL trading system.

I. INTRODUCTION

Recent developments in algorithmic trading show that
there are ongoing attempts to find and develop new trading
strategies. Recurrent reinforcement learning (RRL) which finds
approximate solutions to stochastic dynamic programming
problems, has been used to design online trading platforms [1].
It has been found that RRL-type trading systems are especially
good at making profits by trading commodities and Forex for
high frequency trading (see [2] and [3]). This is, because RRL-
type trading systems are able to pick up the strong trends
presented in price changes. Many extensions of the basic RRL
trading system can be found in the literature, for example:
a multi-layer RRL trading system which incorporates risk
management and utility optimization into one online trading
module [4]; and a regime-switching RRL trading system which
aims to cope with the nonlinear behavior in price changes due
to economic regime switches [5].

The RRL technique can be considered as a stochastic
gradient ascent algorithm which continuously optimizes a
utility measure by utilizing newly arrived market information.
A major concern about RRL-type trading systems, however,
is whether the parameters of the RRL-type trading system
are well tuned for out-of-sample trading. In the literature,
designers of RRL-type trading systems suggest that the trading
system should first be turned during a training period. The
trades made and performance of the system during the training
period are used to update the parameters. Training of the
trading system is usually repeated for many numbers of epochs

to make sure that the parameters are well tuned before out-
of-sample trading. The trades then made in an out-of-sample
period are the actual trades for the period, and the update
of the parameters is continuously guided by RRL in the
period. It has been pointed out by researchers that the tuning
process is important for out-of-sample trading performance
since RRL-type trading systems may underperform in out-of-
sample periods due to the over-fitting issue (see [3]).

In the context of daily equity trading, the use of large
quantities of historical data may hamper an effective prediction
of short-term price movements since there are only a limited
number of observations which may carry valuable information
for price movement prediction. In this paper, we propose two
parameter update schemes for RRL. The first scheme (namely
the ‘average elitist’), which can be applied to general RRL-type
trading systems, is designed to reduce the impact of over-fitting
on out-of-sample trading profits. The second scheme (namely,
the ‘multiple elitist’) aims to exploit serial dependence in stock
returns, in order to improve the trading performance of RRL
systems when traders deal with highly correlated stocks.

The rest of the paper is organized as follows. Section
II introduces the two update schemes, Section III presents
experimental results, and Section IV concludes.

II. RRL TRADING SYSTEMS

A. Recurrent reinforcement learning

Recurrent reinforcement learning (RRL) has been used
to tune financial trading systems for the purpose of utility
maximization based on newly arrived market information [1].
In the literature, the market information usually refers to a
series of lagged price returns, although RRL trading systems
can easily accommodate technical indicators and financial
fundamentals (see [6]).

The basic RRL trading system is designed to trade a single-
asset with a two-position action (long/short), which is produced
using linear combinations and a tanh function. In Figure 1, x,
v and Ft refer to the market information and θt denotes a
parameter set of the input signals.

We use the objective function which has been applied in
most discussions on RRL-type trading systems. If we denote
the utility function as Ut which depends on the most recently
realized trading reward Rt, the goal of the RRL trading
system is to maximize the wealth measure Ut by adjusting the
parameter set θt (hereafter referred to as signal parameters) in
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Fig. 1. Recurrent reinforcement learning

a continuous manner:

maxUtpRt; θtq. (1)

By denoting the closing price as Pt, the price change of an
asset is defined as rt “ ln Pt

Pt´1

. At time t, the realized profit
can be written as:

Rt “ ν ¨ psgnpFt´1q ¨ rt ´ δ ¨ | sgnpFtq ´ sgnpFt´1q|q, (2)

where the ν is the number of shares and the δ is the transactions
cost rate. The sgnpFt´1q refers to the current holding position,
and the sgnpFtq denotes the holding position for next period.
The Ft is defined as:

Ft “ tanh pθt ˆ Itq , (3)

where It denotes a set of input signals usually including a prior
trading signal Ft´1, a constant v with a value of 1, a set of
lagged returns rt, rt´1, rt´2, . . . , rt´l`1, t “ 1, . . . , T . l is an
integer number representing a length of the lags. Since RRL
updates the signal parameters θt using the stochastic gradient
ascent, the gradients of Ut with respect to the signal parameter
set θt can be written as:

dUtpθtq
dθt

“ dUt

dRt

"
dRt

dFt

dFt

dθt
` dRt

dFt´1

dFt´1

dθt´1

*
, (4)

with
dFt

dθt
« BFt

Bθt
` BFt

BFt´1

dFt´1

dθt´1
, (5)

dRt

dFt´1
“ ν ¨ prt ` δ ¨ sgnpFt ´ Ft´1qq, (6)

and
dRt

dFt
“ ´ν ¨ δ ¨ sgnpFt ´ Ft´1q. (7)

At any time t, the update of signal parameters θt follows:

θt “ θt´1 ` ρ
dUtpθtq
dθt

, (8)

where ρ is the learning rate.

In the literature, a utility measure which is widely used in
RRL-type trading systems is the so-called Differential Sharpe
Ratio (DSR). The DSR is the first-order term after taking the
Taylor series expansion of a performance measure, namely
exponential moving average Sharpe ratio (EMSR), at η Ñ 0.
The EMSR is defined as:

EMSRt “ At

Kη ¨ pBt ´A2
t q1{2 , (9)

where At “ At´1 ` η ¨ pRt ´ At´1q, Bt “ Bt´1 ` η ¨
pR2

t ´Bt´1q, and Kη “ p1´η{2
1´η q1{2. In other words, the utility

measure Ut, i.e. the first-order term can be written as:

DSRt “ Bt´1 ¨ pRt ´At´1q ´ 1
2 ¨ At´1 ¨ pR2

t ´Bt´1q
pBt´1 ´A2

t´1q 3

2

,

(10)
and the derivative of Ut with respect to Rt can be written as:

dUt

dRt
“ Bt´1 ´At´1 ¨ Rt

pBt´1 ´A2
t´1q3{2 . (11)

B. Two proposed update schemes

1) The ‘average elitist’ scheme: In this section we in-
troduce our proposed ‘average elitist’ scheme. Unlike most
discussions on RRL trading systems in the literature, we
use a group of simulation traders (sim-trader) rather than a
single trader to derive the signal parameters for out-of-sample
trading. We initialize the signal parameters of these sim-traders
using random numbers. We do so, because, in the real world,
traders may have different levels of information asymmetry
and different expectations about future price changes.

These sim-traders are then trained with the data in a
training period Ttrain. The training period covers an evaluation
period Teva. At the end of the training period, we set up
an elitist set E , in which members are selected according to
the Sharpe ratio rankings of the sim-traders in the evaluation
period Teva. The signal parameters in the average elitist update
scheme are the average values of the elitist members’ signal
parameters.

Assuming that the elitist set E consists of a number of N
‘elitist’ members, at the beginning of the out-of-sample period
t0 “ Ttrain ` 1, the parameter set of the ‘average elitist’ RRL
trading system is defined as

pθt0 “ 1

N

ÿ
i

θt0,i, i P E . (12)

The update of signal parameters in the out-of-sample trading
period follows:

Δpθt “ 1

N

ÿ
i

dUtpθt,iq
dθt,i

, i P E (13)

pθt`1 “ pθt ` ρΔpθt. (14)

According to the literature, some researchers use the sim-
trader which produces the highest Sharpe ratio in an evaluation
period from these sim-traders for out-of-sample trading. We
refer the sim-trader as to the ‘elitist’ trader in this study.

2) The ‘multiple elitist’ scheme: In this section, we intro-
duce our proposed ‘multiple elitist’ scheme which we develop
for RRL where equity returns are highly correlated or are
jointly affected by certain economic factors. We argue that
taking into account the collective behavior of correlated stock
returns may facilitate the prediction of price changes. For
example, there is an equity group M which consists of a
number of M highly correlated stocks. In the training period,
we use the return series of these highly correlated stocks to
adjust the parameters of the RRL trading systems which we
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set up for trading these stocks. The gradient vector of a stock
member m in the out-of-sample period is defined as follows:

Δqθm

t “
˜
ψΔpθm

t ` p1 ´ ψq 1

M ´ 1

ÿ
j‰m

Δpθj

t

¸
, j P M,

(15)
where ψ is a parameter controlling the impact of gradients
from its peers on Δqθm

t . In other words, the update relies not
only on the gradients from its own system, but also on the
gradients from the others in the group.

We use Eq. (12) to initialize the signal parameters qθm

t0
.

The update of signal parameters in the out-of-sample trading
period follows: qθm

t`1 “ qθm

t ` ρΔqθm

t . (16)

Industry sectors, statistical measures (e.g. Pearson’s cor-
relation, Spearman’s correlation or Kendall’s tau), and data
mining skills such as clustering techniques can be used to
construct equity groups.

III. RESULTS OF THE EXPERIMENT

A. Data sets

The companies selected for this research are S&P 500
American companies traded on the New York Stock Exchange
and on Nasdaq. We download the daily prices of the 500
companies from Bloomberg (1st January 2009 – 3rd December
2012, 980 observations for a single series). The 980 observa-
tions are partitioned into: an initial training set consists of
the first 750 samples (Ttrain “ 750) which also covers an
evaluation period comprised of the last 250 samples in the
training set (Teva “ 250); and an out-of-sample period consists
of the following 230 observations (Ttrade “ 230).

In this paper, we use the correlation coefficient to identify
highly correlated stocks. A correlation coefficient matrix is
constructed based on the first 750 observations of the 500
stocks. We are able to identify four groups (covering 18
stocks), given a correlation coefficient of any pairs in the group
greater than 0.7.

B. Parameter settings

Each of the RRL trading systems consists of 100 sim-
traders. The signal parameters of these sim-traders are initial-
ized by using random numbers from a Gaussian distribution
with a mean of 0 and a standard deviation of 0.05. The trading
systems are then tuned by using the RRL technique with the
first 750 observations. The top 5% performing sim-traders from
the 100 sim-traders are selected as elitist members in the set
E , according to their Sharpe ratio rankings in the evaluation
period, i.e. the last 250 trades in the training set.

Based on preliminary tests, the following parameters were
found to be suitable settings for the daily equity trading
problem: the number of shares traded ν “ 1; the learning
rate ρ “ 0.15; the adaption rate η “ 0.05. We expect that new
information will be reflected in stock prices in a maximum
period of two weeks, therefore we use a value of l “ 10. The
transaction cost δ has a value of 3 bps.
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Fig. 2. Distribution of aggregated Sharpe ratios

Regarding the ‘multiple elitist’ scheme, we consider three
values of ψ (ψ “ 1, ψ “ 0.7, and ψ “ 1{M ). It should
be noted that, given a value of ψ “ 1, the ‘multiple elitist’
scheme reduces to the ‘average elitist’ scheme. When ψ has a
value of 1

M , the ‘multiple elitist’ scheme is a ‘one size fits all’
approach, because the gradients Δqθm

t to the group members
are all the same.

C. Out-of-sample trading performance

Profitability and stability are probably the most two im-
portant factors when traders assess a financial trading system.
In this study, we use the daily Sharpe ratio to measure the
profitability. Stability refers to the consistency of the Sharpe ra-
tios generated from independent restarts of the trading system
with different initial signal parameters, as trading performance
relates directly to the starting values of the signal parameters.

To assess the stability, we restart the RRL trading system
100 times. We save the Sharpe ratio of each stock which is
produced by using the RRL trading system with the three
different values of ψ in each trial. For comparison purposes,
we also save the Sharpe ratio on each stock which is produced
by the elitist trader, i.e. the one producing the highest Sharpe
ratio from the 100 sim-traders in the evaluation period.

As we are interested in studying the Sharpe ratios of stocks
which are highly correlated, we put the Sharpe ratios of the
stocks together in the same group. The probability density of
the aggregated Sharpe ratios of each group are shown in Figure
2. Generally speaking, the Sharpe ratios which are produced
by using the ‘elitist’ trader are lower, comparing to that of the
‘average elitist’ and the ‘multiple elitist’ schemes.

It seems that the Sharpe ratio density curves which are
produced using the ‘multiple elitist’ RRL trading system with
different values of ψ are very close to each other. Table I
provides the Sharpe ratio means and standard deviations. It is
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TABLE I. STATISTICS OF THE DAILY SHARPE RATIOS

Elitist Avg. E. φ=0.7 φ=1/M
Group A Mean 0.0246 0.0348 0.0288 0.0290

Std 0.0777 0.0702 0.0715 0.0739
Group B Mean 0.0193 0.0275 0.0241 0.0224

Std 0.0712 0.0753 0.0710 0.0747
Group C Mean 0.0371 0.0607 0.0572 0.0577

Std 0.0718 0.0625 0.0650 0.0630
Group D Mean 0.0296 0.0427 0.0465 0.0455

Std 0.0564 0.0487 0.0504 0.0483

TABLE II. P-VALUES OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV

TEST

Group A Elitist Avg. Elitist IMP=0.7 IMP=1/M
Elitist 1

Avg. Elitist 0.09 1
IMP=0.7 0.10 0.28 1
IMP=1/M 0.43 0.52 0.62 1

Group B Elitist Avg. Elitist IMP=0.7 IMP=1/M
Elitist 1

Avg. Elitist 0.03 1
IMP=0.7 0.04 0.29 1
IMP=1/M 0.03 0.57 0.86 1

Group C Elitist Avg. Elitist IMP=0.7 IMP=1/M
Elitist 1

Avg. Elitist 0.00 1
IMP=0.7 0.00 0.75 1
IMP=1/M 0.00 0.31 0.90 1

Group D Elitist Avg. Elitist IMP=0.7 IMP=1/M
Elitist 1

Avg. Elitist 0.00 1
IMP=0.7 0.00 0.27 1
IMP=1/M 0.00 0.51 0.90 1

found that in most cases the ‘average elitist’ scheme outper-
forms the ‘multiple elitist’ scheme in terms of higher Sharpe
ratio means, although the differences between the Sharpe ratio
means are not statistically significant. We use the two-sample
Kolmogorov-Smirnov test to quantify the difference between
the Sharpe ratio distributions and Table II reports the p-values.
We find that the difference between the Sharpe ratios is not
statistically significant at the conventional 5% level.

Figures 3 and 4 provide the Sharpe ratio densities of
the stocks in Group C and D respectively. For comparison
purposes, a random trading strategy is used to benchmark the
trading performance of the two RRL-type trading systems. We
set up a random trading system for each asset. We restart
the random trading system 100 times and save the Sharpe
ratios. In addition to the random trading strategy, a buy-
and-hold strategy is used as the second benchmark strategy
in the out-of-sample study. We use a bootstrap approach to
generate artificial returns. The bootstrap approach keeps the
dependence structure unchanged among the assets in a group,
and bootstraps a 230ˆM artificial return matrix from the out-
of-sample historical returns in an iteration. We save the Sharpe
ratios which are generated by using a bootstrapped iteration
number of 100 for each stock. It is found that the random
trading strategy and the buy-and-hold strategy can hardly
generate any significant profits. In the light of these plots, some
of the Sharpe ratio means which are produced by using the
two proposed RRL parameter schemes are statistically greater
than zero. The two density curves which are produced by using
the trading systems based on the ‘average elitist’ and ‘multiple
elitist’ schemes are very close to each other. In other words, the
improvement in the Sharpe ratio by using the ‘multiple elitist’
scheme is not significant when compared with the Sharpe ratio
produced using the ‘average elitist’ update scheme.
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Fig. 3. The Sharpe ratios in Group C

IV. CONCLUSIONS

In this paper, we introduce two parameter update schemes
for recurrent reinforcement learning: the ‘average elitist’
scheme and the ‘multiple elitist’ scheme. The purpose of the
first scheme is to improve out-of-sample performance. The
second scheme aims to exploit serial dependence in stock
returns to improve trading performance when trading highly
correlated stocks. The distributions of the Sharpe ratios which
are produced by using the two new RRL trading systems are
examined using the daily data of four groups of S&P stocks
for the period January 2009 to December 2012.
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It is found that the trading systems developed based on
the two proposed RRL techniques outperform the random
trading strategy and the buy-and-hold strategy in producing
higher Sharpe ratio means. The results of our experiment also
show that the ‘average elitist’ scheme outperforms the ‘elitist’
scheme in terms of profitability and stability. Although the
aggregated Sharpe ratios from trading the stocks in a same
group are not significant, it is found that the Sharpe ratio
of individual stocks are statistically greater than zero. The
improvement in the Sharpe ratios by using the ‘multiple elitist’
scheme is not significant in the comparison with that produced
using the ‘average elitist’ update scheme.
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Fig. 4. The Sharpe ratios in Group D
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