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Abstract—The flexible job-shop scheduling problem (FJSP) is 

an extension of the classical job scheduling which is concerned 

with the determination of a sequence of jobs, consisting of 

many operations, on different machines, satisfying parallel 

goals. This paper addresses the FJSP with two objectives: 

Minimize makespan, Minimize total operation cost. We 

introduce a memetic algorithm based on the Nondominated 

Neighbor Immune Algorithm (NNIA), to tackle this problem. 

The proposed algorithm adds, to NNIA, local search 

procedures including a rational combination of undirected 

simulated annealing (UDSA) operator, directed cost simulated 

annealing (DCSA) operator and directed makespan simulated 

annealing (DMSA) operator. We have validated its efficiency 

by evaluating the algorithm on multiple instances of the FJSPs. 

Experimental results show that the proposed algorithm is an 

efficient and effective algorithm for the FJSPs, and the 

combination of UDSA operator, DCSA operator and DMSA 

operator with NNIA is rational.   

Keywords-Flexible job-shop scheduling; memetic algorithm; 

multi-objective optimization; immune algorithm; simulated 

annealing

I. INTRODUCTION 

In the job-shop scheduling problem (JSP), a group of m

machines process n jobs. Each job i consists of a sequence 

of m operations ( 1 2, , ,i i imo o o ), where iko  (the kth

operation of job i) must be processed without interruption 

on a predefined machine mik for pik time units. The 

operations 1 2, , ,i i imo o o  must be processed one after 

another in the given order and each machine can process at 

most one operation at a time. In this paper we study a 

generalization of JSP called the flexible job-shop scheduling 

problem (FJSP), which provides a closer approximation to a 

wide range of problems encountered in real manufacturing 

systems. The FJSP extends JSP by allowing an operation 

iko to be executed by one machine out of a set ikA  of given 

machines. The FJSP problem is to choose for each operation 

iko a machine ( )ik ikM o A .   

The FJSP is NP-hard since it is an extension of the job-

shop scheduling [1]. Bruker and Schlie [2] were the first to 

address the FJSP. They proposed a polynomial algorithm for 

solving the FJSP with two jobs, in which the machines 

capable of performing one operation have the same 

processing time. Jurisch [3] considered the routing and 

scheduling decisions simultaneously. Hurink, Jurisch and 

Thole [4] and Chambers [5] developed tabu search 

algorithms to solve the problem. Mastrolilli and 

Gambardella [6] proposed two neighborhood functions for 

this problem. Kacem and Borne [7] proposed a localization 

approach to solve the resource assignment problem, and an 

evolutionary approach controlled by the assignment model 

for the FJSP problem. Zhang and Gen [8] proposed a 

multistage operation-based GA to deal with the problem 

from a point view of dynamic programming. Xia and Wu [9] 

treated this problem with a hybrid of particle swarm 

optimization (PSO) and simulated annealing (SA) as a local 

search algorithm. Gao, Sun and Gen [10] proposed a hybrid 

genetic and variable neighborhood descent algorithm for 

flexible job-shop scheduling problems. Pezzella Morganti 

and Ciaschetti [11] proposed a genetic algorithm for the 

Flexible Job-shop Scheduling Problem. Frutos, Olivera and 

Tohme [12] introduced a memetic algorithm based on a 

NSGA-II scheme for the total flexible job-shop scheduling 

problem. Moslehi and Mahnam [13] proposed a Pareto 

approach to multi-objective flexible job-shop scheduling 

problem using particle swarm optimization and local search. 

Rahmati and Zandieh [14] proposed a new biogeography-

based optimization (BBO) algorithm for the flexible job-

shop scheduling problem.  

In this study, the considered objective is to minimize the 

makespan (Cmax) and the total operating cost (TOC). This 

optimization problem is known as multi-objective 

optimization problems (MOPs). In the past two decades, 

many efficient multi-objective optimization evolutionary 

algorithms (MOEAs) have been presented. The typical 

representatives of these algorithms were the Pareto 

Archived Evolution Strategy (PAES) [15], the Pareto 

Envelope based Selection Algorithm (PESA) [16], the 

Multi-Objective Messy Genetic Algorithm (MOMGA) [17], 

the Micro Genetic Algorithm (MicroGA) [18], the Strength 

Pareto Evolutionary Algorithm (SPEA) [19] and its 

improved version (SPEA2) [20], the Nondominated Sorting 
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Genetic Algorithm (NSGA) [21] and its improved version 

(NSGA-II) [22], the Multi-objective Particle Swarm 

Optimization (MOPSO) [23], the Multi-objective 

Evolutionary Algorithm Based on Decomposition 

(MOEA/D) [24], Regularity Model Based Multi-Objective 

Estimation of Distribution Algorithm (RM-MEDA) [25], the 

Archived Multi-objective Simulated Annealing Algorithm 

(AMOSA) [26], and the Fast Hypervolume-Based Many-

Objective Optimization (HypE) [27]. We also proposed a 

multi-objective optimization algorithm, named 

Nodominated Neighbor Immune Algorithm (NNIA) [28]. 

NNIA adopts a nondominated neighbor-based selection 

technique, an immune inspired operator, two heuristic 

search operators, and elitism. It turns out that NNIA is an 

effective method for solving MOPs by a mass of 

experiments [28–31].  

In this paper, we seek solutions to the FJSP by means of 

a memetic algorithm that combines NNIA with three guided 

local search operators. We use two vectors to express the 

machine assignment and operation sequence information for 

FJSP solution candidates. 

The remainder of this paper is organized as follows: 

Section II briefly describes related background. The 

memetic algorithm based on NNIA for the flexible job-shop 

scheduling problem and its contrastive algorithms are 

presented in Section III. In Section IV, experiments will be 

carried out to evaluate the efficiency of the memetic 

algorithm with several instances based on practical data. In 

Section V, concluding remarks are presented.  

II. RELATED BACKGROUND   

A. Multi-objective optimaization and NNIA 

Multi-objective optimization [32–33] seeks to optimize a 

vector of functions, where is the decision space, 

: mF R is the map of decision space to m real valued 

objectives space. 

1( ) ( ( ),..., ( ))mF f fx x x

 Subject to 
1 2( , , , )nx x xx L                       (1) 

Take a minimization problem into consideration. It is 

said that a vector
Ax dominates another vector 

Bx

(written as
A Bpx x ) if and only if 

1,2,...,

( ) ( ) 1, 2,...,

( ) ( )

i A i B

i A i B

i m

f f j m

f f

x x

x x

                (2) 

It is said that a vector of decision valuables *
x is a 

Pareto-optimal solution or nondonimated solution if there 

does not exist another x such that *px x .

Therefore, the Pareto-optimal set is defined as (3). 

   * * *{ | , }P px x x x                       (3) 

Then the Pareto-optimal set is the set of all Pareto-

optimal solutions. The corresponding image of them under 

the objective function space is called the Pareto-optimal 

front, which can be described as follows: 
* * * * * * *

1 2{ ( ) ( ( ), ( ),..., ( )) | }mPF F f f f Px x x x x     (4) 

The purpose of an MOEA is to find a set of Pareto-

optimal solutions approximate the true Pareto-optimal front. 

As is presented in Section 1, many MOEAs have 

emerged since the early 2000s. The NNIA, which is based 

on Artificial Immune System, was presented by us in [28]. 

NNIA is proposed for multi-objective optimization by using 

an immune inspired operator, two heuristic search operators, 

and elitism. In this algorithm, we store nondominated 

individuals found so far in an external population, called the 

dominant population. Only partial less-crowded 

nondominated individuals, called active antibodies, are 

selected to do proportional cloning, recombination, and 

static hypermutation. Furthermore, the population storing 

clones is called the clone population. The dominant 

population, active population, and clone population at time t

are presented by time-dependent variable matrices
tD ,

tA

and tC , respectively. The details of NNIA are described as 

follows. 

Input:  
maxG    (maximum number of generations) 

            Dn     (maximum size of dominant population) 

            An     (maximum size of active population) 

            Cn     (size of clone population) 

Output: 
max 1GD (final approximate Pareto-optimal set) 

Step1: Initialization: Generate an initial antibody 

population 0B with size Dn . Create the initial 

0 0, ,D A  and 0C . Set 0t .

Step2: Update Dominant Population: Identify dominant 

antibodies in tB . Copy all the dominant antibodies to form 

the temporary dominant population (denoted by
1tDT ). If 

the size of
1tDT is not greater than

Dn , let
1 1t tD DT .

Otherwise, calculate the crowding distance values of all 

individuals in
1tDT , sort them in descending order of 

crowding distance, and choose the first
Dn individuals to 

form
1tD .

Step3: Termination: If maxt G is satisfied, export 1tD as

the output of the algorithm, Stop; Otherwise, 1t t .

Step4: Nondominated Neighbor-Based Selection: If the 

size of tD is not greater than An , let t tA D . Otherwise, 

calculate the crowding distance values of all individuals in

tD , sort them in descending order of crowding distance, and 

choose the first An individuals to form tA .

Step5: Proportional Cloning: Get the clone population

tC by applying proportional cloning to tA .

Step6: Recombination and Hypermutation: Perform 

recombination and hypermutation on tC and set t
C to the 

resulting population. 

Step7: Get the antibody population tB by combining the

t
C and tD ; go to Step 2. 
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B. Bi-objective flexible job-shop scheduling problem 

The FJSP is to organize the execution of n jobs, noted 

1 2{ , ,..., }nJ J J J , where each job (1 )iJ i n consists of a 

sequence of ni operations,
,1 ,2 ,, ,...,

ii i i nO O O on a given 

machine from a machine set named 1 2{ , ,..., }mM M M M .

In general, the details of FJSP definition are described as 

follows [34]. All machines are available at time 0 . All jobs 

are released at time 0 . The order of operations for each job 

is predefined and cannot be modified. The processing time 

of an operation ,i jO on machine ( )
k

ijk O is predefined and 

denoted by k

ijp and starting time for operation
,i jO on machine

k denoted by k

ijt . Cost value for i th operation from job j on 

machine k denoted by i

ikv . Each operation cannot be 

interrupted during its performance. Each machine can 

perform at most one operation at any time. The precedence 

constraints of the operations in job can be defined for any 

pair of operations.              

In this paper the bi-objective FJSP is considered. One is 

to minimize the maximum completion time, denoted 

makespan Cmax and the other to minimize the total operation 

cost TOC. Formulation of the problem studied in this 

research was established by Frutos, Olivera and Tohme. 

[12].             

maxmin max( )
k k

ij ijC t p                                   (5) 

             min
j

i i

jk jk

i J i S k M

TOC x v                            

(6)                                         

Subject to: 

               0,k

ijt          j J , k M

               ,k h h

ij ij sjt t p    if h

sjO precedes k

ijO , j J ,

{ , }h k M

               ,k k k

ij sp spt t p      if h

spO precedes k

ijO , { , }j p J ,

k M

               
1

1,
m

i

jk

k

x        k M

Where:

               1,i

jkx          if i

jk kO E , 0i

jkx , otherwise 

               1 ( 1)max( , ,0)i i i s s

jk jh jh pk pkt t t

               { } kp j E , { , }h k M , { , } js j S

III.THE PROPOSED MEMETIC ALGORITHM FOR FJSP 

A. Algorithm framework  

The pseudo-code of the proposed memetic algorithm is 

given in Fig.1. In the local search procedure of the proposed 

memetic algorithm framework, we used the DCSA operator 

or the DMSA operator at equivalent probability after the 

UDSA operator firstly applied, and then the improved 

algorithm is called the Nondominated Neighbor Immune 

Algorithm with three diverse Simulated Annealing operators 

(NNIAT). Five contrastive algorithms based on the above 

framework are proposed as follows. The memetic algorithm 

framework without local search procedure is called the 

Original Nondominated Neighbor Immune Algorithm 

(ONNIA). The memetic algorithm framework with the 

UDSA operator in local search procedure is called the 

Nondominated Neighbor Immune Algorithm with UDSA 

operator (NNIAU). The memetic algorithm framework with 

the DMSA operator in local search procedure is called the 

Nondominated Neighbor Immune Algorithm with DMSA 

operator (NNIAM). In the local search procedure of 

memetic algorithm framework, we used the DMSA operator 

after the DCSA operator firstly applied, and then the 

algorithm is called Nondominated Neighbor Immune 

Algorithm with DCSA operator and DMSA operator 

(NNIACM). In the local search procedure of memetic 

algorithm framework, we used the DCSA operator after the 

DMSA operator firstly applied, and then the algorithm is 

called Nondominated Neighbor Immune Algorithm with 

DMSA operator and DCSA operator (NNIAMC).       
Memetic Algorithm based on NNIA for FJSP: 
1. begin algorithm
2.    Continue = Yes; 
3.    Generation = 0; 
4.    Create Initial Population (P0); 
5.    Decode Population (P0); 
6.    Evaluate Population (P0); 
7.    [ClonePop0, Mpop0]=Select(P0);  

8.    while Generation number of generations; 

9.         P1 = Clone(ClonePop0); 
10.        P2 = Crossover (P1); 
11.        P3 = Mutation (P2); 
12.        P4 = Local Search (P3); 
13.        Decode Population (P4); 
14.        Evaluate Population (P4); 
15.        [ClonePop, Mpop] = Select (Mpop0,P4); 
16.        Generation ++; 
17.        until Continue = No; 

18.  end while 
19. end algorithm 

Figure 1. Framework of the proposed memetic algorithm for FJSP 

B. Solution Represention 

The FJSP is a combination of machine assignment and 

operation scheduling decisions, so a solution can be 

expressed by the assignment of operations on machines and 

the processing sequence of operations on the machines. The 

chromosome is therefore composed of two parts: machine 

assignment vector and operation sequence vector. In the first 

part, for each operation a number between 1 and the number 

of available machines for the related operation is generated. 

The second part is a sequence vector which is generated 

discretely that each job i appears in the operation sequence 

vector exactly ni times to represent its ni ordered operations.

The first part represents machines assigned and the second 

part represents the operations sequence to the operations in 

polar place similar to Gen Tsujimura and Kubota [35]. The 

main advantages of Gen et al.'s representation are that each 

possible chromosome always represents a feasible operation 

sequence, and that the coding space is smaller than that of 

permutation representation. In principle, a chromosome of 

the FJSP can be decoded into an infinite number of 

schedules because superfluous idle time can be inserted 

between operations. In this paper, we use priority-based 
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decoding to translate chromosomes into active schedules. 

The priority-based decoding [10] allocates each operation 

on its assigned machine one by one in order represented by 

the operation sequence vector. The method allows an 

operation to search the earliest available time interval on the 

machine. The operation sequence in a chromosome is 

reordered according to the operations' starting time in the 

decoded schedule before the chromosome involves 

crossover operations and mutation operations.  

C. Crossover and mutation operators 

During the past decades, several crossover operators 

have been proposed for permutation representation, such as 

partial-mapped crossover, order crossover, cycle crossover, 

and so on [36]. In this paper, we apply the order crossover 

for the operation sequence vectors. The order crossover 

works as follows:  

Step1: Select a subsection of operation sequence from 

one parent at random. 

Step2: Produce a proto-child by copying the substring of 

operation sequence into the corresponding positions. 

Step3: Delete the operations that are already in the 

substring from the second parent. The resulted sequence of 

operations contains operations that the proto-child needs. 

Step4: Place the operations into the unfixed positions of 

the proto-child from left to right according to the order of 

the sequence in the second parent. 

We use two crossover operators at equivalent probability 

for the machine assignment vectors: extended order 

crossover and uniform crossover [10]. The extended order 

crossover is related to crossover for operation sequence. It 

copies the machine assigned for an operation from the same 

parent where its operation sequence comes. Uniform 

crossover is accomplished by taking an allele from either 

parental machine assignment vector to form the 

corresponding allele of the child.  

Two kinds of mutation operations are implemented here: 

allele-based mutation and immigration mutation [10]. For 

machine assignment vectors, allele-based mutation 

randomly decides whether an allele should be selected for 

mutation with a certain probability. Then, another available 

machine will be assigned for the operation indicated by the 

selected allele. For operation sequence vectors, allele-based 

mutation randomly decides whether to mutate an allele r . If 

allele r is to be mutated, then another allele is randomly 

selected to exchange with it. Immigration mutation 

randomly generates a number of new members of the 

population from the same distribution as the initial 

population.   

D. Local search operators through simulated annealing     

The local search complement to the genetic stage is 

provided by simulated annealing (SA). It is intended to 

allow a progression towards a better solution when an 

algorithm gets stuck in a local minimum [37]. We introduce 

three local search operators including undirected simulated 

annealing (UDSA) operator, directed cost simulated 

annealing (DCSA) operator and directed makespan 

simulated annealing (DMSA) operator. We use a rule

1m mT T , where ( (0,1)) is the cooling coefficient 

[37]. The number of iteration for each temperature T is

( ) 1/M T T .

Algorithm: UDSA 
begin algorithm

Continue = Yes; 
while Stop Condition = No(T>Tf)

      Calculate M=1/T; 
      for i=1 to M 
          Alter machine assignment vector and operation sequence vector of 

current solution imultaneously like allele-based mutation, and then 
decode new solution and Evaluate new solution; 

           if new solution p current solution  
                current solution replaced by new solution; 
           else         
               if rand(0,1) < 0.01 
                   current solution replaced by new solution; 
               end  
          end 
       end  

end
end algorithm

Figure 2. Undirected simulated annealing scheme 

Algorithm: DCSA 
begin algorithm

Continue = Yes;
while Stop Condition = No(T>Tf) 

 Calculate M=1/T; 
for i=1 to M 

     Only alter machine assignment vector of current solution like 
allele-based mutation; 

      Decode new solution and Evaluate new solution; 

      if new solution p current solution
           current solution replaced by new solution; 

      else          
           if rand(0,1) < 0.01 
               current solution replaced by new solution; 

           end
      end 
  end  

 end  
end algorithm

Figure 3. Directed cost simulated annealing scheme 

Algorithm: DMSA 
begin algorithm

Continue = Yes;
while Stop Condition = No(T>Tf); 

 Calculate M=1/T; 
for i=1 to M; 

     Only alter operation sequence vector of current solution like 
allele-based mutation; 

      Decode new solution and Evaluate new solution; 
      If improve makespan 
           current solution replaced by new solution; 

      else          
           if rand(0,1) < 0.01 
               current solution replaced by new solution; 

           end
      end 
  end  

 end  
end algorithm

Figure 4. Directed makespan simulated annealing scheme    

The UDSA operator is an undirected local search 

operator. The DCSA operator and DMSA operator are the 

directed ones. The UDSA is to minimize the makespan and 

the total operating cost by altering machine assignment 

vector and operation sequence vector simultaneously. The 

DCSA directionally minimizes the total operating cost by 
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only altering machine assignment vector. The DMSA 

directionally minimizes the makespan by only altering 

operation sequence vector. The basic schemes for UDSA, 

DCSA and DMSA are presented in Fig.2, Fig.3 and Fig.4 

respectively.  

IV.EXPERIMENTAL STUDIES

In this section, we compare NNIAT with ONNIA, 

NNIAU, NNIAM, NNIACM and NNIAMC in solving four 

FJSPs to validate the effectiveness of the combination of 

UDSA operator, DCSA operator and DMSA operator in 

NNIAT.   

TABLE I. ZJ01 /PROBLEM 3 4 WITH 8 OPERATIONS

Jj
i

jkO
M1 M2 M3 M4 

i
j1/

i
j1

i
j2/

i
j2

i
j3/

i
j3

i
j4/

i
j4

J1

1

1kO -/- 3/8 4/6 1/9 

2

1kO 3/4 8/2 -/- 1/12 

3

1kO 3/8 5/4 4/6 7/3 

J2

1

2kO 4/7 -/- 1/14 4/6 

2

2kO 2/10 3/8 9/3 -/- 

3

2kO 9/3 1/15 2/10 -/- 

J3

1

3kO 8/6 -/- 3/12 5/10 

2

3kO -/- 5/8 8/6 1/18 

A. Experimental setup      

In our experiment, we select t three partial flexible job-

shop scheduling instances and one total flexible job-shop 

scheduling instance as the test problems. The instances 

contain ZJ01 (problem 3 4 with 8 operations), ZJ02 

(problem 5 5 with 15 operations) and ZJ03 (problem

10 10 with 30 operations) presented TABLE I-III. In the 

example of TABLE I-III, symbol “-” indicates that the 

assignment is impossible. The only total flexible job-shop 

scheduling instance is MF02 (problem 4 5 with 12 

operations) which was defined by Frutos et al. (2010).In our 

study, the hypervolume metric and the nondonimated 

solutions metric will be applied. The parameters was 

implemented are shown in TABLE III. .  

TABLE II. ZJ02 /PROBLEM 5 5 WITH 15 OPERATIONS

Jj 
i

jkO
M1 M2 M3 M4 M5

i
j1/

i
j1

i
j2/

i
j2

i
j3/

i
j3

i
j4/

i
j4

i
j5/

i
j5

J1

1

1kO 2/7 5/3 -/- 1/15 2/7 

2

1kO -/- 5/4 4/5 7/3 5/4 

3

1kO -/- 4/3 5/3 3/4 5/3 

J2

1

2kO 2/12 5/4 4/6 7/3 -/- 

2

2kO 5/5 6/4 -/- 9/3 8 /3 

3

2kO 4/40 5/32 4/40 -/- 5/32 

J3

1

3kO 9/3 -/- 6/4 7/3 9/3 

2

3kO 6/3 8/3 18/2 -/- 4/4 

3

3kO 2/7 1/18 4/3 2/7 -/- 

4

3kO 4/3 5/3 2/7 1/15 -/- 

J4

1

4kO 1/36 5/7 2/18 4/9 12/3 

2

4kO 5/3 1/15 -/- 2/7 2/7 

J5

1

5kO 9/3 -/- 8/3 6/4 9/3 

2

5kO 5/3 -/- 9/3 4/9 12/3 

3

5kO -/- 1/35 2/18 12/2 5/3 

TABLE III. ZJ03 /PROBLEM10 10 WITH 30 OPERATIONS

Jj
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

i
j1/

i
j1

i
j2/

i
j2

i
j3/

i
j3

i
j4/

i
j4

i
j5/

i
j5

i
j6/

i
j6

i
j7/

i
j7

i
j8/

i
j8

i
j9/

i
j9

i
j10/

i
j10

J1

-/- 1/11   4/2 6/1 9/1 3/3 5/2 2/5 8/1 -/- 

1/14 -/- 3/4 4/3 8/1 10/1 4/3 11/1 -/- 3/4 

10/1 4/4 5/3 9/2 8/2 4/4 15/1 2/8 -/-   -/-   

J2

4/3 8/1 7/1 1/13 9/1 6/2 2/1 -/- -/-   1/13 

-/-   -/-   11/1 6/3 7/2 5/3 3/6 1/9 2/9 3/18 

8/1 5/2 8/2 1/9 4/2 3/5 8/1 -/-   -/-   1/11 

J3

7/1 1/11 8/1 4/2 9/1 1/11 -/-   -/-   3/3 4/2 

5/2 -/-   -/-   9/1 1/13 7/1 2/13 6/2 2/7 8/1 

7/2 3/5 1/15 6/2 -/-   8/1 -/-   2/7 5/3 2/7 

J4

6/1 2/3 1/4 1/7 2/3 -/-   -/-   5/1 4/1 2/3 

9/1 9/7 6/4 -/-   1/14 2/23 21/1 5/9 -/-   5/8 

11/1 1/2 6/2 2/7 5/2 -/-   -/-   2/7 1/14 4/3 

J5

6/1 9/1 -/-   3/3 -/-   8/1 7/1 1/11 2/5 4/2 

5/7 -/-   -/-   3/12 5/9 2/18 28/1 7/5 4/9 5/7 

6/1 4/2 3/3 7/1 1/9 -/-   9/5 -/-   2/5 4/3 

J6

4/2 1/11 6/1 3/12 9/1 8/1 4/2 2/5 5/9 10/1 

6/1 5/1 1/9 3/3 6/1 5/1 7/1 4/2 6/1 10/1 

8/1 9/1 10/1 1/4 2/2 5/7 3/3 10/1 1/8 2/7 

J7

1/11 -/-   2/5 4/2 5/2 3/3 9/1 8/1 2/4 4/2 

2/3 -/-   -/-   -/-  2/3 3/2 4/1 5/1 9/1 1/12 

6/1 5/1 4/2 2/4 3/3 2/4 7/1 5/1 -/-   -/-   

J8

2/5 3/3 6/1 -/-   5/5 2/4 1/10 -/-   8/1 7/1 

4/1 5/1 2/3 3/2 4/1 7/1 5/1 -/-   -/-   -/-   

1/16 2/23 13/1 5/9 2/23 3/15 6/7 -/-   -/-   2/21 

J9

6/9 2/21 3/19 21/2 1/11 5/10 3/9 2/5 -/-   -/-   

2/11 -/-   -/-   12/1 15/1 2/12 1/14 1/16 16/1 1/18 

9/8 8/9 7/10 4/18 5/14 8/9 7/10 4/18 8/9 2/24 

J10

4/5 3/6 -/-   1/20 -/-   2/1 20/2 6/3 8/1 6/2 

3/5 1/17 8/2 1/17 9/1 1/18 4/4 -/-   -/-   15/1 

9/2 2/11 4/5 11/3 2/11 -/-   -/-   10/2 4/5 1/9 
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TABLE IV. PARAMETERS OF OUR EXPERIMENTS

Parameters and characteristics Value/type 
Maximum Size of Dominant 
Population 

100

Maximum Size of Active Population 30 
Size of Clone Population 100 
Number of Generations 100 

Type of Crossover :Probability   
order crossover: 0.5       
uniform crossover: 0.5     

Type of mutation: Probability   
allele-based mutation:0.4  
immigration mutation: 0.4

Type of Local Search UDSA   DCSA   DMSA
Initial Temperature (Ti) 800 
Final Temperature (Tf) 0.1 

Cooling Factor ( a ) 0.75 

B. Experimental results 

1) Validating the effectiveness of the directed local 

search operators 

We applied the ONNIA, NNIAM, NNIACM and 

NNIAMC to problems ZJ01, ZJ02, ZJ03 and MF02. ZJ01, 

ZJ02 and ZJ03 are partial flexible job-shop scheduling 

instances. MF02 is total flexible job-shop scheduling 

instance. Thirty independent runs on each test problem are 

performed in the following experiments. We show the box 

plots of hypervolume metric and nondonimated solutions 

metric of ONNIA, NNIAM, NNIACM and NNIAMC in 

Fig.5. Note that the hypervolume metric values are 

normalized by the difference of maximum and minimum 

hypervolume value for each problem. The hypervolume 

metric is the main index and the nondonimated solutions 

metric is the minor reference to estimate the four algorithms. 

In terms of hypervolume, it could be seen that NNIAM has 

obtained the best results for solving the ZJ01. For ZJ02, 

ZJ03 and MF02, the NNIAM, NNIACM and NNIAMC 

have obtained better measures than ONNIA. Meanwhile, 

the NNIAM, NNIACM and NNIAMC have obtained equal 

results for solving the ZJ02, ZJ03 and MF02. In terms of 

nondonimated solutions, the ONNIA, NNIAM, NNIACM 

and NNIAMC have obtained the proximate results for 

solving the ZJ01, ZJ02, ZJ03 and MF02.    

Considering the experimental results above, we believe 

that the following conclusions could hold. For ZJ01, ZJ02, 

ZJ03 and MF02, the NNIACM and NNIAMC have little 

superiority compared with NNIAM. The DCSA operator 

and DMSA operator both used in the local search procedure 

of memetic algorithm framework could not obtain better 

measures than the DMSA operator used alone. Hence, in the 

same generation, these two different employed directed 

local search operators might disturb each other in the local 

search procedure.    

Figure 5. Statistical values of hypervolume and nondonimated solutions       

for ZJ01, ZJ02, ZJ03 and MF02 by ONNIA (1), NNIAM (2), NNIACM (3) 

and NNIAMC (4). 

2) Comparisons among ONNIA, NNIAU and NNIAT 

In the local search procedure of memetic algorithm 

framework, we used the DCSA operator or the DMSA 

operator at equivalent probability after the UDSA operator 

firstly applied, and then the algorithm is called NNIAT. We 

applied the ONNIA, NNIAU and NNIAT to problems ZJ01, 

ZJ02, ZJ03 and MF02. Thirty independent runs on each test 

problem are performed in the following experiments. We 

show the box plots of hypervolume metric and 

nondonimated solutions metric of ONNIA, NNIAU and 

NNIAT in Fig.6. Note that the hypervolume metric values 

are normalized by the difference of maximum and minimum 

hypervolume value for each problem. The hypervolume 

metric is the main index and the nondonimated solutions 

metric is the minor reference to estimate the three 

algorithms. In terms of hypervolume, it could be seen that 

NNIAT has obtained the best results and the ONNIA has 

obtained the worst results in the three algorithms for solving 

the ZJ01, ZJ02, ZJ03 and MF02. In terms of nondonimated 

solutions, the ONNIA, NNIAU and NNIAT have obtained 

the proximate results for solving the ZJ01, ZJ02, ZJ03 and 

MF02.
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Figure 6. Statistical values of hypervolume and nondonimated solutions 

for ZJ01, ZJ02,ZJ03 and MF02 by ONNIA (1), NNIAU (2) and NNIAT(3). 

Figure 7. Plots of typical final approximate fronts for ZJ01 problem (a), 

ZJ02 problem (b), ZJ03 problem (c) and MF02 problem (d) obtained from 

ONNIA and NNIAT. 

Overall, considering the experimental results above, we 

could conclude that the NNIAT with three different local 

search operators could be an efficient and effective 

algorithm for the FJSPs, and the combination of UDSA 

operator, DCSA operator and DMSA operator in NNIAT is 

rational. 

TABLE V. STATISTICAL VALUES OF HYPERVOLUME FOR ZJ01S,
ZJ02S,ZJ03S AND MF02S BY ONNIA, NNIAU AND NNIAT 

Test 
Normalized values of hypervolume
ONNIA NNIAU NNIAT

ZJ011 0.98(0.004) 0.99(0.003) 0.99(0.001)
ZJ012 0.98(0.006) 0.99(0.002) 1(0)
ZJ013 0.99(0.005) 0.99(0.001) 1(0)
ZJ014 0.99(0.005) 0.99(0.001) 1(0)
ZJ015 0.98(0.009) 0.99(0.006) 0.99(0.001)
ZJ016 0.99(0.003) 0.99(0.006) 1(0)
ZJ017 0.99(0.004) 0.99(0.002) 1(0)
ZJ018 0.99(0.012) 0.99(0.006) 1(0)
ZJ019 0.98(0.014) 0.99(0.002) 1(0)
ZJ0110 0.99(0.002) 0.99(0.001) 1(0)
ZJ021 0.88(0.028) 0.94(0.028) 0.98(0.007)
ZJ022 0.93(0.028) 0.96(0.024) 0.97(0.019)
ZJ023 0.91(0.023) 0.96(0.017) 0.97(0.013)
ZJ024 0.90(0.028) 0.97(0.012) 0.99(0.008)
ZJ025 0.92(0.028) 0.96(0.024) 0.97(0.014)
ZJ026 0.92(0.031) 0.96(0.009) 0.98(0.011)
ZJ027 0.94(0.029) 0.97(0.012) 0.99(0.007)
ZJ028 0.84(0.062) 0.94(0.020) 0.97(0.027)
ZJ029 0.93(0.013) 0.97(0.005) 0.98(0.014)
ZJ0210 0.86(0.038) 0.94(0.051) 0.98(0.003)
ZJ031 0.89(0.013) 0.96(0.018) 0.98(0.008)
ZJ032 0.85(0.030) 0.94(0.007) 0.97(0.013)
ZJ033 0.88(0.026) 0.94(0.019) 0.98(0.012)
ZJ034 0.82(0.010) 0.90(0.016) 0.94(0.028)
ZJ035 0.83(0.040) 0.93(0.020) 0.98(0.014)
ZJ036 0.88(0.033) 0.94(0.008) 0.97(0.020)
ZJ037 0.84(0.024) 0.95(0.020) 0.98(0.011)
ZJ038 0.86(0.040) 0.96(0.005) 0.98(0.006)
ZJ039 0.88(0.025) 0.96(0.014) 0.98(0.009)
ZJ0310 0.84(0.023) 0.92(0.022) 0.96(0.018)
MF021 0.92(0.017) 0.97(0.014) 0.99(0.006)
MF022 0.92(0.008) 0.98(0.008) 0.99(0.005)
MF023 0.94(0.004) 0.98(0.005) 0.99(0.003)
MF024 0.92(0.008) 0.98(0.006) 0.99(0.006)
MF025 0.80(0.018) 0.98(0.010) 0.97(0.012)
MF026 0.91(0.007) 0.98(0.008) 0.99(0.008)
MF027 0.94(0.006) 0.98(0.014) 0.99(0.001)
MF028 0.97(0.005) 0.98(0.009) 0.99(0.003)
MF029 0.94(0.012) 0.97(0.014) 0.98(0.008)
MF0210 0.94(0.013) 0.98(0.013) 0.99(0.002)

V. CONCLUDING REMARKS

In this paper, we studied the flexible job-shop 

scheduling problem. The considered objective is to 

minimize the makespan and the total operating cost. The 

FJSP is the NP-hard problem that has been more thoroughly 

studied in the literature, because of its practical interest. The 

Nondominated Neighbor Immune Algorithm with three 

diverse simulated annealing operators (NNIAT) is presented 

for solving this problem. We researched the effectiveness of 

the two directed local search operators and then the 

experiments results could show that the NNIAT is an 

efficient and effective algorithm for the FJSPs. Our future 

study is recommended to investigate a combination of 

diverse directed local search operators for solving many-

objective flexible job-shop scheduling problem. 

Furthermore, evaluating of our proposed algorithm in other 

combinatorial and practical problems is worthy to be 

researched.  
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