2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

A Memetic Algorithm for Solving Flexible Job-
shop Scheduling Problems

Wenping Ma, Yi Zuo, Jiulin Zeng, Shuang Liang, Licheng Jiao

Abstract—The flexible Job-shop Scheduling Problem (FJSP) is
an extension of the classical job-shop scheduling problem (JSP).
In this paper, a memetic algorithm (MA) for the FJSP is
presented. This MA is a hybrid genetic algorithm which
explores the search space and two efficient local searchers to
exploit information in the search region. An extensive
computational study on 49 benchmark problems shows that
the algorithm is effective and robust, with respect to other
well-known effective algorithms.

Keywords-flexible job-shop scheduling; memetic algorithm;
tabu search; simulated annealing.

L

Scheduling is one of the most critical issues in the
planning and manufacturing processes. One of the most
popular scheduling models is the job-shop scheduling
problem (JSP), where a set of jobs must be processed on a
set of machines. Each job is formed by a sequence of
consecutive operations, and each operation requires exactly
one machine at a time. JSP has been proved to be NP-hard
[1]. The flexible job-shop scheduling problem (FJSP) is an
extension of the classical JSP, where operations are allowed
to be processed on a set of available machines. FJSP is more
difficult than the classical JSP, since it introduces routing
before scheduling. In recent years, several heuristic
procedures such as dispatching rules [2], local search
strategies and meta-heuristics including simulated annealing
(SA) [3], tabu search (TS) [4]-[7] and genetic algorithm
(GAs) [8]-[10] have been developed for FJSP.

Generally, the algorithms for the FJSP can be classified
into two main categories: hierarchical approach and
integrated approach. The hierarchical approach attempts to
solve the problem by decomposing it into a sequence of sub-
problems to reduce difficulty. A typical decomposition is to
select an available machine for each operation first, and then
the resulting scheduling problem is JSP. This approach is
followed by Brandimarte [4], Paulli [11], Barnes and
Chanbers [12], among the others. They all solve the
assignment problem using some dispatching rules, and then
solve the resulting JSP using different tabu search heuristics.
Integrated approach is much more difficult to solve, but

INTRODUCTION

This work was supported by the National Natural Science Foundation of
China (Grant no. 61203303), the Specialized Research Fund for the
Doctoral Program of Higher Education (Grant no. 2013020311001 1) and the
Fundamental Research Fund for the Central Universities (Grant no.
K5051202053).

The authors are with Key Laboratory of Intelligent Perception and
Image Understanding of Ministry of Education of China, Xidian University,
Xi’an, 710071, China.

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

66

achieves better results generally, as reported in [13]-[16].
They all adopt an integrated approach, developing different
tabu search to solve the problem. Among them, Mastrolilli
and Gambardella presented two neighborhood functions and
show their efficiency for the FISP [13].

Recently, GAs have been successfully adopted to solve
FJSP. Chen et al. [12] split the chromosome representation
into two parts, the first defining the routing policy, and the
second the sequence of operations on each machine. Ho and
Tay [17] proposed a methodology based on a cultural
evolutionary architecture for solving FJSP with recirculation.
Pezzella et al. [15] proposed a GA, which integrates different
strategies for generating the initial population, selecting the
individuals for reproduction and reproducing new individuals.
Gao et al. [14] developed an approach hybridizing genetic
algorithm with variable neighborhood descent to solve the
FISP.

Memetic algorithms (MAs) , as being the combination of
population-based search methods and one or more local
search strategies, have been successfully applied on many
complex problems [18]. In this paper, we present a memetic
algorithm (MA) for the FJSP. Our MA is a hybrid GA that
uses a genetic search method to explore the search space and
two efficient local search methods .The local searchers
efficiently exploits information in the search region. The MA
has been tested on popular benchmark problems, and the
experimental results show that the MA can achieve better
performance for all the popular benchmark problems.

This paper is organized as follows. In Section II, we
review some background, including the problem definition
and the solution graph representation. The MA is discussed
in detail in Section III, and experimental studies are
presented in Section IV. Finally, conclusion is given in
Section V.

II. BACKGROUND

A. The definition of FJSP
The FISP is formulated as follows:
(1)Let J={J,,...,J,} beasetof n jobs to be scheduled.
(2) Each job J, consists of a sequence of », operations
J. ={0,,,...,0, }.

i 12 in

(3)Let M ={M,,... M, } beasetof m machines.

(4) Each machine can process only one operation at a time.
(5) Each operation must be processed without interruption.

The objective of this problem is to find a schedule that has
minimum time required to complete all operations, defined
as C, . = rlnax{Ci} , where C, is the completion time of J,.

max

B. The solution graph
The schedules of FISPs can be represented with a directed
graph G=(N, 4, E) , with node set N , precedence arc set

A , disjunctive arc set E .The set 4 corresponds to
operations, and the set £ denotes immediate implementation

sequence of operations to be performed on the same machine.

Two dummy nodes, 0 and * are introduced, representing the
start and the end of the planning period. Each node has a
weight which is equal to the processing time p, ., of the

corresponding operation v, when v is processed on machine
u(v) . Note that p, = p, =0 . Let L(i,j) denote the value
of some longest path from node i to node j, the makespan

of a solution is thus equal to the length of some longest paths
from 0 to *, i.e. L(0,*) . This path is often referred to as the

critical path. Sometimes there are several longest paths. A
solution is infeasible if and only if the corresponding
solution graph contains a cycle.

III. OUR MEMETIC ALGORITEM

A. Representing and coding solutions

The FJSP is a combination of machine assignment and
operation scheduling decisions, so a solution can be
expressed by the assignment of operations on machines and
the processing sequence of operations on the machine. The
chromosome is therefore composed of two parts: machine
assignment vector and operation sequence vector. For the
first part, we adopt Gen et al.’s representation [19]. All
operations belonged to a job are denoted by the same job
index. Then, they are interpreted according to the order of
occurrence in the sequence of a given chromosome. Each job
J, appears in the operation sequence vector exactly », times

to represent its n, ordered operations. The main advantage

of this representation is that each possible chromosome
always represents a feasible operation sequence. In the
second part, at first, we list all jobs according the order
J,,....J, , and then make an enumeration of all operations

belonged to the same job according to the precedence
constraints. Then we get a set of operations {O,,0,,...,0,},

where N is the number of all operations. Each operation O,
has its unique permutation order i . Each position p,, in the

machine assignment vector corresponds to the operation
whose permutation order is equal to i . The corresponding

value in p, indicates a randomly selected available machine
for the operation O, .

We decode an individual according to its chromosome to
get its solution graph. Then the makespan L(0,*) and the

length of some longest path between an operation node v
and a dummy node 0 or *, i.e. L(0,v) or L(v,*), can be

computed using Bellman’s ford algorithm [20] in O(N).

67

B. Crossover and mutation operators

During the past decades, several crossover operators have
been proposed for permutation representation, such as
partial-mapped crossover, order crossover, cycle crossover,
and so on [21]. In this paper, we apply the order crossover
for the operation sequence vectors. The order crossover
works as follows:

Step 1: Select a subsection of operation sequence from
one parent at random.

Step 2: Produce a proto-child by copying the substring of
operation sequence into the corresponding positions.

Step 3: Delete the operations that are already in the
substring from the second parent. The resulted sequence of
operations contains operations that the proto-child needs.

Step 4: Place the operations into the unfixed positions of
the proto-child from left to right according to the order of the
sequence in the second parent.

We use two crossover operators at equivalent probability
for the machine assignment vectors: extended order
crossover and uniform crossover. The extended order
crossover is related to crossover for operation sequence. It
copies the machine assigned for an operation from the same
parent where its operation sequence comes. Uniform
crossover is accomplished by taking an allele from either
parental machine assignment vector to form the
corresponding allele of the child.

In this study, two kinds of mutation operations are
implemented: allele-based mutation and immigration
mutation [21]. For machine assignment vectors, allele-based
mutation randomly decides whether an allele should be
selected for mutation with a certain probability. Then,
another available machine will be assigned for the operation
indicated by the selected allele. For operation sequence
vectors, allele-based mutation randomly decides whether to
mutate an allele r . If allele is to be mutated, then another
allele is randomly selected to exchange with it. Immigration
mutation randomly generates a number of new members of
the population from the same distribution as the initial
population.

Algorithm 1: Tabu Search

Begin
Initialize tabu list TM , iter =: iter + 1;
While Stop Condition is not satisfied
If the smallest estimated length of the new longest path containing v
decrease the best makespan obtained so far
The best move of v is always accepted, i.e. this is an aspiration
criteria
Else if several non-tabu moves exist
the best non-tabu move of v is chosen.
Else if only tabu moves are available
The chosen move is the one (v,k) with the lowest value TM(v, k)
End if
TM(v, k) = iter +|P|+|M,
End while
End

Algorithm 2: Simulated Annealing

Begin

‘While Stop Condition is not satisfied
Calculate M =1/T.

For i=1: M
Randomly select a critical operation v from current solution S .
Calculate F, .

Performing an approximate optimal k -insertion of v .
Evaluate the new solution S'.
If S'.makespan < S.makespan
S§=S".
Else
Generate a pseudo-random value &€ [0,1].
If £<0.01
s=5"
End if
End if
Reduce temperature;
End for
End while
End

C. Local searchers
1) The Neighborhood Function

The local search method employed by our MA is based on
a neighborhood function proposed by Mastrolilli and
Gambardella [14].

In combinatorial domain, the neighborhood of a solution
x is defined to be the set of solutions which can be reached
from x by a single step of the local search algorithm. Given
the initial solution graph, a neighbor is obtained by moving
and inserting an operation in an allowed machine sequence.
This procedure is described as follows:

Step 1: Delete v from its current machine sequence by
removing all its machine arcs. Set the weight of node v
equal to 0.

Step 2: Assign v to machine & and choose the position of
v in the processing order of & , by adding its machine arcs
and setting the weight of node v equalto p, .

Let G~ be the graph obtained from G at the end of step 1.
A k -insertion of v is feasible if it does not create a cycle in
the resulting graph. If G is acyclic, G~ is obviously acyclic.
A k -insertion is called an optimal k -insertion if it is
feasible and the makespan of the corresponding schedule is
minimal. An insertion of v is called optimal if it leads to a
schedule with minimal makespan within the set of all
schedules resulting from optimal & -insertion of v, ke M, .

Let O,
G (ve Q,) and sorted by increasing starting time. Let R,

be the set of operations processed by £ in

and L, denote two subsequences of Q, defined as follows:
R, ={x€Q, [L(0,x) + p, = L(0O,PI[x])+pyy,,} (1)
L, =(x€Q, |Lx,®)+p, = LSIx]. M) +pgy} ()
where PJ[x](SJ(x)) denotes the operation of the same job
of x that directly precedes (follows) x.

68

The set F, is defined to be the set of solutions obtained
by inserting v after all the operations of L, \ R, and before
all the operations of R, \L, . Mastrolilli and Gambardella

[14] proved that other k -insertions than the ones used to
define £, cannot deliver a solution with a better makespan.

In order to assess the effectiveness of a given £ -insertion
of v we use the value of the new longest path which
contains operation v can be calculated in O(N) time;

however, doing this for every candidate v and every

machine k€ M at every step becomes expensive. A new

strategy is introduced to compute only upper bounds instead
of the exact values. The k -insertion of v for which the
estimated longest path is minimized is called the
approximate optimal k -insertion. Experiments show that the
proposed upper bound is very close to the exact length. It
was on average only 0.001 percent bigger than the exact
value [14].
2) Tabu Search

Tabu search uses a neighborhood search procedure to
iteratively move from solution S to an improved solution
S in the neighborhood of S . Tabu list is a short-term set of
the solutions that have been visited in recent past. In order to
keep track of the actions performed, we use a N X m matrix.
When an action is performed it is considered tabu for the
next T iterations, where 7 1is the tabu status length. A
solution is forbidden if it is obtained by applying a tabu
action to the current solution. A best move is the one with
the smallest estimated length of the new longest path
containing the moved operation. If several non-tabu moves
exist, the next one is randomly chosen between the best two
non-tabu moves. This method is useful to decrease the
probability of generating cycles. In order to explore the
search space in a more efficient way, tabu search is usually
augmented with some aspiration criteria. Those are used to
accept a move even if it has been marked tabu. Finally, when
only tabu moves are available, the chosen solution is the one
(v,k) with the lowest value TM(v,k) . The basic scheme is

presented in Algorithm 1.
3) Simulated Annealing

The simulated annealing meta-heuristic offers an
exploratory perspective in the decision space which can
choose a search direction jumping out of the local optima
basin. The exploration is performed an optimal k -insertion

of a critical operation. We use a rule 7, =aT, , , where
a(ae (0,1)) is the
temperature. The number of iteration for each temperature 7
is M(T)=1/T . The basic scheme is presented in Algorithm
2.

-1
is the cooling coefficient, where T

D. Description of our MA

Initially, the MA randomly generates a population of
individuals. Then the MA starts evolving the population
generation by generation. In each generation, the MA uses

the genetic operators probabilistically on the individuals in
the population to create new promising search points.
Individuals will then undergone the local search learning
procedure in the spirit of Lamarckian learning. This form of
learning forces the genotype to reflect the result of
improvement through the placement of locally improved
individual back into the population in order to compete for
reproductive opportunities. The basic scheme is presented in
Algorithm 3.

Algorithm 3: our MA

Begin
=0
Initialize population P(f) of size popsize with two-vector representation

Evaluate all individuals in P(7)
Copy the elite individual into P(z +1)
While ‘P(t+ 1)‘ < popsize
Select a pair of parents using roulette wheel selection
Apply crossover to produce two children C1 and C2 with the crossover
probability p.
Apply mutation to C1 and C2 with the mutation probability p,,
End while
Apply tabu search to every individual in P(7+1) with the probability p, ¢

If the elite individual is unimproved for more than 20 generations
Apply simulated annealing to each of the individual in P(z +1) with the

probability pg,
End if
t=t+1
End

IV. EXPERIMENTAL STUDY

A. Test problems and parameter settings

The MA was implemented on a 1.66GHz Core 2 personal
computer and tested on a large number of problem instances
from the literature.

(1) The first data set (BRdata) comes from Brandimarte
[4]. The data were randomly generated using a uniform
distribution between given limits.

(2) The second data set (DPdata) comes from Dauzére-
Pérés and Paulli [6]. The set of machines capable of
performing an operation was constructed by letting a
machine be in that set with a probability that ranges from 0.1
to 0.5.

(3) The third data set (BCdata) comes from Barnes and
Chambers [12]. The data were constructed from three of the
most challenging classical job shop problem (mtl0, la24,
la40) by replicating machines selected according to two
simple criteria: the total processing time required by a
machine and the cardinality of critical operations on a
machine. The processing times for operations on replicated
machines are assumed to be identical to the original.

In our experiment, parameters are set as follows:
TABLE I
THE PARAMETERS OF OUR EXPERIMENTS
Population size 100

pc=09

Crossover Probability

69

Mutation Probability py =0.05
Tabu Search Probability Pisy =0.05
., =0.05
Simulated Annealing Probability Pusi
Tabu Search Stop Condition N
Initial temperature 500
Final temperature 0.1
Cooling coefficient 0.8
Simulated Annealing Stop Condition T<T;
Fitness Evaluation BRdata 500,000
Ve DPdata BCdata | 2,000,000

B. Computational results

In Table II, we compare our MA with the algorithms
proposed by Mastrolilli and Gambardella [14], Gao et al. [15]
on BRdata. The first column reports the instance name; the
second and third columns report the number of jobs and the
number of machines for each instance, respectively. The
fourth column reports the best-known lower bound and
upper bound. Flex. denotes the average number of equivalent
machines per operation. The fifth and sixth column reports
our best makespan and average makespan over five runs of
MA. The makespan marked with an asterisk is the best upper
bound found to date. The remaining columns report the best
results of the two algorithms we compare with. Table III and
Table IV give results on DPdata and BCdata, respectively.

A comparative overview of the MA’s best makespan is
given in Table V. Column 4 (B:E:W) represents the number
of instances for which MA’s average makespan is better,
equal or worse than those found by the procedure of column
3.

TABLE V
COMPARISON RESULTS BETWEEN OUR MA WITH M&G AND HGA

Dataset | Num. | Algorithms | B:E:-W

M&G 3:7:0
BRdata 10 hGA 032

M&G 13:1:4
DPdata | 18 hGA 8:0:10

M&G 9:10:2
BCdata | 21 hGA | 7:113

Considering our best results, we found 4 better solutions in
terms of best solutions found by M&G and hGA out of five
runs in the 49 benchmark problems. The average makespan
of our MA over five runs is better than that of M&G and
hGA on 25 and 17 test instances respectively. For DPdata,
although the hGA outperforms our MA with a relatively
small advantage, our MA can find better upper bounds in
some test instances compared with the hGA. So, our MA is
also worthwhile for solving the DPdata problems. However,
for BCdata, our MA is quite robust and outperforms the hGA
in the most test instances. Furthermore, it should be noted
that the CPU time of the hGA is much longer than that of
M&G, our MA limited computational budget at a quite
reasonable level. Since the number of iterations of
experiments setup by M&G is limited 10° for BRdata and
4x10° for DPdata and BRdata, we limit our computational
budget at the same level (each iteration evaluate only once).
So our MA is as fast as M&G but can get better performance.

Since we introduced the tabu search to efficiently explore

and exploit the decision space and the simulated annealing to
prevent an undesired premature convergence, we have made
some experiments to compare the performance among the

original

tabu search proposed by Mastrolilli and

Gambardella (2000), the standard genetic algorithm (GA)
which only hybrid the tabu search, and our MA. The
parameters are set in table. 1. Firstly, we picked out 12
problems and classify them into three categories — — low
flexibility, medium flexibility and high flexibility to
represent all test problems, and then test the three algorithms
on them over 30 independent runs. Table VI describes the
flexibility of the test problems in detail. The statistical results
are shown in boxplots in Fig. 1.

test instances, our MA gets the best performance, and for Ola,

It can be found that for 16a, 06a, Mk07, Mk10, 12a, 15a

16a, 06a, only our MA can obtain the best solution. For Ola
and 1la, our MA has nearly the same performance with
GA+TS. However, for 07a and 18a, TS outperforms GA+TS
and our MA, and for 09a and 13a, GA+TS gets the best
performance. For 07a, TS and GA+TS obtain the best
solution and for 12a, GA+TS obtains the best solution.

TABLE VI
THE FLEXIBILITY OF SOME REPRESENTATIVE TEST PROBLEMS.
Flex. Test Problems Category
1.0~2.0 0la07a 13a 16a Low Flexibility
2.0~4.0 | 06a 11a Mk07 Mk10 | Medium Flexibility
4.0~6.0 09a 12a 15a 18a High Flexibility

In summary, our MA which hybrid the SA local searcher

outperforms GA+TS and TS. We can draw the conclusion
that the SA local searcher can help the evolutionary
algorithm prevent getting stuck at local basins and explore
the search space efficiently.

V.

CONCLUSION
In this paper, we studied the flexible job-shop scheduling

problem. And then, a memetic algorithm is introduced which
adopt a tabu search to explore and exploit the decision space
efficiently and a simulated annealing strategy to prevent an
undesired premature convergence. Finally, the MA was
tested on 49 benchmark problems, and compared with other

two

well-known algorithms. Considering both the

computational efforts and experimental results, our MA is a
quite efficient and robust algorithm for solving flexible job-
shop problems.

(1]

(2]
[3]

REFERENCES

M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flow
shop and job-shop scheduling,” Math. Oper. Res., vol. 1, pp. 117-129,
1976.

S. S. Panwalkar and W. Iskander, “A survey of scheduling rules,”
Oper. Res., vol. 26, pp. 35-62, 1988.

N. M. Najid, S. Dauzére-Péres, and A. Zaidat, “A modified simulated
annealing method for flexible job shop scheduling problem,” IEEE
Int. Conf. Syst., Man Cyber., vol. 5, no. 6, pp. 1-6, 2002

P. Brandimarte, “Routing and scheduling in flexible job shops by tabu
search,” Ann. Oper. Res., vol. 41, pp. 157-183, 1993.

E. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job shop
scheduling problem with multi-purpose machines,” Oper. Res. Spektr.,
vol. 15, pp. 205-215, 1994.

70

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Dauzeéré-Pérés and J. Paulli, “An integrated approach for
modelling and solving the general multiprocessor job-shop scheduling
problem using tabu search,” Ann. Oper. Res., vol. 70, pp. 281-306,
1997.

Jun Qing li, Quan ke Pan, and P .N. Suganthan, “A hybrid tabu search
algorithm with an efficient neighborhood structure for the flexible job
shop scheduling problem,” Int J Adv Manuf Technol., vol. 52, pp.
683-697, 2011.

H. Z. Jia, A. Y. C. Nee, J. Y. H. Fuh, and Y. F. Zhang, “A modified
genetic algorithm for distributed scheduling problems,” J. Int. Man.,
vol. 14, pp. 351-62, Jun. 2003.

H Zhang and M Gen, “Multistage-based genetic algorithm for flexible
job shop scheduling problem,” J. Com. Int., vol. 48, pp. 409-425,
2005

F. Pezzella G. Morganti, and G. Ciaschetti, “A genetic algorithm for
the flexible job-shop scheduling problem,” Comput. Oper. Res., vol.
35, pp. 3202-3212, 2008.

J. Paulli, “A hierarchical approach for the FMS scheduling problem,”
Eur. J. Oper. Res. Vol. 86, pp. 3242, 1995

J. W. Barnes and J. B. Chambers, “Flexible Job Shop Scheduling by
tabu search,” Graduate program in operations research and industrial
engineering. Technical Report ORP 9609, University of Texas,
Austin; 1996.

M. Mastrolilli and L. M. Gambardella, “Effective neighborhood
functions for the flexible job shop problem,” J. Sched., vol. 3, pp. 3—
20, 2000.

J. Gao, L. Sun, and M. Gen, “A hybrid genetic and variable
neighborhood descent algorithm for flexible job shop scheduling
problems,” Comput. Oper. Res., vol. 35, pp. 2892-2907, 2008

M. Yazdani, M. Amiri, and M. Zandieh,”Flexible job-shop
scheduling with parallel variable neighborhood search algorithm,”
Expert. Syst. Appl., vol. 37, pp. 678-687, 2010.

A. Nasr, T. Y. ElMekkawy, “An efficient hybridized genetic
algorithm architecture for the flexible job shop scheduling problem,”
Flex. Serv. Manuf. J., vol. 23, pp. 64-85, Mar. 2011.

N. B. Ho, J. C. Tay, and E. M. K. Lai, “An effective architecture for
learning and evolving flexible job-shop schedules,” Eur. J. Oper. Res.,
vol 179, pp. 316-333, 2007.

X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, "A multi-facet survey
on memetic computation”, IEEE Trans. Evol. Comput., vol. 15, no. 5,
pp. 591-607, Oct 2011.

M. Gen, Y. Tsujimura, and E. Kubota, “Solving job-shop scheduling
problem using genetic algorithms,” In: Proc. Int. Conf. Computer. Ind.
Eng., Ashikaga, Japan; pp. 576-9, 1994.

Cormen, T. H., Leiserson C. E., Rivest, R. L., & Stein, C.
“Introduction to algorithms”,. Possiveis Questionamentos, 2009

R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms: Part 2: Hybrid genetic
search strategies,” Computer. Ind. Eng., vol. 37, pp. 51-55, Oct. 1999.

TABLE II
RESULTS ON BRDATA

Problems nxm Flex. LB,UB MA M&G hGA
Best Mean Best Mean Best Mean
MKO1 10x6 2.09 36,42 40%* 40 40* 40* 40 40*
MKO02 10x6 4.01 24,32 26* 26 26* 26* 26 26*
MKO03 15%8 3.01 204211 204* 204 204*% 204* 204 204*
MKO04 15%8 1.91 48,81 60* 60 60* 60* 60 60*
MKO05 15%4 1.71 168,186 172* 172 172%* 172 172% 172
MKO06 10x15 3.27 33,86 58%* 58 58% 58.4 58% 58
MKO07 20x5 2.83 133,157 140 141.2 144 147 139* 139
MKO08 20x10 1.43 523 523* 523 523%* 523 523* 523
MKO09 20x10 2.53 299,369 307* 307 307* 307 307* 307
MK10 20x15 298 165,296 197* 198 198 199.2 197* 197
TABLE IIT
RESULTS ON DPDATA
Problems nxm Flex LB,UB MA M&G hGA
Best Mean Best Mean Best Mean
Ola 10x5 1.13 2505,2530 2511* 2515.6 2518 2528 2518 2518
02a 10x5 1.69 2228,2244 2231* 2233 2231* 2234 2231%* 2231
03a 10x5 2.56 2228,2235 2229* 2229 2229% 2229.6 2229* 22293
04a 10x5 1.13 2503,2565 2503* 2507.2 2503* 25162 2515 2518
05a 10x5 1.69 2189,2229 2218 2219 2216* 2220 2217 2218
06a 10x5 2.56 21622216 2201 22034 2203 22064 2196* 2198
07a 15%8 1.24 2187,2408 2285 2300 2283* 2297.6 2307 2309.8
08a 15%8 242 2061,2093 2068* 2070.4 2069 20714 2073 2076
09a 15x8 4.03 2061,2074 2066* 2068.2 2066* 2067.4 2066* 2067
10a 15%8 1.24 2178,2362 2293 2301.4 2291* 2305.6 2315 23152
11a 15%8 242 2017,2078 2062* 2063.8 2063 2065.6 2071 2072
12a 15%8 4.03 1969,2047 2031 2034 2034 2038 2030*% 2030.6
13a 20x10 1.34 2161,2302 2260 22654 2260 2266.2 2257* 2260
14a 2010 2.99 2161,2183 2168 2168 2167* 2168 2167* 2167.6
15a 20x10 5.02 2161,2171 2166 2167 2167 2167.2 2165% 21654
16a 20x10 1.34 2148,2301 2252* 22548 2255 2258.8 2256 2258
17a 20x10 2,99 20882168 2141 21434 2141 2144 2140* 2142
18a 20x10 5.02 2057,2139 2137 21404 2137 21402 2127* 2130.7
TABLE IV
RESULTS ON BCDATA
Problems nxm Flex. LB,UB MA M&G hGA
Best Mean Best Mean Best Mean
mtl0cl 10x11 1.10 655,927 927* 927 928 928 927* 927.2
mtl0cc 10x12 1.20 655914 910* 910 910* 910 910* 910
mt10x 10x11 1.10 655,929 918* 918 918* 918 918* 918
mt10xx 10x12 1.20 655,929 918* 918 918* 918 918* 918
mtlOxxx 10x13 130 655,936 918* 918 918* 918 918* 918
mtlOxy 10x12 1.20 655913 906 906 906 906 905* 905
mtl0xyz 10x13 1.30 655,849 847* 850.0 847* 850.0 849 849
setb4c9 15x11 1.10 857,924 914* 914 919 919.2 914* 914
setbdce 15x12 1.20 857,909 909* 909 909* 911.6 914 914
setbdx 15x11 1.10 846,937 925% 925 925% 925 925* 931
setbdxx 15x12 1.20 847,930 925* 925 925* 926.4 925* 925
setbdxxx 15x13 1.30 846,925 925% 925 925% 925 925* 925
setb4xy 15x12 1.20 845,924 916* 916 916* 916 916* 916
setbdxyz 15x13 130 838,914 905* 905 905* 908.2 905* 905
seti5c12 15x16 1.07 1027,1185 1174* 11742 1174* 11742 1175 1175
setiScc 15x17 1.13 955,1136 1136* 1136 1136* 11364 1138 1138
seti5x 15x16 1.07 955,1218 1204 1204 1201* 1203.6 1204 1204
setiSxx 15x17 1.13 955,1204 1199* 1200 1199* 1200.6 1202 1203
setiSxxx 15x18 1.20 955,1213 1199 1200.2 1197* 11984 1204 1204
setiSxy 15x17 1.13 955,1148 1136% 11362 1136* 11364 1136* 1136.5
setiSxyz 15x18 1.20 955,1127 1125*% 1126.6 1125* 1126.6 1126 1126

71

fitness value

fitness value

fitness value

fitness value

2555

2550

2545

2540

2535

2530

2525

2520

2515

2510

2274

2272

2270

2268

2266

2264

2262

2260

2212

2210

2208

2206

2204

2202

149

148

147

146

145

144

143

142

141

140

our MA

—
_—

+
T
|
|
—_
|
[ZEHRN
TS GA+TS
13a
|
|
!
s/ \ \ /
‘ \ \ /
\ /
\\ //
—
[\
/ \
/ \
|)
| |
| |
—1 —1
TS GA+TS
06a
T
|
|
/ \
|
—1
|
—1
TS GA+TS
Mk07
|
|
|
i L
|
—1
+
TS GA+TS

our MA

2330
23251
23201
2315

23101

|
|
|
|
|
|
|
|

2305}

2300}

2205}

2200} / \

2285

fitness value

our MA

2268
2266
2264
|
22621 |
|

2260

fitness value

22581

2256 1

22541

22521

Ts GA+TS

2070 —_—

2069

2068

2067 -

2066 -

fitness value

2065

2064

aR

2062 ——

~
-

TS GA+TS

Mk10

our MA

2021 +
2015}
2011 -
200.5 :
200 —_—

|
199.51 :

fitness value

199
198.51

1981 — ‘
197.51 :

1971 ——

72

our MA

fitness value

fitness value

2071
2070.5
2070
2069.5
2069
2068.5
2068
2067.5
2067
2066.5

2066

2169

2168.5

2168

2167.5

2167

2166.5

2166

2165.5

09a
L —_ 4
|
L ‘ 4
L ! 4
|
L ! 4
|
L ‘ 4
L —1 4
Ts GA+TS our MA
15a
L + 4
L L J f 4
h \ |]
\ / |
\ !
L /)_(\ 4
/ \
/ \
L / \ 4
/ \
. TS GA+TS our MA N

Fig. 1 Statistical results of TS, GA+TS and our MA on 12 typical test problems.

73

fitness value

fitness value

2045

2040

2035

2030

-

—
|
[|
|
1
Ts GA+TS our MA
18a

2145

2144

2143

2142

2141

2140

2139

2138

2137

——

L

GA+TS

our MA

