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Abstract— With the rapid expansion of the information on
the Internet, recommender systems play an important role in
filtering insignificant information and recommend satisfactory
items to users. Accurately predicting the preference of users
is the first priority of recommendation. Diversity is also an
important objective in recommendation, which is achieved by
recommending items from the so-called long tail of goods.
Traditional recommendation techniques lay more emphasis on
accuracy and overlook diversity. Simultaneously optimizing the
accuracy and diversity is a multiobjective optimization problem,
in which the two objectives are contradictory. In this paper, a
multiobjective evolutionary algorithm based on decomposition
is proposed for recommendation, which maximizes the predicted
score and the popularity of items simultaneously. This algorithm
returns lots of non-dominated solutions and each solution is a
trade-off between the accuracy and diversity. The experiment
shows that our algorithm can provide a series of recommenda-
tion results with different precision and diversity to a user.

I. INTRODUCTION

RECOMMENDER systems are tools or techniques to
filter the abundant information and recommend users

items that are interesting and satisfactory to users based
on their different types of information. Demographics of
users, like age, gender, can be used in some techniques.
Some techniques take advantage of the behavior of users
(like books read, items collected, web sites visited) [1].
Social information and ratings on items also are utilized
to recommend. Recommender systems have been widely
used in many online fields like music, books and movies.
Amazon.com recommend books by recommender systems
[2]. Recommender systems are used to suggest movies at
Netflix.com [3]. Recommender systems have received in-
creasing attention from many researchers because of the
significance of their application in e-commerce [4].

There are several challenges and tasks in the fields of
recommender systems. The major chanllenge is data sparsity.
For in e-commence web sites, there are millions of users
and items, but users can just reach and rate a few items,
so that lots of items are unrated and the available ratings
used in recommendation are rare. Then effective recommen-
dation techniques must deal with the problem of sparsity
[5]. Another important challenge in recommender system
is cold-start [6, 7]. When new users join in the system or
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new items are loaded in the system, few information can
be used to recommend. To overcome cold start problem,
hybrid algorithm is employed [8, 9]. In the traditional
recommendation techniques, accuracy is the most focused
task. And traditional recommender systems are designed to
increase the accuracy of the recommendation results [10, 11],
which maximize the metrics accuracy and RMSE such that
the prediction is satisfactory to the users. While in [12],
McNee indicates that accuracy-focused recommendation may
not be the best, for it provides exceptionally similar rec-
ommendations, which is detrimental to recommender sys-
tems. And recommendation techniques are more accurate
if popular items gain high prediction [13]. Then accuracy-
focused recommendation algorithms are easy to recommend
popular items, which are likely less useful to users. To
measure the ability of recommender systems to recommend
the unpopular items, the evaluation metrics diversity and
novelty are introduced [14–16]. Then how to maximize the
accuracy, diversity and novelty simultaneously is a challenge,
which is a multiobjective optimization problem. To increase
the value of one objective may result in the decrease of other
objectives, then it is necessary to find solutions that have a
tradeoff between these objectives.

Recently, many recommendation algorithms have been
proposed to find a tradeoff among accuracy, diversity and
novelty. In [17], a hybrid algorithm is proposed by combining
the accuracy-focused and diversity-focused algorithms to
solve the dilemma of these metrics. In [13], a framework
dealing with the ratings and other additional recommendation
goals is proposed. Rodriguez et al [18] frame the multiple
objectives optimization problem in recommender systems,
and this model can be incorporated into other model as
an additional stage. In [19], Ribeiro et al introduce Pareto-
efficient approaches for recommender systems, in which ac-
curacy, diversity and novelty are maximized simultaneously.
An algorithm based on evolutionary algorithm is proposed,
which combines exiting algorithms with different accuracy,
diversity and novelty [20].

Multiobjective evolutionary algorithms (MOEAs) deal
with the problem with two or more contradictory objectives.
The goal of multiobjective evolutionary algorithms is to
achieve a set of Pareto optimal solutions which approxi-
mate the Pareto-optimal front. Each of those solutions is
a trade-off among these contradictory objectives. Recent
years, most multiobjective evolutionary algorithms have been
proposed, such as decomposition-based MOEA (MOEA/D)
[21], NSGA-II [22], SPEA2 [23], PAES [24] and NNIA [25].

In this paper, we propose a recommendation framework
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based on multiobjective evolutionary algorithm (MOEA/D-
RS). In our framework, the accuracy and diversity of the
recommendation are considered simultaneously. The evolu-
tionary algorithm that we use is the Multiobjective Evolu-
tionary Algorithm Based on Decomposition (MOEA/D) [21].
Our motivations can be simplified as follows: a framework
is proposed that not only takes into account the predicted
preference scores that can show the accuracy of the rec-
ommendation, but also deals with values that differentiate
whether the items are popular or not to show the diversity of
recommendation. To find a good trade-off between these two
contradictory objectives, multiobjective evolutionary algo-
rithm is used to optimize the problem. In our algorithm, every
nondominated solution along the Pareto front represents a
kind of recommendation results, such that every user is given
lots of different recommendation lists.

The rest of this paper is organized as follows: Section II
gives the related knowledge, including the concept of rec-
ommendation, the neighborhood-based collaborative filter-
ing and introduction to multiobjective optimization problem
(MOP) and MOEA/D. Detailed description of the proposed
framework is put forward in Section III. In Section IV, the
performance of our algorithm is given. In Section V, we
conclude our works.

II. RELATED WORK

A. Recommender systems

Recommender systems aim to suggest items that are likely
to be appealing to users according to their preferences.
In [26], the recommendation is modeled as the target of
predicting ratings for users on unrated items. Adomavicius
and Tuzhilin [26] formulate the recommendation as follows.
Let M be the set of all the users, and let N be the set of
various items. F is the utility function to compute the ratings
of user m on unrated item n, where m ∈M and n ∈ N :

F : M ×N → R (1)

where R is a totally ordered set (e.g. non-negative integer
of real numbers). In general, there are two kinds of ratings.
One is used to measure the extent to which users like the
items, which is called as explicit ratings. Explicit ratings

usually consist of integer of real numbers like the five stars in
Amazon.com. Another kind of ratings is referred as implicit
ratings, which reflects the collection or consumption of users
on items. In the latter form, binary ratings are used to reflect
whether the user has collected the items.

In recent years, several types of recommendation methods
have been proposed [1, 26, 27]. In [28], Burke divides
existing recommendation methods into four types on the
basis of their source information: demographic techniques
[29, 30], which figure out recommendation from the demo-
graphic profiles of the users, content-based (CB) techniques
[30, 31], which recommend the items that are similar to what
they have rated, collaborative filtering (CF) techniques [32],
which generate the recommendation based on the ratings
of users who have similar preference with the target user,

knowledge-based techniques [33, 34], which provide recom-
mendation based on the knowledge about assumptions of
users. But all the four techniques above have their strengths
and weaknesses, respectively, so that in real application,
hybrid algorithms which combine two or more of the tech-
niques above are widely used [35, 36]. One important hybrid
algorithm is the combination of CB with CF. Some different
ways of combination are given in Fig. 1 [1, 26]. In Fig.
1, CB and CF are combined in four ways. The first one is
combining the recommendation results of CB and CF. The
second one is incorporating some CB features into CF. The
third one is constructing a unified model containing CB and
CF, and employing the model to recommend. And the last
one is incorporating some CF features into CB.

CF CB

CF CB

CF

CB

CB

CF

Recommendation
Recommendation

Recommendation Recommendation
Model

Fig. 1. An example of combination of CB and CF.

Usually, recommender systems give the prediction ratings
of users for unknown items-the rating prediction task, while
in commercial systems, they recommend a few of the best
items-the top-N recommendation task [32, 37]. The latter also
can be considered as prediction ratings, in which we rank all
the ratings of items and recommend the top ranked ones.

B. Items-based collaborative filtering

The widely used collaborative filtering technique is the k

Nearest Neighbors (kNN) recommendation algorithm [1, 38,
39]. The CF based on kNN is based on the following steps.

1) Computing items similarity: Similarity is used to mea-
sure the extent to which the items or users are similar. In CF,
the similarity is computed by the ratings of items co-rated
by two users or the ratings of co-users who have rated two
items. The former is called user-user similarity, and the latter
item-item similarity. There are lots of methods to compute
the items similarity. Here, we give some popular methods.
The first one is Pearson correlation. For the items based CF,
the Pearson correlation between items i and j is

sim(i, j) =

∑

u∈U (Ru,i − R̄i)(Ru,j − R̄j)
√

∑

u∈U (Ru,i − R̄i)2
√

∑

u∈U (Ru,j − R̄j)2

(2)
Here, U is the set of users who have both rated item i and

j. Ru,i and Ru,j are ratings of user u on items i and j. R̄i

and R̄j are the average ratings of items i and j, respectively.
Another popular similarity is cosine similarity. The cosine

similarity between two items i and j is
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Si,j = cos(~i,~j) =
~i •~j

‖~i‖ ∗ ‖~j‖
(3)

where ~i •~j denote the dot-product of the ~i and ~j.
2) Giving the prediction: After getting similarity of all the

items, the prediction ratings can be gained by the set of most
similar items. And the prediction is given by the following
technique, where N is the set of items that are similar to the
target item.

r̂u,i = bu,i +

∑

j∈N si,j(ru,j − bu,j)
∑

j∈N |si,j |
(4)

where bu,i is the value of baseline predictor defined as

bu,i = µ+ bu + bi (5)

where µ denotes the overall average rating and parameters
bu and bi are the observed deviations of user u and item i

from the average rating [40].
3) Obtaining the top-k list: For every users, a list con-

sisting of the top ranked k items based on their prediction
scores is recommended.

C. Introduction to Multiobjective Optimization

Multiobjective optimization problem can be described as
[25],

minF (x) = (f1(x), f2(x), . . . , fk(x))
T (6)

subject to x = (x1, x2, . . . , xm) ∈ Ω, where x is the decision
vector, Ω is the objective space and k is the number of
objectives.

Let xA and xB be two decision vectors in objective space
Ω. xA dominates xB (denoted as xA ≻ xB) iff

∀i = 1, 2, . . . , k fi(xA) ≥ fi(xB)

∧ ∃j = 1, 2, . . . , k fi(xA) > fi(xB)
(7)

A decision vector x∗ ∈ Ω is called a nondominated
solution if there is not another x ∈ Ω denominating x∗.

The set of Pareto-optimal set is called the Pareto-optimal
set, which is written as

P ∗
, {x∗ ∈ Ω|¬∃x ∈ Ω, x ≻ x∗} (8)

Pareto-optimal front is the corresponding image of the
Pareto-optimal set under the objective function space

PF ∗
, {F (x∗) = (f1(x

∗), f2(x
∗), . . . , fk(x

∗))T |x∗ ∈ P ∗}
(9)

MOEA aims to find a set of Pareto-optimal solutions that
approximate the Pareto-optimal front.

D. Introduction to MOEA/D

In traditional multiobjective evolutionary algorithm, the
multiobjective optimization problem is dealt with as a whole,
like NSGA-II [22]. MOEA/D is proposed by Zhang and Li
[21]. In this algorithm, a multiobjective optimization problem
is decomposed into a number of scalar optimization subprob-
lems and these subproblems are optimized simultaneously
by evolutionary algorithm. Each subproblem corresponds to
an individual solution in the population, and neighborhood
relations among these subproblems are defined based on the
distances between their aggregation weight vectors. Because
of similarities of optimal solutions to two neighborhood
subproblems, the current information of neighborhood sub-
problems are used in the optimization of the subproblem.
As indicated in [21], computational complexity at each
generation of MOEA/D is lower than that of NSGA-II [22].

There are many decomposition approaches that can de-
compose the problem of approximation of the Pareto front
into a number of scalar optimization subproblems, like
weighted sum approach, Tchebycheff approach and penalty-
based boundary intersection approach. In our algorithm,
Tchebycheff approach is adopted, for recommendation is not
a continuous problem. And in the Tchebycheff approach, the
scalar optimization problem is:

min gte(x|λ, z∗) = max
1≤j≤m

{λj |fj(x)− z∗j }

s.t. x ∈ Ω
(10)

where, z∗ = (z∗1 , . . . , z
∗
m)T is the reference point, i.e., z∗j =

min{fj(x)|x ∈ Ω} for each j = 1, . . . ,m. For each Pareto
optimal point x∗ there is a weight vector λ such that x∗ is
the optimal solution of (10) and each optimal solution of (10)
is a Pareto optimal solution of the MOP (6). And different
Pareto optimal solutions can be obtained by tuning the weight
vector.

III. THE PROPOSED ALGORITHM

In this section, we will give a detailed description of
the algorithm we proposed named as MOEA/D-RS. First,
the framework of MOEA/D-RS is given. And then further
explanations of the algorithm are introduced, including the
objective functions, initialization and genetic operators and
so on.

A. The framework of MOEA/D-RS

The goal of MOEA/D-RS is to give a top-k recom-
mendation list to every user. Our algorithm can mainly be
divided into two steps. First, the items-based CF is utilized
to generate the score of items that have been unrated, which
is used to be an objective function. And a top ranked list
with the length of L named as cf-L can be obtained on the
basis of ratings, where L > k. Subsequently, MOEA/D is
used to optimize the MOP. In MOEA/D, the two objectives
optimization problem is decomposed into a number of s-
calar optimization subproblems. And every solution of these
subproblems is a trade-off between accuracy and diversity.
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MOEA/D gives many different solutions finally, and every
solution represents a recommendation list to the target user.

B. Objective function

The goal of our algorithm is to optimize the accuracy and
diversity simultaneously. In our algorithm, the accuracy of
recommendation is on the basis of ratings and the diversity
on the basis of values that indicate whether the items are
popular or not.

The larger the rating of a user on an item is, the more pos-
sible the suggestion of the item to the user is. In MOEA/D-
RS, the larger the sum of all the ratings in the list, the more
accurate the recommendation is. Then, one objective function
is defined as:

F1 =
k

∑

i=1

r̂u,i (11)

where, u is the target user, i ∈ I is the item in the
recommendation list and k is the length of the list. r̂u,i
presents the prediction rating of user u on item i obtained
by item-based CF. The summation runs over all the items in
the list.

In [13], a function is proposed to measure whether the
item is popular or not. It is shown mathematically as:

pi =
1

µi(σi + 1)2
(12)

where the value of an item is the reciprocal of the mean
(µi) and the variance (σi). To avoid division by zero, one is
added to the variance. The more popular an item is, the less
the value is.

To evaluate the popularity of all the items in recommen-
dation list, we sum values of all the items in the list obtained
by the approach above as our another objective:

F2 =

k
∑

i=1

1

µi(σi + 1)2
(13)

To let the recommendation be accurate, we maximum
the objective function F1, while to increase the diversity
of the recommendation list, the objective function F2 may
be also maximized. In order to formulate recommendation
problem as a minimum optimization problem, we revise both
of objective functions, and then the problem is described as:



























min F1 = −
L
∑

i=1

r̂u,i

min F2 = −
k

∑

i=1

1

µi(σi + 1)2

(14)

C. Representation and initialization

To get the prediction ratings of user on unrated items,
the item-based collaborative filtering is adopted. Through the
item-based collaborative filtering, all the items unrated can
be given a rating. The detailed description of the item-based

CF is in Section II, where the Pearson correlation is used to
compute the item-item similarity. In MOEA/D-RS, we just
select the recommendation items from the items in cf-L.

In this algorithm, every chromosome is encoded as a string
X = {x1, x2, . . . , xk}, where xi ∈ [1, L] is an integer
that represents the corresponding item in cf-L and k is the
length of the final recommendation list. Every chromosome is
generated randomly, and every individual in the chromosome
is different, for in a list a item could not be recommended
more than once. An example of the representation with the
length of 10 is given in Fig. 2.

11 22 33 6644 55 77 101088 99

66 1010 44 112020 77 2323 16161111 1414

Fig. 2. An example of individual representation of MOEA/D-RS. The
length of the list is 10, and every element is not the same.

D. Genetic operation

1) Crossover: Since the length of the final recommen-
dation list is not very large, in our algorithm, single point
crossover in favor of uniform crossover is adopted. Given
two parent chromosome X and Y , we randomly select a
point i (1 ≤ i ≤ k), and all the genes at the right of point i
between X and Y are swapped (i.e. Xa ↔ Ya, i ≤ a ≤ k).
But in the process of crossover, some genes may repeat in
the child chromosomes, and then a mechanic is necessary
to avoid it. In MOEA/D-RS, if there are genes repeating in
a child chromosome, the right gene of them is substituted
by any item that does not belong to this chromosome. An
example of this kind of crossover operation is displayed in
Fig. 3.

66 10 44 112020 77 11 29291515 33

66 1010 44 112020 77 2323 16161111 1414

1212 88 44 313122 99 1010 29291515 33

66 10 44 112020 77 10 29291515 33

A:

B:

C:

D:

Fig. 3. An example of description of the crossover operation. A and B
are the selected parent chromosomes. The length of list is 10, i.e. k = 10.
The crossover point is the 7th gene. C is the child chromosome of parent
chromosome A. In C, the 2th and 7th genes are same, and D is achieved,
when 7th gene-10 in C is substituted by 11, where 11 is randomly obtained
from items that are not belong to C.

2) Mutation: In this algorithm, one point mutation is
adopted. First, a chromosome X is randomly selected to
be mutated. Then we randomly select a point i in the
chromosome X , and this gene is substituted by any item
that does not belong to this chromosome to avoid repeating.
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IV. EXPERIMENTS

In this section, we will test the performance of our
algorithm. To show the effectiveness of MOEA/D-RS, we
compare our algorithm with traditional items-based CF.

A. Experimental settings

There are many parameters in our algorithm, and pa-
rameters used in our algorithm are displayed in TABLE I.
Besides, all the algorithms are written in MATLAB, and
the experiments have been run on a Inter(R) Core(TM) i5
machine with 3.20GHZ CPU and 4.00GB Memory.

TABLE I
THE EXPERIMENTAL PARAMETERS USED IN MOEA/D-RS

Parameters Meaning values
L the length of cf-L 50
k the length of final recommendation list 10

pop the size of subproblems 100
gen the number of generations 200
ns the size of neighborhood 15
pc the probability of crossover 0.9
pm the probability of mutation 0.06
us the update size 3

B. Evaluation metrics

To show the performance of MOEA/D-RS, we employ
some different metrics to measure performance of MOEA/D-
RS.

The most widely used metrics to show the accuracy are
precision and recall, which denote the the proportion of a
user’s relevant recommendation items in the top-k list. For a
target user u, precision Pu(k) and recall Ru(k) are defined
as

Pu(k) =
du(k)

k
(15)

Ru(k) =
du(k)

Du

(16)

where k is the length of recommendation list, du(k)
denotes the number of relevant recommendation items of user
u (items rated by user u that are present in the probe set)
in the top-k recommendation list and Du is the total number
of relevant items of user u. The larger the precision is, the
more accurate the recommendation is.

Diversity is to show the degree of difference among rec-
ommendation items. There are two kinds of diversity metrics:
the Inter-user diversity - to indicate the difference of items
recommended to different users [41]. Another is called Intra-

user diversity. In [14], an Intra-user diversity is introduced to
show the ability of a recommendation technique to suggest
different items to the target user. Motivated by the metric
above, Zhou et al [42] propose another intra-user diversity.
For the target user u, the Intra-user diversity is defined as

Du(k) =
1

k(k − 1)

∑

a 6=b

s(Ia, Ib) (17)

where s(Ia, Ib) denotes the similarity between items Ia and
Ib. Big value of Intra-user diversity means less diverse
recommendation suggested to the users.

Novelty is used to measure the ability of an algorithm to
recommend novel items to the target user. In our algorithm,
we test the novelty of the algorithm for a user, and then the
popularity is defined as

N(k) =
1

k

∑

α∈Oi

R

dα (18)

where Oi
R is the top-k list of a user, and dα is the degree

of item α. Then the lower popularity of the algorithm is, the
more novel the recommendation is.

In our experiments, equation (15) is used to test the
accuracy of MOEA/D-RS, and equation (17) and (18) are
employed to test the diversity and novelty of MOEA/D-RS,
respectively.

C. Experimental results

The data-sets used in MOEA/D-RS are two bench-
mark data sets MovieLens [43] and Jester [44]. Both of
them can be download form the website of Grouplens
(http://www.grouplens.org/). The MovieLens 100k data con-
sists of 100,000 ratings from 943 users on 1682 movies,
and every rating is a integer ranging from 1 to 5. In
our experiments, the Jester data used is the Jester3 data,
containing ratings from 24938 users who have rated between
15 and 35 jokes on 100 jokes, in which the ratings are values
ranging from -10.00 to 10.00. While in our experiments, to
simplify the data set, we just keep the users who have rated
more than 34 jokes and the jokes that have been rated over
20 times. Then the data set contains 32563 ratings from 931
users on 90 items, and we re-scope all the ratings in the
range of 1-5.

To evaluate the performance of algorithms, the data is
divided into two parts: the training set ET and the probe
set EP . The training set is considered as the known ratings
and no information from the probe set are allowed to be
used to give prediction. In our experiments, the training set
consists of 80% of the data and the probe set contains the
remaining 20% of the data.

TABLE II
THE NUMBER OF PARETO SOLUTIONS IN MOEA/D-RS FOR FIRST TEN

USERS ON TWO DATA-SETS.

ID 1 2 3 4 5 6 7 8 9 10

MovieLens 62 43 33 1 44 37 34 62 55 33

Jester 31 37 19 26 47 38 24 29 18 38

In our experiments, we just give the results on the first
ten users. In TABLE II, we run MOEA/D-RS one time and
the number of Pareto solutions i.e. different recommendation
lists to every user are given. As shown in TABLE II, for the
MovieLens data-set, except for the 4th user, MOEA/D-RS
suggests many different recommendation lists to every user.
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The 4th user is given just one recommendation list, because
the top ranked items have similar scores rated by CF. And
for the data-set Jester, MOEA/D-RS gives lots of different
recommendation lists for each user.
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(a) Pareto solutions of the 10th user on the MovieLens data set
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(b) Pareto solutions of the 10th user on the Jester data set

Fig. 4. Pareto front of MOEA/D-RS on the 10th user of two test data-sets.
The Pareto solution with small ID has low score but great diversity.

Fig. 3 shows the Pareto front of the 10th user on two data-
sets in TABLE II. For the MovieLens data-set, our algorithm
can give 33 different recommendation lists to this user, and
for another data-set, 38 different recommendation results
are generated. In Fig. 4, the Pareto solution with small ID
has low summation of scores but high diversity value. The
recommendation result with ID 1 has the highest precision
but the lowest diversity, and the recommendations with ID 33
in (a) and 38 in (b) have the highest diversity but the lowest

TABLE III
THE VALUES OF PRECISION BY CF AND MOEA/D-RS ON TWO

DATA-SETS.

MovieLens Jester

ID CF
MOEA/D-RS

CF
MOEA/D-RS

mean max min mean max min

1 0.3 0.200 0.3 0.1 0.3 0.294 0.3 0.1
2 0.1 0.014 0.1 0 0.1 0.081 0.1 0
3 0.1 0.021 0.1 0 0.3 0.295 0.3 0.2
4 0 0 0 0 0.2 0.173 0.3 0
5 0 0 0 0 0.3 0.183 0.3 0
6 0.6 0.484 0.6 0.4 0.3 0.145 0.3 0
7 0.3 0.218 0.4 0.1 0.1 0.100 0.1 0.1
8 0.1 0.057 0.1 0 0.2 0.172 0.2 0
9 0 0 0 0 0.3 0.200 0.3 0
10 0.6 0.546 0.7 0.4 0.3 0.258 0.4 0.1

TABLE IV
THE VALUES OF DIVERSITY BY CF AND MOEA/D-RS ON TWO

DATA-SETS.

MovieLens Jester

ID CF
MOEA/D-RS

CF
MOEA/D-RS

mean max min mean max min

1 0.046 0.060 0.095 0.014 0.184 0.166 0.195 0.143
2 0.122 0.085 0.139 0.038 0.184 0.170 0.204 0.122
3 0.024 0.005 0.024 0 0.159 0.159 0.181 0.143
4 0.085 0.112 0.112 0.112 0.145 0.149 0.197 0.109
5 0.023 0.023 0.062 0.005 0.185 0.185 0.235 0.143
6 0.059 0.046 0.084 0.024 0.153 0.150 0.211 0.118
7 0.070 0.067 0.089 0.046 0.148 0.158 0.206 0.131
8 0.081 0.061 0.086 0.033 0.152 0.167 0.220 0.142
9 0.118 0.094 0.135 0.072 0.160 0.161 0.203 0.121
10 0.076 0.089 0.121 0.071 0.164 0.148 0.179 0.125

TABLE V
THE VALUES OF NOVELTY BY CF AND MOEA/D-RS ON TWO

DATA-SETS.

MovieLens Jester

ID CF
MOEA/D-RS

CF
MOEA/D-RS

mean max min mean max min

1 97.6 82.511 110.3 19.4 306.5 298.2 320.2 139.6
2 83.9 93.863 113.3 77.0 202.2 170.3 207.0 55.2
3 27.5 10.488 28.4 3.7 315.5 306.5 336.8 196.4
4 181.7 150.100 150.1 150.1 203.3 185.2 268.7 67.0
5 61.2 50.657 65.5 33.1 270.9 204.9 289.6 59.0
6 119.6 84.830 124.0 53.7 294.5 182.7 296.2 54.1
7 86.1 71.374 120.0 51.0 328.8 228.6 330.3 126.0
8 139.0 108.957 177.5 64.3 213.7 184.0 215.4 59.2
9 75.6 71.147 104.0 46.8 297.6 217.0 297.6 56.0

10 198.0 167.210 202.7 124.7 294.4 258.0 354.0 138.1

precision. The solutions become tight with the increase of
the solution ID, so that our algorithm tends to find the lists
with great accuracy but low diversity, because the data is
sparse and items are given only a few ratings [27].

TABLE III reports the values of precision of our algorithm
and the items-based CF. The ‘mean’ is the average precision
of all the recommendation lists of MOEA/D-RS for a user.
The ‘max’ and ‘min’ denotes the maximum and minimum of
all the recommendation lists of MOEA/D-RS, respectively.
Almost all the average values of our algorithm are lower than
the values of CF. But we can see that MOEA/D-RS could
give some recommendation lists that have better precision
than CF, for for the 7th and 10th users, the maximum values
of MOEA/D-RS are greater than that of CF. Besides, for
other users our algorithm can generate recommendation lists
with precision equal to values of CF, because the recom-
mendation result of CF is just one of the Pareto solutions
obtained by MOEA/D-RS.

TABLE IV gives the values of diversity of our algorithm
and CF. All the labels in the table have the same meanings
with TABLE III. For the data set of MovieLens, there are
6 users that their average values of recommendation results
by MOEA/D-RS are less than the corresponding values by
CF. And the first, fifth and tenth users can be suggest
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some lists by MOEA/D-RS more diverse than the lists by
CF. The fourth user is just given one Pareto solution, and
this recommendation list is worse than the result of CF in
diversity. For Jester, there are 4 users with average diversity
of MOEA/D-RS less than the values of CF, and for the
remaining six users, MOEA/D-RS can generate some lists
more diverse than the lists by CF.

The novelty of the two algorithms on the two data-sets
are shown in TABLE V. Equally, all the labels in this table
have the same meanings with that in TABLE III. Except for
the second user of MovieLens, the average novelty of our
algorithm are lower than that of CF, so that our algorithm
has a better performance to recommend unpopular items than
CF.
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Fig. 5. The boxplot of the number of solutions of MOEA/D-RS over 10
times on two data-sets.

We run MOEA/D-RS ten times, and record the number of
recommendation lists to the first ten users every time. In Fig.
5, the stability of our algorithm is shown. For the 4th user in
MovieLens, there is always only one recommendation list in
every run. For other users, every time MOEA/D-RS gives

different number of results, so our algorithm is unstable.
The major contribution of MOEA/D-RS is to suggest many
different recommendation results to a user. And in real
recommendation, every time only one list is recommended
to user, so we do not think instability of MOEA/D-RS is a
fatal disadvantage.

V. CONCLUSION

In this paper, we propose a recommendation technique
based on multiobjective evolutionary algorithm with decom-
position, MOEA/D-RS. MOEA/D-RS does not only deal
with the prediction score, but also maximize the diversity
of the recommendation. And our algorithm can give a series
of trade-off solutions to a user, and every Pareto solution
in MOEA/D-RS is a recommendation list. Then MOEA/D-
RS gives some alternative recommendation results for a
decision maker to choose which will be recommended to
users. The experiments show that our algorithm is effective
to recommend diverse and unpopular items.
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