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Abstract—In this article, we propose the Fitness Level based
Adaptive Operator Selection (FLAOS). In FLAOS, the discovered
objective values are divided into intervals, the fitness levels. A
probability distribution corresponding to a fitness level describes
the selection probabilities of a set of operators. An evolutionary
algorithm with FLAOS is suggested to solve one-dimensional
cutting stock problems (CSPs) with contiguity. These problems
are bi-objective and the goals are to minimize the trim loss and
to minimize the number of partially finished items. Experimental
studies have been carried out to test the effectiveness of the
FLAOS. The solutions found by FLAOS are better than or
comparable to those solutions found by previous methods.

Keywords—cutting stock problems, fitness level, AOS.

I. INTRODUCTION

The cutting stock problem (CSP) is a traditional class of
combinatorial optimization problems [1]. The goal of a CSP
is cutting a set of big objects, made of a material such as
reels of wire, paper, steel, plastic, aluminum, or pieces of
wood, into a set of small items, to satisfy the customers’
demands. The main objective of the CSP is the trim loss
or cost minimization [2]. Usually, CSP solution methods are
designed for a special objective function [3]. Dyckhoff [4]
and Wäscher [5] categorize the different objectives according
to the characteristics of CSPs. The applicability of CSP in
many industries such as steel, glass, wood, plastic and paper
manufacturing has caused them to be an interesting topic for
research [6]. Besides that, CSPs have a structure similar to
other industrial problems like VLSI design, capital budgeting,
etc. [7].

In this study, we propose a new method named Fitness
Level based Adaptive Operator Selection [8], [9] (FLAOS) to
solve CSPs with contiguity. In the population of an Evolu-
tionary Algorithm (EA) or Evolutionary Programming (EP)
process, there are many individuals with different fitness
values. An interval of fitness values is called a fitness level.
For each fitness level, FLAOS defines and adapts a probability
distribution for applying different candidate search operators.
If the fitness value of an individual belongs to a given fitness
level, the operator used to generate its offsprings is selected
according to the corresponding probability distribution.

The main contributions of our work are as follows: Firstly,
we propose the fitness level and combine it with AOS (FLA-

SO) to solve the CSPs with contiguity; Secondly, experiment
studies show that FLAOS could achieve better performance on
a set of problem instances from the literature [3], [10] and a
set of randomly generated problem instances.

The rest of the paper is organized as follows. Related
work is discussed in the next section. Section III presents
the description of CSPs with contiguity. Section IV introduces
the two operators and the detailed description of FLAOS. In
section V experimental studies show that FLAOS could solve
the CSPs with contiguity efficiently. Section VI concludes this
study and discuss the future work.

II. RELATED WORK

In 1DCSPs, standard-length stocks are cut to produce a
number of required small items with a minimal amount of
waste. The main objective of classical CSPs is minimizing the
trim loss. The most common approaches to solving CSPs are
linear programming methods [11], [12] and heuristic method-
s [13], [14], [15], [16], [17], [18]. Recently, effective heuristic
approaches were proposed for the classical CSP:

In [18], Cherri et al. introduced a heuristic procedure which
modified the heuristics first-fit-decreasing (FFD) leftover and
residual greedy rounding (RGR) leftover [17] to make a pri-
ority for the leftovers. The larger leftovers had higher priority
for use latter. FFD heuristic strategy considered the use of no-
standard stocks only. The RGR heuristics reduced the stock of
retails and maintained lower loss solutions.

Besides the objective of trim loss minimization, many other
objectives can be defined for CSPs, such as minimizing the
total number of stocks cut, maximizing the profit, minimizing
production cost due date, etc. The definition of the CSPs
vary significantly with the different objectives and so do the
algorithms for solving them. In this study, we mainly concern
the objectives for ordered demand, which is an important issue
in CSPs.

In the current industry, delivering orders on time may be
more important than the scrap or the cost of materials [19].
Recently, there are many new works concerning about the
sequencing objective in CSPs. Reinertsen et al. [19] consider
CSPs with due dates, i.e., those where each order must be
completed at a certain time. He applied the column generation
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approach [15] to initialize the cutting pattern, followed by a
heuristic method to find the solutions. For CSPs that minimize
the maximum number of open stacks (MOSP), Yanasse et
al. [20] used Lagrangian relaxation to decompose the problem
into a CSP and a pattern sequencing problem (PSP). The CSP
is then solved with the column generation approach and the
PSP with a heuristic method. In [21], a genetic algorithms are
used to solve the ordered CSPs, in which several items belong
to a job and the jobs need be finished in a particular order.
For CSPs with different objectives, there are different heuristic
approaches, and the effectiveness of approaches is related to
the definition of problems.

The objective of contiguity is minimizing the number of
partially finished (open) items, which is cutting the same type
of items continuously as much as possible [10], [13]. This
sequencing factor is crucial in industrial manufacturing. For
example, in the wood hard board industry [20], a cutting
machine has a limited number of open stacks to store the items
until they are used. One stack can only hold one type of item,
and it cannot hold a new item until the remaining type of
item has been completed. This results from the limitation of
physical space or the use of restricted resources to control the
stacks.

There are few works dealing with the objective of contigu-
ity, a realistic model of real-world situations. In this study, we
consider CSPs on two objectives: trim loss minimization and
the number of partially finished items minimization, which is
called CSPs with contiguity.

For optimizing CSPs with contiguity, there are two main
heuristic methods in use: genetic algorithm (GA) and evolu-
tionary programming (EP). The main difference between GA
and EP is the search operators used and the replacement strat-
egy [6]. Hinterding and Khan [10] designed GA with a special
fitness objective function that combines two sub-objectives
– trim loss minimization and contiguity. In their method,
crossover was used as primary search operator. However, the
authors found that the crossover operator applied to the order-
based representation degrades the performance of GA. Liang
et al. [3] proposed EP to solve the CSPs with contiguity.
They used the same objective function and introduced three
new features. First, for the problem representation, one integer
vector holding an ordered list of all requested items is used.
Second, no crossover is applied. Third, a three point swap
(3PS) mutation is applied. In [3], 20 problem instances were
described in detail. Experiments showed that EP outperformed
the GA [10] or a heuristic algorithm named two-swap algo-
rithm [3] on the 20 problem instances.

Even though EP [3] was an effective approach for CSPs
with contiguity, there are many parameters which need be fine-
tuned. For example, the number of 3PS mutation would affect
the performance of EP. Performing more 3PS mutations favors
exploration whereas fewer 3PS mutations lead to increased
exploitation. Liang et al. spent effort on deciding the number
of 3PS mutation. They used problem instances 4a and 5a for
experimentation and decided that the number of 3PS mutation
was two. However, this parameter value might only perform
well on these two problem instances.

Finding an appropriate parameter setting for an EA is cru-
cial for good performance [22], [23], [24]. EP has parameters

such as the population size, the mutation operator, the mutation
rate, etc. [25]. The parameter values greatly affect whether the
algorithm can find an optimal result effectively or not [26].

In [3], there is another mutation named stock remove and
insert (SRI). The two mutations (3PS and SRI) have significant
influences on the performance [3]. In the following, we will
focus on controlling these operators, but also discuss the
influence of some other parameters, such as the tournament
and population sizes.

III. CUTTING STOCK PROBLEMS WITH CONTIGUITY

In the CSPs with contiguity, there may be several types of
stock lengths and the available quantity for each type of stock
length is unlimited. If there is only one type of stock length,
the problem is called single stock length CSPs, otherwise, it is
called multiple stock length CSPs. The goal of the CSPs with
contiguity is to produce the required items by cutting the stock
lengths to minimize the total waste of material and the number
of partial finished items. For an ordered list of items, a cut is
made before the accumulated item length matches any stock
length. If the accumulated item length exceeds the maximum
stock length, a cut is made at the maximum stock length [3].

To formulate the mathematical model for the CSPs with
contiguity, we assume the following terminology:

∙ 𝑛: number of types of items;

∙ 𝐾: number of types of stocks;

∙ 𝑚: number of total stocks cut which are actually used
to produce requested items;

∙ 𝑙𝑖: length of item type 𝑖, 𝑖 = 1, . . ., 𝑛;

∙ 𝑆𝑘: length of stock type 𝑘, 𝑘 = 1, . . .,𝐾;

∙ 𝑑𝑖: number of demand for item type 𝑖, 𝑖 = 1, . . ., 𝑛;

∙ 𝐿𝑗 : length of the 𝑗th stock cut, 𝑗 = 1, . . .,𝑚;

∙ 𝑥𝑖𝑗 : number of item type 𝑖 in the 𝑗th stock cut;

∙ 𝑤𝑗 : waste of the 𝑗th stock cut, given by Function (2);

∙ 𝑦𝑖𝑗 : open status of item type 𝑖 in the 𝑗th stock cut,
𝑖 = 1, . . ., 𝑛, 𝑗 = 1, . . .,𝑚, given by Function (4);

∙ 𝑜𝑗 : number of partially finished (open) orders up to
the 𝑗th stock cut, 𝑗 = 1, . . .,𝑚, given by Function (3).

For an ordered list of requested items, a corresponding
ordered list of stocks cut is (𝐿1, . . ., 𝐿𝑗 , . . ., 𝐿𝑚). This entails
an ordered list of wastes (𝑤1, . . ., 𝑤𝑗 , . . ., 𝑤𝑚) and the list of
the number of partially finished orders up to the 𝑗th stock cut
(𝑜1, . . ., 𝑜𝑗 , . . ., 𝑜𝑚). For the 𝑗th stock cut, 𝑦𝑖𝑗 represents the
open status of item type 𝑖: If we have begun to cut item type
𝑖 but have not completed the total demanded 𝑑𝑖 of that item
type, then 𝑦𝑖𝑗 = 1, otherwise 𝑦𝑖𝑗 = 0. The 𝑜𝑗 represents the
sum of open status of each item type in the 𝑗th stock cut.

The solution of the CSPs with contiguity in our study is
an ordered list of total requested items. For example, Figure 1
shows an ordered-based representation 𝑋 = (𝐼1, . . ., 𝐼8) and
the mapping from the representation to a solution 𝑋 =
(5, 4, 6, 3, 3, 4, 6, 6). The shadow part of the stock is the waste.
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The cutting method for the solution:

Stock 1:

Stock 2:

Stock 3:

Stock 4:

42 �I

63 �I 34 �I 35 �I

46 �I 67 �I

68 �I

51 �I 31 �W

22 �W

63 �W

Fig. 1. An example is given as above for better understanding to the cutting
process. A permutation of the eight requested items is the solution 𝑋 . The
solution 𝑋 is an ordered list. Four stocks are used. The shadow part of the
stock is the waste, and the waste of second stock is 0. The total waste is 11.

The stock length is 𝐿 = 12. There are 𝑑1 = 2 items of length
𝑙1 = 3, 𝑑2 = 2 items of length 𝑙2 = 4, 𝑑3 = 1 items of length
𝑙3 = 5, and 𝑑4 = 3 items of 𝑙4 = 6.

We use the same objective function for CSPs with contigu-
ity as [3], [10], a cost function based on a sum of two terms.
The first part is minimizing the waste of stocks cut and the
second part is minimizing the number of open items.

𝐶𝑜𝑠𝑡 =
1

𝑚+ 10

⎛
⎝ 𝑚∑

𝑗=1

√
𝑤𝑗

𝐿𝑗
+

10

𝑚

𝑚∑
𝑗=1

(𝑜𝑗
𝑛

)2⎞⎠ (1)

where 𝐶𝑜𝑠𝑡 is a function of 𝑤𝑗 and 𝑜𝑗 :

𝑤𝑗 = 𝐿𝑗 −
𝑛∑

𝑖=1

𝑥𝑖𝑗 𝑙𝑖, 𝑖 = 1, . . ., 𝑛, 𝑗 = 1, . . .,𝑚 (2)

𝑜𝑗 =

𝑛∑
𝑖=1

𝑦𝑖𝑗 , 𝑖 = 1, . . ., 𝑛 (3)

𝑦𝑖𝑗 =

{
0, 𝑖𝑓

∑𝑗
𝑘=1 𝑥𝑖𝑘 = 0 or

∑𝑗
𝑘=1 𝑥𝑖𝑘 = 𝑑𝑖

1, otherwise
(4)

subject to
𝑚∑
𝑗=1

𝑥𝑖𝑗 = 𝑑𝑖, 𝑖 = 1, . . ., 𝑛, 𝑗 = 1, . . .,𝑚 (5)

IV. THE FITNESS LEVEL BASED AOS APPROACH FOR
CSPS WITH CONTIGUITY

FLAOS has two main components, the fitness level and
the operator selection. For each fitness level, operator selec-
tion maintains a probability distribution of candidate search
operators. We will select search operators according to the
probability distribution. Then according to the evaluation of
the performance of the selected operators, the corresponding
probability distribution of fitness level will be updated. Fig-
ure 2 shows the main scheme of FLAOS.

A. Operators For CSPs With Contiguity

There are two primary search operators for CSPs with
contiguity, 3PS mutation and SRI mutation [3]. The 3PS
mutation operator is mainly minimizing the waste. The SRI
mutation operator is mainly minimizing the number of partially
finished items. To obtain good results in terms of the 𝐶𝑜𝑠𝑡
function, the usage of the two operators needs to be well
balanced.

fitnesslevel_k

fitnesslevel_2

fitnesslevel_4

...

fitnesslevel_1

Fitness Levels

fitnesslevel_3

population

Operator

Selection

operator_1

operator_2

operator_3

.......

operator_k

Impact Evaluation

Operator Application

EA

Fig. 2. The scheme of Fitness Level based Adaptive Operator Selection.

3PS mutation will select three items [3]: the first item 𝑥
′

𝑖𝑗 is
selected uniformly at random from the ordered list of requested
items. The second and third item are selected as follows. The
stock 𝐿𝑗 is selected at random according to the probability
given by Function (6), and an item 𝑥

′′

𝑖𝑗 is selected uniformly
randomly from the 𝑗th stock.

𝑃𝑟(𝑗) =

√
1
𝑤𝑗∑𝑚

𝑗=1

√
1
𝑤𝑗

, ∀𝑤𝑗 ∕= 0, (6)

3PS mutation swaps the first item with the second one, and
then swaps the new first one with the third one. For one stock
length 𝐿𝑗 , there are different cutting patterns, i.e., methods
of cutting a stock length into different items [14]. A solution
consists of an ordered list of items, which corresponds to an
ordered list of stocks cut. 3PS mutation swaps the items among
these stocks cuts, which is to select different cutting patterns.
According to Function (6), the stocks with more waste are
preferred for new cutting patterns.

SRI mutation is designed for considering contiguity [3].
SRI is used for reducing the number of partially finished items
through rearranging the cutting sequence: firstly, it selects an
item uniformly at random from the candidate solution (ordered
list); secondly, it removes the stock that consists of the selected
item; thirdly, search through the ordered list of stocks cut to
find the stock that cuts the item that has the same length;
finally, it inserts the removed stock right behind the first such
found stock. SRI mutation makes the same length of items to
be cut as closely as possible.

B. Fitness Level And Operator Selection

A fitness level is an interval of fitness values. We define
𝐿𝑒𝑣𝑒𝑙=

{
𝑙𝑒𝑣𝑒𝑙0, 𝑙𝑒𝑣𝑒𝑙1, 𝑙𝑒𝑣𝑒𝑙2, . . ., 𝑙𝑒𝑣𝑒𝑙𝑘, . . .

}
. We denote the

𝑙𝑒𝑣𝑒𝑙𝑘=[𝑓𝑙𝑘 , 𝑓𝑢𝑘
), where 𝑓𝑙𝑘 is the lower bound and 𝑓𝑢𝑘

is the
upper bound. Since each individual in the population belongs
to a fitness level, we can write 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 = 𝑝𝑜𝑝0𝑖 ∪ 𝑝𝑜𝑝1𝑖 ∪
𝑝𝑜𝑝2𝑖 ∪ . . .∪𝑝𝑜𝑝𝑘𝑖 ∪ . . . . The 𝑖 represents the 𝑖th generation. The
fitness value of an individual 𝑖𝑛𝑑𝑗 (with 𝑗 ∈ 1..𝜇) is presented
as 𝑓𝑖𝑛𝑑𝑗

. We denote that 𝑝𝑜𝑝𝑘𝑖 =
{
𝑖𝑛𝑑𝑗 ∣𝑓𝑖𝑛𝑑𝑗

∈ 𝑙𝑒𝑣𝑒𝑙𝑘
}

. The
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Algorithm 1: 𝐹𝐿𝐴𝑂𝑆

1 Initialize fitness level and evaluate the population;
2 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ←− 0;
3 while not termination do
4 for 𝑖← 1 to 𝜇 do
5 𝑃𝑟𝑜𝑏𝑋,𝑌 ← FitnessLevel(𝑖𝑛𝑑𝑖);
6 sample 𝑥 and 𝑦 following 𝑃𝑟𝑜𝑏𝑋,𝑌 ;
7 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← SwapSRIMutate(𝑖𝑛𝑑𝑖, 𝑥, 𝑦);
8 evaluate 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔;
9 if 𝑓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 is minimally better than the lower

bound of fitness levels then
10 𝑐𝑜𝑢𝑛𝑡𝑒𝑟++;
11 end
12 if 𝑓𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 is minimally better than 𝑓𝑖𝑛𝑑𝑖

then
13 UpdateDistribution(𝑃𝑟𝑜𝑏𝑋,𝑌 );
14 end
15 end
16 Select next generation according to 𝑠𝑐𝑜𝑟𝑒;
17 if counter > 1/3 𝜇 then
18 Create a new fitness level;
19 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ←− 0;
20 end
21 end

individuals of better fitness levels may be closer to a local or
global optimum.

Multiple applications of 3PS or SRI mutations usually
mean large-step search, and fewer applications usually mean
small-step search. Corresponding to each fitness level, there
is a joint probability distribution 𝑃𝑟𝑜𝑏𝑋,𝑌 , where 𝑋 and 𝑌
are two random variables. 𝑋 represents the number of 3PS
mutations, and 𝑌 represents the number of SRI mutations.
When an individual undergoes mutation, it will draw two
numbers 𝑥 and 𝑦 for mutation operators based on this joint
probability distribution 𝑃𝑟𝑜𝑏𝑋,𝑌 .

In FLAOS, fitness improvement is the main evidence used
to adapt the joint probability distribution per fitness level. An
offspring is created by applying 𝑥 times 3PS and 𝑦 times SRI.
If the offspring outperforms the parent, we will update the
𝑃𝑟𝑜𝑏𝑋,𝑌 of the fitness level of the parent. The probability of
𝑥 times of 3PS mutation and 𝑦 times of SRI mutations will be
increased.

C. Description Of FLAOS

FLAOS is presented in detail in Algorithm 1. We initially
generate and evaluate 𝜇 individuals randomly. The popu-
lation size is fixed during the run. The number of initial
fitness levels is two. To calculate the number of individuals
whose fitness values do not belong any current fitness level,
we define a variable 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 initialized to 0. The function
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐿𝑒𝑣𝑒𝑙(𝑖𝑛𝑑𝑖) returns the fitness level of 𝑖𝑛𝑑𝑖. If the
fitness value of the individual is better than the current lower
bound of fitness levels, we chose the fitness level whose
interval is close to the fitness value of the individual, and the
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is increased by 1. According to the joint probability
distribution 𝑃𝑟𝑜𝑏𝑋,𝑌 of the selected fitness level, we generate
𝑥 and 𝑦. The function 𝑆𝑤𝑎𝑝𝑆𝑅𝐼𝑀𝑢𝑡𝑎𝑡𝑒(𝑖𝑛𝑑𝑖, 𝑥, 𝑦) creates
an offspring of 𝑖𝑛𝑑𝑖 by applying 𝑥 times the 3PS and 𝑦

TABLE I. FEATURES OF ALL PROBLEMS INSTANCES.

inst
total number of
requested items

number of
stock types

number of
item types

inst
total number of
requested items

number of
stock types

number of
item types

1 20 3 8 1a 20 1 8
2 50 3 8 2a 50 1 8
3 60 6 8 3a 60 1 8
4 60 3 8 4a 60 1 8
5 126 8 18 5a 126 1 18
6 200 5 18 6a 200 1 18
7 200 5 24 7a 200 1 24
8 400 3 24 8a 400 1 24
9 400 6 36 9a 400 1 36

10 600 3 36 10a 600 1 36
11 800 8 10 11a 800 1 10
12 800 8 40 12a 800 1 40
13 800 8 80 13a 800 1 80
14 1800 8 10 14a 1800 1 10
15 1800 8 40 15a 1800 1 40
16 1800 8 80 16a 1800 1 80
17 3000 8 10 17a 3000 1 10
18 3000 8 40 18a 3000 1 40
19 3000 8 80 19a 3000 1 80

times the SRI operator. We calculate the fitness value of the
offspring. If the offspring outperform its parent, the probability
to select the 𝑥 and 𝑦 in 𝑃𝑟𝑜𝑏𝑋,𝑌 of parent will be increased.
In total, 𝜇 offspring individuals are generated and evaluated
this way.

In selection, every individual has a score initialized to 0.
For each individual, 𝑞 opponents are chosen randomly from
the (𝜇+𝜇) population. The number of the 𝑞 opponents whose
fitness are worse than the individual will be the individual’s
score. Then 𝜇 individuals are selected to be the next generation
according to the score.

When the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is greater than one third of 𝜇, we create
a new fitness level. This fitness level controls an interval that
spans from the lower bound of origin fitness levels to the best
fitness value of current population. Then the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is reset
to 0.

V. EXPERIMENTAL STUDY

In order to evaluate the performance of FLAOS, we com-
pare it with EP [3] on the instances from the literature [3],
[10]. To further evaluate the effectiveness of the fitness level
based adaptation, we compared our approach to an EA that
uses a single operator probability distribution for the whole
population. The results of two objectives, waste minimization
and contiguity were also presented in detail for each algorithm.
We additionally apply the algorithms to some new random
problem instances.

A. Experimental Settings And Description Of Problem In-
stances

There are 38 problem instances ready to test. The first
10 benchmark problem instances (1-5 and 1a-5a) were from
Hinterding and Khan [10]. The detailed description of the other
10 problem instances (6-10 and 6a-10a) were given in [3]. The
last 18 problem instances 11-19 and 11a-19a are randomly
generated. Problem instances 1-19 are multiple stock length
CSPs and problem instances 1a-19a are single stock length
CSPs. The total number of requested items increases as the
problem index increases.
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In Table I, we present the features of all problem instances
in detail. The new problem instances 11-19 and 11a-19a are
generated deliberately. We consider three features for the new
problem instances: the total number of requested items, the
number of stock types and the number of item types. These
three features are given small or big values. Firstly, the total
number of requested items is much larger than the biggest total
number (600) of requested items of problem instances in [3].
Secondly, the number of item types has a larger range (from
10 to 80) than the first twenty instances (8 to 36). Thirdly, the
numbers of stock types of the new instances have two different
values, either 1 or 8.

In the following experiments, the population size 𝜇 is set
to 75. The tournament size 𝑞 is set to 10 in selection. These
parameters are the same as used in EP [3]. Each problem
instance is repeated for 50 independent runs. The ranges of
𝑥 and 𝑦 in our experiments are from 0 to 8.

B. Results Of Problem Instances From Literature

In Table II, inst is the index of problem instance. inum
is the total number of requested items. gen is the number of
generations. Mean is the mean best fitness. Std Dev is the
standard deviation. For the results of each row, the bold result
with an underline is the best result, the bold result without an
underline is the better one, and the result without bold is the
worse one.

The results in Table II show that FLOAS has performed
better than EP for most problem instances. AOSEP performs
at least as well as the EP for ten benchmark problems. FLAOS
performs better than EP for 12 problem instances which are
instances 2-5, 8, 10 and 3a-4a, 7a-10a. The results of FLAOS
is comparable to EP’s for instances 1, 6, 1a, 5a and 6a. The
results of FLAOS are worse than EP’s on problem instances 7
and 9. The standard deviations of problem instances 1-3, 6-8,
10, 1a-4a and 7a-10a are smaller than EP’s, which indicates
that our solutions are more robust and reliable. In Table II, we
also present the results of AOSEP. AOSEP outperforms EP
on six problem instances 2-4, 3a, 7a and 10a. The results is
comparable to EP on nine problem instances 1, 5, 1a, 2a, 4a,
8, 10, 8a, 9a. We can conclude that the results of FLAOS is
better than EP for most problem instances from [3], [10].

To better investigate the influence of FLAOS on the two
objectives (waste minimization and contiguity), we present the
detailed results for the three algorithms EP [3], FLAOS, and
AOSEP simultaneously in Table III.

In Table III, Stock used indicates the average number of
stock used, Total wastage is the average total wastage from all
used stock, Stocks w/wastage is the average number of stocks
with wastage, and Max open is the average maximum number
of open items in the solution. For the problem instances 1-
5 and 1a-5a [10], the difference between FLAOS and EP is
very small on the total wastage and the number of stocks with
wastage, but FLAOS outperform EP on the maximum number
of open items. FLAOS cuts stocks without any waste for six
problem instances, while EP achieves this only for five. The
results of total wastage and number of stocks with wastage of
FLAOS is less than EP’s on problem instances 8, 10, 7a-10a.
The results of number of stocks used of FLAOS is better than
EP on problem 8, 7a-10a. The results of maximum number

TABLE II. THE MEAN BEST RESULTS OF THE EP, THE FLAOS AND

THE AOSEP FOR PROBLEM 1-10 AND 1A-10A OVER 50 INDEPENDENT

RUNS.

inst inum gen
EP FLAOS AOSEP

Mean Std Dev Mean Std Dev Mean Std Dev
1 20 500 9.36e-3 1.17e-3 9.06e-3 8.46e-4 9.01e-3 9.51e-4
2 50 1000 1.41e-2 3.42e-3 1.22e-2 2.45e-3 1.21e-2 2.21e-3
3 60 2000 1.66e-2 3.42e-3 1.12e-2 1.23e-3 1.15e-2 1.79e-3
4 60 2000 2.61e-2 4.88e-3 1.97e-2 5.54e-3 2.11e-2 5.90e-3
5 126 2000 7.28e-3 1.50e-3 6.81e-3 1.67e-3 7.41e-3 1.54e-3
1a 20 500 4.40e-2 0 4.40e-2 0 4.40e-2 0
2a 50 1000 6.83e-2 3.64e-3 6.81e-2 3.35e-3 6.95e-2 4.41e-3
3a 60 2000 6.26e-2 1.63e-2 5.13e-2 1.20e-2 5.15e-2 1.05e-2
4a 60 2000 6.57e-2 8.19e-3 6.39e-2 6.93e-3 6.62e-2 7.67e-3
5a 126 2000 1.25e-1 4.92e-3 1.29e-1 7.19e-3 1.31e-1 6.35e-3

6 200 3000 1.39e-2 6.20e-3 1.41e-2 5.57e-3 1.76e-2 6.36e-3
7 200 3000 1.55e-2 3.02e-3 1.64e-2 1.91e-3 1.70e-2 2.11e-3
8 400 5000 3.24e-2 6.89e-3 2.23e-2 5.07e-3 3.33e-2 1.19e-3
9 400 5000 1.04e-1 2.31e-3 1.21e-1 2.52e-3 1.42e-2 3.85e-3
10 600 10000 3.62e-2 5.31e-3 3.22e-2 4.67e-3 3.83e-2 6.55e-3
6a 200 5000 1.05e-1 1.02e-2 1.08e-1 9.22e-3 1.13e-1 1.22e-2
7a 200 5000 7.14e-2 1.11e-2 5.56e-2 1.18e-2 6.64e-1 1.46e-2
8a 400 5000 1.34e-1 9.13e-3 1.20e-1 8.70e-3 1.38e-1 1.30e-2
9a 400 10000 7.89e-2 7.76e-3 6.96e-2 7.80e-2 8.12e-2 1.46e-2
10a 600 20000 8.44e-2 7.06e-3 6.41e-2 6.22e-2 7.84e-2 1.23e-2

TABLE IV. THE MEAN BEST RESULTS OF FLAOS AND AOSEP FOR

THE NEW PROBLEM INSTANCES OVER 50 INDEPENDENT RUNS.

inst inum gen
FLAOS AOSEP

Mean Std Dev Mean Std Dev
11 800 10000 3.29e-2 4.17e-3 3.71e-2 4.36e-3
12 800 10000 2.03e-2 8.81e-4 2.25e-1 2.29e-3
13 800 10000 1.21e-2 1.62e-3 1.65e-2 6.81e-3
14 1800 10000 8.87e-2 2.01e-3 8.75e-2 3.48e-3
15 1800 10000 6.03e-2 2.40e-3 6.91e-1 4.01e-3
16 1800 10000 5.60e-2 1.94e-3 6.53e-1 2.85e-3
17 3000 10000 5.42e-2 2.70e-3 6.33e-1 4.26e-3
18 3000 10000 7.39e-2 2.86e-3 6.87e-2 4.02e-3
19 3000 10000 7.13e-2 2.61e-4 8.02e-2 5.91e-3

11a 800 10000 1.44e-1 7.29e-3 1.61e-1 1.04e-2
12a 800 10000 1.07e-1 8.01e-3 1.33e-1 1.29e-2
13a 800 10000 1.31e-2 9.36e-3 1.47e-1 1.84e-2
14a 1800 10000 2.13e-1 3.47e-3 2.20e-1 8.82e-3
15a 1800 10000 1.98e-1 2.35e-3 2.11e-1 9.47e-3
16a 1800 10000 2.00e-1 1.55e-3 2.12e-1 3.56e-2
17a 3000 10000 2.21e-1 3.00e-3 2.27e-1 9.30e-3
18a 3000 10000 2.29e-1 6.45e-4 2.38e-1 1.21e-2
19a 3000 10000 2.20e-1 1.30e-3 2.18e-1 2.20e-3

of open items of FLAOS are worse than the results of EP on
problem instances 8, 10, 6a-10a. This is due to the number of
consecutive SRI mutations used of EP is 4 [3], which is much
more than the number of SRI mutations of FLAOS.

C. Results Of Problem Instances Randomly Generated

To further evaluate the performance of FLAOS, we have
tested it on larger problem instances, and compared it against
the AOSEP. These problem instances have much larger num-
bers of requested items than the problem instances in [3], as
well as more divers numbers of item types.

FLAOS and AOSEP are given the same number of cost
function evaluations. The experimental results on the problem
instances are summarized in Table IV. We can find that the
mean best solutions of FLAOS are better than AOSEP’s on
fifteen problem instances except for problem instances 14, 18
and 19a.

Table V compares the results of two objectives (waste
minimization and contiguity) for FLAOS and AOSEP on the
randomly generated problem instances. As the total number
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TABLE III. THE MEAN BEST RESULTS FOR PROBLEM INSTANCES 1-10 AND 1A-10A OVER 50 INDEPENDENT RUNS FOR CSPS WITH CONTIGUITY

inst EP FLAOS AOSEP
Stocks
used

Total
wastage

Stocks w/
wastage

Max
open

Stocks
used

Total
wastage

Stocks w/
wastage

Max
open

Stocks
used

Total
wastage

Stocks w/
wastage

Max
open

1 9.98 0 0 2.00 9.70 0 0 2.00 9.84 0 0 2.00
2 27.52 0 0 2.84 27.83 0 0 2.65 27.76 0 0 2.65
3 26.4 0 0 3.00 26.56 0 0 2.3 27.14 0 0 2.29
4 23.92 0 0 3.52 24.82 0 0 2.98 24.42 0.32 0.12 2.92
5 55.6 1 0.02 6.22 55.63 0 0 5.81 55.68 0 0 6.16
1a 9 3 2 2.00 9 3 2 2.00 9 3 2 2.00
2a 23 13 4.08 2.30 23 13 4 2.46 23 13 4.05 2.51
3a 15 0 0 4.26 15 0 0 3.84 15 0 0 3.96
4a 19 11 1.64 3.84 19 11 1.63 3.82 19 11 1.71 3.80
5a 53 11450 23.56 6.88 53.04 11625.51 24.42 7.20 53 11702.94 24.57 7.25

6 86.78 4.84 2.46 8.32 86.80 3.36 1.78 8.86 86.69 5.49 2.69 9.39
7 74.02 4.60 1.88 11.12 74.07 4.09 1.13 11.09 74.16 4.00 1.14 11.96
8 151.78 99.30 14.20 16.18 151.01 25.88 2.87 17.57 151.55 67.47 7.51 18.83
9 165.52 7.40 3.90 19.46 165.37 6.80 3.90 19.95 165.41 8.86 4.84 21.86
10 229.14 176.50 33.92 24.16 229.57 121.42 25.39 28.57 229.10 134.41 28.63 29.53
6a 80.76 254.36 33.70 9.32 80.94 270.13 33.24 10.07 80.80 257.80 33.90 11.06
7a 68.96 199.20 15.34 11.88 68.12 152.23 9.09 12.74 68.82 182.82 10.71 13.43
8a 148.08 701.60 76.68 16.66 147.46 627 56.82 18.92 148.33 732.00 66.14 19.69
9a 152.42 432.40 48.40 20.10 151.93 395.84 33.96 23.17 152.78 476.12 39.98 24.82
10a 220.28 643.60 70.70 24.14 219.04 495 42.46 28.29 219.79 584.62 53.711 29.25

TABLE V. THE MEAN BEST RESULTS FOR NEW PROBLEM INSTANCES 11-19 AND 11A-19A OVER 50 INDEPENDENT RUNS FOR CSPS WITH CONTIGUITY

inst FLAOS AOSEP
Stocks
used

Total
wastage

Stocks w/
wastage

Max
open

Average
open no.

Stocks
used

Total
wastage

Stocks w/
wastage

Max
open

Average
open no.

11 219.1 49.5 21.3 9.5 6.9 219 61 26.4 9.9 7.22
12 229.2 1 1 35.2 26.47 229.8 1 1 37.4 27.89
13 289.93 2.87 1.68 61.56 44.73 290.04 27 7.6 65.04 47.94
14 736.6 52840 571.6 10 9.22 734 52820 565.2 10 8.87
15 709.7 29160 395.3 40 36.68 709.9 36610 437.2 40 36.69
16 694.42 26887.14 362.85 79.71 67.68 693.42 34101.42 416.28 79.14 67.71
17 1245.62 54687.5 540.12 10 9.83 1247 69787.5 606.5 10 9.89
18 1248.71 79300 825.57 40 38.30 1246.16 76566.66 815.33 40 38.14
19 1289 79430 855.5 80 72.22 1288.4 96170 906.8 80 72.47

11a 207 1647 114.7 10 8.48 207.8 1819 129.5 10 8.64
12a 214.8 1463 69.4 38.3 31.05 215.81 1681.9 96.9 39.27 32.34
13a 273.62 2245.37 144.25 70.87 53.75 274.7 2476.5 159.5 71.4 54.08
14a 698.4 385600 635.8 10 9.71 701.2 410800 646.6 10 9.69
15a 667.5 365990 569 40 37.01 670.3 391190 584.6 40 37.19
16a 653.6 365130 567.4 79.4 68.39 656 386730 581 80 68.82
17a 1171.37 724375 1068.37 10 9.9 1174.7 754300 1076.8 10 9.88
18a 1175.37 780975 1105.12 40 38.32 1180.5 827100 1109.25 40 38.44
19a 1213 766630 1078 80 72.99 1214.33 778630 1074 80 72.89

of requested items become larger, the average number of
maximum open items is usually equal to the types of items.
The average number of open items of each stock is used to
evaluate the objective of contiguity. For problem instance 14,
AOSEP is especially better in terms of average open items
of each stock (8.87 vs. 9.22). For problem instance 18, the
total wastage of AOSEP is 76566.66, which is much less than
the 79300 of FLAOS. For problem instance 19a, the total
wastage of AOSEP is 778630, which is more than 766630
of FLAOS, but the average number of open items of AOSEP
is 72.89, which is less than 72.99 of FLAOS. The number of
stocks used of FLAOS is significant better than AOSEP on ten
problem instances. As the results showed in Tables IV and V,
FLAOS outperform AOSEP for the CSPs with contiguity. The

fitness levels improve the adaptive operator selection and the
performance of AOSEP.

D. Parameter Analysis

In FLAOS, 3PS and SRI mutations make the contributions
to the performance. There are two other important parameters
in FLAOS, the population size 𝜇 and the tournament size 𝑞.
In both EP [3] and FLAOS, the 𝜇 = 75 and the 𝑞 = 10 are
used. To investigate whether these two parameters have effect
on performance of FLAOS or not, we test different values of
these two parameters on problem instances 4, 5, 4a and 5a
from [3]. These four problem instances were also used by the
EP [3] to calibrate the parameter of number of 3PS mutation.

We assign 5, 10, 15, 20 to the tournament size 𝑞 while
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TABLE VI. THE COMPARE RESULTS OF DIFFERENT TOURNAMENT SIZE 𝑞

inst Gen
Tournament size of FLAOS

5 10 15 20
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

4 2000 1.99e-2 5.45e-3 1.97e-2 5.54e-3 2.13e-2 6.77e-3 2.10e-2 6.92e-3
4a 2000 6.56e-2 7.42e-3 6.39e-2 6.93e-3 6.63e-2 7.12e-3 6.65e-2 7.07e-3
5 2000 6.77e-3 1.35e-3 6.91e-3 1.67e-3 6.57e-3 1.57e-3 6.53e-3 1.34e-3
5a 2000 1.28e-1 5.75e-3 1.29e-1 7.19e-3 1.29e-1 7.76e-3 1.27e-2 3.38e-3

TABLE VII. THE COMPARE RESULTS OF DIFFERENT POPULATION SIZE 𝜇

inst Gen
Population size of FLAOS

50 75 100 125 150
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

4 2000 2.12e-2 6.83e-3 1.97e-2 5.54e-3 1.98e-2 5.09e-3 1.91e-2 1.35e-3 1.95e-2 4.73e-3
4 2000 6.76e-2 8.08e-3 6.39e-2 6.93e-3 6.56e-2 1.01e-2 6.41e-2 7.81e-3 6.46e-2 8.48e-3
5 2000 7.11e-3 2.28e-3 6.91e-3 1.67e-3 7.21e-3 1.69e-3 7.28e-3 1.57e-3 7.30e-3 1.45e-3
5a 2000 1.30e-1 7.42e-3 1.29e-1 7.19e-3 1.31e-1 7.87e-3 1.32e-1 9.77e-3 1.30e-1 6.38e-3

fixing the population size 𝜇 = 75. We then assign 50, 75, 100,
150 to the population size while fixing 𝑞 = 10. For the mean
best results of each problem instance with different 𝑞 or 𝜇, we
repeat the experiments for 50 independent runs.

Tables VI and VII presents the mean best fitness and
the standard deviation of different tournament size 𝑞 and
population size 𝜇. From the results, for every problem instance,
the difference of the results of different tournament size 𝑞 or
population size 𝜇 is very small. We can conclude that the value
of tournament size 𝑞 or population size 𝜇 has little effect on
the performance of FLAOS, i.e., FLOAS is a robust approach.

VI. CONCLUSIONS

In this study, FLAOS, an adaptive method to select proper
operators for CSPs with contiguity is introduced. We propose
the concept of fitness level which allows to adapt search
operator usage probabilities for different individual types (in
terms of fitness). Fitness levels are updated during the run. The
adaptive method is analyzed by solving existing CSP instances
from literature [3], [10] and 18 randomly generated CSP
instances. The experimental study showed that FLAOS can
achieve better performance than plain EP and than adaptation
without fitness levels.

In FLAOS, a method to generate new fitness level is
introduced. When new individuals are generated, their fitness
values may be better than the lower value of the current best
fitness levels. When the number of these new better individuals
exceeds a certain threshold, we create a new fitness level
whose interval is from the fitness value of the best individual
to the lower fitness value of previous best fitness level. This
method can ensure that the adaptation of operator selection
probabilities can appropriately cover the whole spectrum of
fitness values in whole population.

There are some improvements which can be applied to
FLAOS in the future. For example, we can use a non-
generational replacement strategy that each individual has a
life time, which decides the survival of individual [27]. We
can further want to investigate the application of FLAOS [6] in
scenarios where more than two search operators are involved.
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