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Abstract—Community detection has received a great deal of 

attention in recent years. Modularity is the most used and best 
known quality function for measuring the quality of a partition 
of a network. Based on the optimization of modularity, we 
proposed a memetic algorithm with a local search operator to 
detect community structure. The local search operator uses a 
quality function of local community tightness based on structural 
similarity. In addition, the tactics of vertex mover is used for 
reassigning vertices to neighboring communities to improve the 
partition result. Experiments on real-world networks and 
computer-generated networks show the effectiveness of our 
algorithm.  

Keywords—community detection; memetic algorithm; local 
search; network 

I. INTRODUCTION  
Many real-world complex systems can be represented as 

networks, such as the Internet, the world-wide-web, e-mail 
networks, collaboration networks, social networks and 
biological networks. In general, these networks consist of a 
group of vertices and a group of links. One of significant 
properties of these complex networks is community structure. 
A community is usually thought of as a group of vertices 
within which connections are dense while between which they 
are sparser [1]. Detecting the partitioning of networks has great 
significance on analyzing the topological structure of the 
complex networks, understanding the function of complex 
networks and predicting the behaviors of complex networks. 

Numerous methods and algorithms have been proposed for 
detecting community structure such as graph partitioning, 
hierarchical clustering, spectral clustering, similarity and 
dissimilarity measures, heuristic methods and function-based 
optimization methods [1]. One of the most popular methods is 
called GN algorithm which is proposed by Newman and 

Girvan in [2]. The GN algorithm is a divisive hierarchical 
clustering algorithm which is a process of iterative edges 
removal from the network. 

Newman and Girvan proposed a function called modularity 
Q  which is one of the most popular functions [2]. The 
community detection problem aims to find a particular 
clustering with the maximal modularity Q  and many 
algorithms have been proposed based on the measure [4]-[7]. 
However, maximizing the modularity has been proven to be a 
nondeterministic polynomial time (NP)-complete problem [8]. 
Genetic based algorithm is an efficient method for solving NP-
complete problem, and able to dramatically reduce the time 
complexity for solving the problem while ensuring the quality 
of solutions. In [9] a genetic algorithm was proposed to explore 
the community structure in social networks by optimizing an 
objective function. While due to reasons like randomly initial 
population, unsuitable crossover or mutation operator, the GA 
based algorithm shows drawbacks including slow convergence 
and low precision. To overcome these problems, numbers of 
improved genetic algorithms were proposed. In [7], a Markov 
random walk based method was used to initial population and a 
multi-individual crossover operator based on ensemble 
learning was put forward to replace the traditional crossover 
operator. Memetic algorithm is a genetic based algorithm 
combined with a local search strategy. Meme-net, a memetic 
algorithm with a hill climbing strategy, was proposed to solve 
the community detection [10]. In addition, some clustering 
algorithms based on vertex similarity which uses global or 
local structural information are also effective for detecting 
community [11]-[13]. 

In this paper, we propose a memetic algorithm combined 
with local structural information (MA-LSI) to optimize the 
modularity. It uses the function of local community tightness to 
define a local search operator and vertex moving operator. The 
function of local community tightness proposed in [11] 
employs the structural similarity. The hill climbing strategy 
used in [10] is an iterative process that attempts to find a better 
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solution by incrementally changing a single element of the 
original solution. However, this procedure is time consuming 
especially when the number of clusters is large, because it 
needs to calculate fitness function values of all possible 
neighbor partitions. Compared with the hill climbing strategy 
used in [10], our local search operator adopts a criterion which 
makes full use of local structural information of network to 
generate the neighbor partition of a selected solution. 
Experimental results show our algorithm is efficient. 

II. ALGORITHM DESCRIPTION 

A. Problem Definition 
Given a network, it can be defined as a graph ),( EVG = , 

where V is the vertex set and E is the edge set. The detection 
of community structure is to find the division of vertices into 
groups within which the network connections are dense, while 
between which they are sparser. Newman and Girvan proposed 
a function called modularity Q  to quantify the quality of a 
partition of the network [2]. Considering a partition of the 
network ),( EVG = : ( ) ( )mmm EVGEVG ,,,, 111 … , where iV  and iE  
are, respectively, the node set and the edge set of iG  for 

mi ,,1 …= , the well-known modularity Q  is given by: 
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We take the modularity Q  as objective function and it 
should be maximized. 

B. Algorithm Framework 
Before we give a detailed description of our algorithm, the 

flow chart is shown in Fig. 1. 

Some explanation is required with regard to the flow chart. 
Gmax and gen represent the maximum number of generations 
and the current number of iterations respectively. Firstly, the 
initial population is generated. Then, tournament selection is 
adopted to generate parental population for mating. The genetic 
operation includes crossover operator and mutation operator. 
The local search procedure is executed on the optimal solution 
in the current generation. The operator of vertex mover is 
executed only once in the last iteration. When updating the 
population, the current population and the new generated 
population are combined to select the top individuals as next 
generation. When reaching the maximum number of iterations, 
the algorithm terminates. 

Detailed description about the population initialization, 
selection, genetic operation, local search operator and vertex 
mover will be given as below. 

C. Individuals Encoding and Population Initialization 
In this paper, we adopt the direct encoding strategy. A 

partition of the network G  is encoded as an integer string. The 
length of the integer string equals to the number of vertices in 
the network and the value of an integer in the string represents 

the identifier of the community. The vertices having the same 
identifier are considered in the same community. 

We apply the population initialization procedure which has 
been used in [10]. Firstly, each vertex is put into a different 
community for all chromosomes, i.e. the initial partition is 
{ }n,,2,1 … , where n is the number of vertices. Then for each 
chromosome, we randomly select a vertex and assign its 
community identifier to its neighbors, where the neighbors 
mean vertices which have links with the selected vertex. This 
operation is repeated n⋅α  times for each chromosome where 
α  is a model parameter and 2.0=α  is adopted in our 
algorithm. The procedure is very fast and results in small 
communities. Although the result is far away from ideal 
partition, it can speed up the convergence of our algorithm. 

D. Selection and Crossover Operator 
Selection operator plays a role of global search in genetic 

algorithm. Here we choose the deterministic tournament 
selection. 

Crossover operator also plays an important part in global 
searching and it is the critical operator of genetic algorithm. 
Considering the special encoding pattern, traditional crossover 
operators such as single-point crossover or two-point crossover 
is not suitable. Here we introduce an effective method called 

 
Fig. 1.  The flow chart of our algorithm. 
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two-way crossover which was proposed in [14]. Given two 
chromosomes, one of them is taken as source chromosome 

sch  and the other as destination chromosome dch  . Pick a 
vertex pv  at random; determine its community identifier in the 
source chromosome and the location of all the vertices 
belonging to the same community in the source chromosome. 
Then assign this identifier to the corresponding location in the 
destination chromosome. 

E. Mutation Operator 
Here we employ the one-point mutation operator [10]. We 

pick a vertex randomly on the chromosome, and then the 
cluster of the vertex is randomly changed to the cluster of one 
of its neighbors. This operator is repeated n  times on the 
selected chromosome. 

F. Local Search Operator 
In our algorithm, a new local search operator is employed. 

The difference between it and the hill climbing strategy is that 
a criterion is used to determine the neighbor partition which 
will be described in the following. This local search procedure 
is employed after genetic operators and only executed on the 
best individual in the current population. Next, we will 
illustrate some relevant concepts relating to this operator. 

Considering a network which is described as a graph 
),( EVG = , the structural similarity ( )vus ,  between two adjacent 

nodes is given by the following equation 

 ( ) ( ) ( )
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where ( ) { } { }uEvuVvu ∪∈∈=Γ ,| , and ( )uΓ  denotes the 
neighboring nodes of node u . The numerator ( ) ( )vu Γ∩Γ  
means the common neighborhood of u  and v . Then the 
tightness T  of a local community is then calculated as  
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similarity. The test whether a node i  should join a community 
c  is determined by the value of a criterion. As raised in [11], 
the criterion to optimize is the tightness gain given by 
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Using the theory above, the procedure of finding a neighbor 
partition based on the function of local community tightness 
definition is described as follows: 

• First, select a vertex randomly on the chosen 
chromosome. 

• Second, find the cluster k  which has the community 
identifier corresponding with the selected vertex. Then 
determine the neighborhood set kN  of cluster k . Here 
the neighborhood set kN  means the vertices which 
have links with the nodes in cluster k . 

• Third, determine whether the candidate vertices in the 
neighborhood set kN  should be included in the 
community k  or not. Here we first select the neighbor 
vertex with the most possibility a  to join in cluster k  
as the candidate vertex and calculate ( )akτ  to determine 
whether it should be added into cluster k  or not. The 
vertex which is most likely to join in cluster means it 
has the largest similarity with the cluster, i.e., the sum 
of structural similarities between it and vertices in the 
cluster is the largest. If ( ) 0>akτ , then the vertex a  will 
be inserted into community k . Otherwise, it will be 
removed from kN and other vertices will be considered 
in the descending order of structural similarity. 

In order to illustrate the procedure clearly, we consider a 
simple example of a network with two communities as shown 
in Fig. 2. The partition can be represented as { }2,2,2,1,1,1,1,1  and 
the figures marked on the graph are the structural similarities 
calculated by (2). The neighborhood set of cluster 1 is { }7,6  
and vertex 6 is more similar to cluster 1 than vertex 7. The 
value of ( )61τ  calculated by (4) is 0.1332. Since ( ) 061 >τ , we 

 
Fig. 2.  A simple example of a small network with two clusters.

 
Fig. 3. An illustration of the procedure to generate a neighbor
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change the community identifier of vertex 6 into 1 and the 
neighbor cluster is generated. This process is demonstrated in 
Fig. 3. 

If the process described above produces a better solution, it 
will be executed iteratively until there are no further 
improvements. This local search procedure considers the local 
structural information of the network when finding a neighbor 
partition of the selected solution, which can not only generate 
more accurate solution, but also reduce the number of function 
evaluation. 

G. Vertex Mover 
The step called vertex mover is applied to further improve 

the partition result by adjusting vertices between communities. 
In [12], the VM implementation that vertex v   is reassigned 
from community i  to community j  is carried out by 
calculating QΔ , which is given as follows: 

 ( ) ( ) ( )
.

2 2
\

L
ddk

L
ivlinksjvlinksQ vijv −

−↔−↔=Δ  (5) 

 with ( )jvlinks ↔  the total links between vertex v  and 
community j , vk  the degree of vertex v , jd  the sum degree 
of all vertices in community j , vivi kdd −=\  the corresponding 
degree for community without vertex. However, upon 
determining the reassignment of one vertex to any neighboring 
community means calculating the modularity changes once, 
and this will increases times of function evaluation. This part is 
also time-consuming. Consequently, we proposed another 
strategy to determine vertex moving. The tightness function of 
a local community which is demonstrated in (3) is still 
considered in the procedure of vertex mover. Suppose two 
neighboring communities i  and j , the tightness of them can 
be calculated by (3). If vertex v  in community i  is reassigned 
into community j , then the tightness of the two communities is 
recalculated. The positive increment of tightness results in the 
reassignment operator. In reality, the process only consider 
nodes which belong to one community but still have links with 
other nodes belonging to the neighboring communities. 

III. EXPERIMENT RESULTS 
In this section, we evaluate our algorithm using computer-

generated benchmark datasets and some real world datasets. 
The community structures of them are already known. 

We will introduce a similarity measure Normalized Mutual 
Information (NMI) as described in [15] before we show our 
experiment result. Considering two partitions A  and B  of a 
network in communities, let C  be the confusion matrix whose 
element ijC  is the number of nodes of community i  of 
partition A  that are also in the community j  of the 
partition B . The normalized mutual information ( )BAI ,  is 
then defined as 
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A. GN Extended Benchmark networks 
In this section, the network we adopt here is the benchmark 

network proposed by Lancichinetti et al. [16], which is an 
extension of the classic benchmark datasets proposed by 
Girvan and Newman for testing community detecting 
algorithms [3]. This extended benchmark network is 
constituted of 128 nodes divided into 4 communities of 32 
nodes each. The average degree of every node is 16 and each 
node shares a proportion μ−1  of its edges with other nodes of 
its own community and a proportion μ  with other nodes in the 
network; μ  is the mixing parameter. When 5.0<μ , the 
neighbor nodes of a node inside its community are more than 
the nodes belonging to the other three communities. As μ  
increases, community structures of network become more 
diffused and the detecting algorithms have greater difficulty in 
mining correct community structures. 

We generated 11 computer-generated networks with 
different value of μ  from 0 to 0.5 with interval 0.05 and 
employed NMI to measure the similarity between the true 
partitions and the detected ones. For each network, we record 
the NMI values corresponding with the largest fitness function 
values over 10 runs. Fig. 4 shows the experimental results. In 
Fig. 4, y-axis denotes values of NMI, x-axis denotes the mixing 
parameter μ . To investigate the performance of MA-LSI, this 
algorithm is compared with Fast Newman (FN) algorithm [4], 
GA-net algorithm [9] and Meme-net algorithm [10]. Algorithm 
FN is one of the most classical community detecting 
algorithms taking modularity Q  as objective function. GA-net 
is the best known algorithm which use genetic algorithm to 
discover communities in social network by optimizing an 
efficacious fitness Community Score (CS). Meme-net is 
proposed by optimizing an objective function called modularity 
density. In addition, to illustrate the effect of our local search 
operator, we also test the pure GA version algorithm without 
the local search operator and vertex mover operator, which is 

 
Fig. 4.  Max NMI values over 10 runs of different algorithms on 
GN Extended Benchmark datasets.
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named as “GA”. Parameters for these four genetic-based 
algorithms are the same: the population size is 400, the number 
of iteration is 50, the crossover rate is 0.8 and the mutation rate 
is 0.2. As we can see from the figure, when 25.0<μ , MA-LSI, 
GA, GA-net and Meme-net can detect the true partition 
(NMI=1). When 4.03.0 ≤≤ μ , only MA-LSI and Meme-net 
can detect the true one. While for 45.0=μ , MA-LSI can 
detect approximately 95% of community structure information. 
In contrast, the NMI value obtained by Meme-net is about 85%. 
For 5.0=μ , our algorithm can detect about 58% of the 
community structure information which is larger than Meme-
net. In conclusion, MA-LSI outperforms the other four 
algorithms in terms of the value of NMI. 

B. LFR Benchmark Networks 
On those above benchmark networks, all the vertices have 

approximately the same degree and all communities have the 
same size. Therefore, new classes of  benchmark graphs called 
LFR have been proposed by Lancichinetti et al. in [16], in 
which the distributions of node degree and community size are 
both power laws with tunable exponents 1ι and 2ι , respectively. 
Each node shares a proportion μ−1  of its edges with other 
nodes of its own community and a proportion μ  with other 
nodes in the network; μ  is the mixing parameter. 

In our experiments, we generated 11 computer-generated 
networks with different value of μ  from 0 to 0.5 with interval 
0.05. Each network contains 500 nodes and the cluster size 
ranges from 10 to 50. 21 =ι  and 12 =ι , the averaged degree 
for each node is 20 and the max node degree is 50. The 
algorithm is run 10 times and the statistical results are showed 
in Fig. 5. 

From the figure we can see that our proposed algorithm 
performs remarkably well and it is superior to the other three 
algorithms in terms of the value of NMI. Our algorithm 
performs well even when 5.0=μ and it can detected about 
91% of the community structure information. As the operation 
of Meme-net is too time-consuming, the results of Meme-net 

are not given here. 

C. Real-world Networks 
In this part, we further test our algorithm on data from real-

world networks. Here we select four datasets representing 
which have been widely used as test case for new algorithms. 

1) Zachary’s karate club: This social network is a well-
known graph of friendship between 34 members of a karate 
club at a US university in the 1970s [17]. As a divergence 
broke between the administrator of the club and the club’s 
instructor, the club was separated into two parts ultimately. 

2) Dolphin social network: This is an undirected social 
network of frequent associations between 62 dolphins in a 
community living off Doubtful Sound, New Zealand [18]. The 
dolphin separated in two groups after a dolphin left the place 
for some time. Like Zachary’s karate club network, the 
dolphin social network is also used to test algorithms for 
community detection. 

3) American College football: This network is the 
presentation of the schedule of Division I games for the 2000 
season [4]: vertices in the graph represent teams (identified by 
their college names) and edges represent regular-season games 
between the two teams they connect. All the teams are divided 
into 12 conferences containing around 8-12 teams each. 
Games are more frequent between members of the same 
conference than those between members of different 
conference. 

4) Books about US politics: This network has been 
complied by Krebs and Newman [19]. It is a graph of 105 
recent books about US politics published around the time of 
the 2004 presidential election and sold by the online bookseller 
Amazon.com. Edges between books represent frequent co-
purchasing of books the same buyer. Books were divided 
according to their stated or apparent political alignment, liberal 
or conservative, except for a small number of books that were 
explicitly bipartisan or centrist, or had no clear affiliation. 

Of all the algorithms we use to be compared with, only 
algorithm FN take modularity Q  as objective function. As for 
Meme-net and GA-net, the Q  values are computed as metric 
values. We compare the maximum Q  values got by our 
algorithm and other three algorithms. The result is shown in 
Table I. As we can see, the values obtained by MA-LSI are all 
larger than that obtained by other algorithms. 

Table II records the statistical results over 10 runs for each 

 
Fig. 5.  Max NMI values over 10 runs of different algorithms on 
LFR Benchmark datasets. 

TABLE I  MAX Q VALUES ON FOUR REAL-WORLD NETWORKS

Algorithm karate dolphin football polbook 

MA-LSI 0.4198 0.5277 0.6046 0.5272

FN 0.3807 0.4955 0.5499 0.5020

GA-net 0.4060 0.4923 0.5880 0.5106

Meme-net 0.4161 0.5174 0.6031 0.5255
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algorithm on the four small networks whose ground truths are 
known. We recorded the NMI value corresponding to the max 
Q  and computed the average NMI value over 10 runs. The 
NMImax values in Table II means the maximum NMI values 
over the 10 runs. Here we need to state that Meme-net takes 
modularity density as its fitness function which has a tunable 
parameter that can help exploring the network at different 
resolutions. We only recorded the statistical results that the 
detected number of clusters is same as ours. 

For Zachary’s karate club, MA-LSI can detect four clusters 
and the corresponding value of NMI is 0.6873 which is equal 
to that of Meme-net. FN detects two communities when Q  

value reaches the maximum, but the maximum Q  value is 
smaller than ours which is shown in Table I. The partition 
result is displayed in Fig. 6. 

For Dolphin social network, the partition corresponding to 
the NMI value of 0.6357 detected four communities. When 
Meme-net detects four communities, the maximum NMI value 
is slightly larger than ours while the average value is smaller. 
The clustering result is showed in Fig. 7. 

For American football team, none of algorithms finds the 
true partition due to its complicated structure. Our algorithm 
detects the partitions which own the largest NMI value. Fig. 8 
shows clustering results. As we can see, 12 clusters are found 
and only a few nodes are misplaced. 

For Books about US politics, the partition detected by our 
algorithm owns the maximum NMI value compared with the 
other three algorithms. And four clusters are found. 

D. Comparison of fitness function evaluation times 
In this section, the times of fitness function evaluations are 

compared between MA-LSI and Meme-net. As mentioned 
before, the population size is 400 and the number of iteration is 
50. Each algorithm is executed 10 times and the average 
number of function evaluations is calculated which is shown in 
Table III. Here we select different value of μ  from 0.25 to 0.5 
and the four small real-world networks to test. The average 
number of MA-LSI is much less. 

 
Fig. 6.  The clustering result on karate club.  

 
Fig. 8.  The clustering result on football network. 

TABLE II  EXPERIMENTAL RESULTS ON FOUR REAL-WORLD NETWORKS 

Network Index MA-LSI GA-net FN Meme-
net 

karate NMImax 0.6873 0.6369 0.8372 0.6873

NMIavg  0.6873 0.6369 0.8372 0.6873

dolphin NMImax 0.6357 0.4266 0.6058 0.6438

NMIavg 0.5877 0.4099 0.6058 0.5690

football NMImax 0.9269 0.9242 0.6538 0.9242

NMIavg 0.8876 0.9096 0.6538 0.9040

polbook NMImax 0.5970 0.4433 0.5342 0.5901

NMIavg 0.5704 0.4120 0.5342 0.5866

 
Fig. 7.  The clustering result on dolphin network.  

TABLE III  AVERAGE NUMBER OF FUNCTION EVALUATIONS 

Algorithm 0.25 0.30 0.35 0.40 0.45 

MA-LSI 22649 22863 23035 23053 23063

Mme-net 90072 83729 84541 93087 75774

Algorithm 0.50 karate dolphin football Polboo
k 

MA-LSI 23107 22220 22525 22906 22579

Meme-net 59588 24835 43415 123356 62618
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IV. CONCLUSION 
In this paper, we proposed a new algorithm MA-LSI to 

optimize the modularity function Q  for community detection.  
We define a new local search operator and a vertex mover 
operator using the definition of local community tightness. 
Local structural information of network is used to guide the 
local search and good results are obtained with less number of 
function evaluations. Experiments show its superiority on 
modularity optimization for community detection problem 
compared with FN, GA-net, and Meme-net. In the future work, 
we will extend our algorithm to detect weighed and 
overlapping networks. 
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