

Abstract—This paper introduces a new variant of the
Traveling Car Renter Problem, named Prize-collecting
Traveling Car Renter Problem. In this problem, a set of
vertices, each associated with a bonus, and a set of vehicles are
given. The bonus represents a degree of satisfaction to visit the
vertex. The objective is to determine a cycle that visits some
vertices collecting, at least, a pre-defined bonus, i.e. reaching a
pre-specified satisfaction, and minimizing the cost of the tour
that can be traveled with different vehicles. A mathematical
formulation is presented and implemented in a solver to
produce results for sixty-four instances. A memetic algorithm is
proposed and its performance is evaluated in comparison to the
results obtained with the solver.

I. INTRODUCTION
HIS paper investigates a variant of the Traveling Car

Renter Problem (CaRS), named Prize-collecting
Traveling Car Renter Problem (pCaRS). The former was

introduced in [1] and is a generalization of the Traveling
Salesman Problem (TSP). In the TSP, the objective is to find
a Hamiltonian cycle in a weighted simple graph, G, given as
input, that has the minimum cost among all Hamiltonian
cycles of G. The cost is given by the sum of the weights of the
edges of the Hamiltonian cycle. The TSP is a classical
Combinatorial Optimization problem and a revision of
models and algorithms to this problem is given in [2]. The
cost of the edges of the TSP can be thought of as the cost of
using a car to travel a road between two cities represented by
two vertices of G. CaRS generalizes the TSP allowing that
several cars, with different costs, are available to be used
during the tour. This situation occurs, for instance, when a
tourist wants to visit a set of cities traveling with rented cars
paying as little as possible for the cars. There are several
options of rental cars of different companies in each city. The
multiplicity of options opens a range of alternatives. The
problem consists in visiting a set of cities, starting and ending
at the same point, minimizing the cost due to car rentals. To
make the decision on which car to rent at each part of the
route, the customer should consider, besides renting, costs
due to fuel consumption and payment of tolls. If a car is
rented in a city and delivered in a different one, then the user
needs to consider also some extra fee to take the car back to

M. S. Menezes is with the Universidade Federal Rural do Semi-Árido -

UFERSA Angicos, Brasil (matheus@ufersa.edu.br) e-mail:
matheus@ufersa.edu.br / matheussmenezes@gmail.com).

M. C. Goldbarg., is with Dpto. de Informática e Matemática Aplicada –
DIMAP of the Universidade Federal do Rio Grande do Norte – UFRN Natal,
Brasil (marcocgold@gmail.com).

E. F.G Goldbarg is with Dpto. de Informática e Matemática Aplicada –
DIMAP of the Universidade Federal do Rio Grande do Norte – UFRN Natal,
Brasil (beth@dimap.ufrn.br).

its origin. Since the Traveling Salesman Problem is NP-hard
[2] and a special case of CaRS when only one car is used in
the tour, CaRS is also NP-hard. Metaheuristic algorithms
were presented for cars in [3] [4].

It is usual the case where the tourist cannot visit all the
existing attractions during a trip. In those cases it is
interesting to maximize satisfaction visiting the most
attractive points. The Mobile Tourist Guide, presented in [5],
was designed to tourists who cannot visit all places they are
interested in a large city. Some tourist trip design problems
are introduced in [6] and an increasing volume of research has
been dedicated to those problems [7]. A revision of routing
problems in the car rental industry is presented in [8]. In [9]
systems where rent and delivery occur in distinct places are
investigated. Those papers, however, do not address the
problem when more than one vehicle can be used by the
tourists.

The pCaRS problem, investigated in this paper, is a
generalization of the Prize-collecting Traveling Salesman
Problem (PCTSP). The latter was introduced in [10] and is
NP-hard. In the PCTSP a reward and a penalty are assigned to
each city and one must choose a subset of cities to be visited
so that the cost of the tour and the penalties associated with
each non visited city are minimized and the total reward is at
least a given parameter ω. pCaRS is a variant of CaRS that, as
in PCTSP, a bonus is associated to each city. The bonus
defines a satisfaction level in visiting the associated city. A
minimal pre-defined cumulative satisfaction must be met. In
pCaRS, it is also considered that the tour begins and ends at
the same point. The objective is to select a subset of cities
(points) to be visited so that the total traveling cost regarding
rental cars is minimized and the total satisfaction is at least a
given parameter ω. In this paper, the problem is formulated
and results of the mathematical formulation implemented in
the GLPK solver [11] are presented. A memetic algorithm is
proposed to pCaRS and applied to sixty-four instances. The
results obtained with the heuristic algorithm are compared to
the ones obtained with the solver.

This paper is organized in other four sections, besides this
one. The problem and the proposed mathematical formulation
are presented in Section II. The memetic algorithm is
presented in Section III. Computational experiments are
reported in Section IV. Finally, some conclusions are
presented in Section V.

II. THE PRIZE-COLLECTING CAR RENTER SALESMAN
Let G=(V,A) be a complete graph where V is a set with n
nodes (cities) and A is a set of arcs (roads between cities). A

A Memetic Algorithm for the Prize-collecting Traveling Car Renter
Problem

Matheus da Silva Menezes, Marco César Goldbarg, and Elizabeth F. G. Goldbarg

T

3258

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

bonus SVi, i = 1,…,n, is assigned to each city i ∈ V. In this
problem, C denotes the set of cars. All cars are available for
rent and delivery in all cities. Specific operational costs are
associated with each car including fuel consumption, toll
payment and rent cost. Since toll fees usually depend on the
car type and on the length of the traveled route, it is possible
to assume, without loss of generality, that the operational cost
of each car to traverse edge (i,j) ∈ A is a function of that car.
The operational cost associated to car c ∈ C to traverse edge
(i,j) ∈ A is denoted by c

ijd . Vertex 1 is chosen as the starting

and ending vertex. If car c ∈ C is rented in city i and delivered
in city j, i ≠ j, a fee to take c back to city i, c

ijγ , is paid. The
mathematical formulation considers the following binary
variables: c

ijf with value 1 when car c traverses edge (i,j) from

i to j and 0 otherwise; c
ijw with value 1 when car c is rented in

city j and delivered in i; c
ia with value 1 when car c is rented

in city i; c
ie with value 1 when car k is delivered in city i. The

formulation also considers parameter ω, the minimum total
satisfaction to be reached in the tour, which is given
by ∑

∈

=
Vi

iSV8.0ω , and the integer variable ui that gives the

position of vertex i in the tour.

 ∑∑∑∑
∈ ∈∈ ∈

+
Cc Vji

c
ij

c
ij

Cc Vji

c
ij

c
ij wfd

,,
min γ (1)

 111 ==∑∑∑∑
∈ ∈∈ ∈ Cc Vj

c
j

Cc Vi

c
i ff (2)

 1≤=∑∑∑∑
∈ ∈∈ ∈ Cc Vj

c
hj

Cc Vi

c
ih ff ∀h ∈V (3)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑∑

≠
∈ ∈∈

cc
Cc Vh

c
hi

Vj

c
ij

c
i ffa

'
'

' ∀ c ∈ C, i ∈V, i >1 (4)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑∑

≠
∈ ∈∈

cc
Cc Vh

c
ih

Vj

c
ji

c
i ffe

'
'

' ∀ c ∈ C, i ∈V, i >1 (5)

 c
i

c
j

c
ij eaw = ∀ c ∈C, i,j ∈V (6)

 11 =∑
∈Cc

ca (7)

 1≤∑
∈Vi

c
ia ∀ c ∈C (8)

 ∑∑
∈∈

=
Vj

c
j

Vi

c
i ea ∀ c ∈C (9)

 ω≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ ∑∑
∈ ∈ ∈Vi

i
Cc Vj

c
ij SVf (10)

 nui ≤≤2 ∀ i =2,…,n (11)
)1)(1(1 ∑

∈

−−≤+−
Cc

c
ijji fnuu ∀ i,j =2,…,n (12)

 c
ijf , c

ijw , c
ia , c

ie ∈ {0,1} (13)

 υι ∈ ℵ (14)

The objective function is expressed in (1). It includes the
cost of traversing edges with different cars and fees related to
cars return. Constraint (2) states that the tour begins and ends
at city 1. Constraints (3) state that each vertex is visited, at
most, once and if a car arrives at vertex i then a car must leave
that vertex. Constraints (4) associate if a car is located at the
node i and constraints (5) associate if a car is delivered in
node i. Constraints (6) are related to a car being rented in a
city and delivered in another. Constraint (7) assures that a car
is rented in node 1. Constraints (8) ensure the each car is used
only once, and constraints (9) guarantee that every located car
is delivered. Constraint (10) assures that a minimum
satisfaction level is met. Constraints (11) and (12) forbid
subtours and were adapted from the Miller-Tucker-Zemlin
(MTZ) TSP formulation presented in [12] and also utilized in
[13]. Constraints (13) state that those variables are binary and
(14) that variables ui are positive integers.

Constraints 4-6 are quadratic and their variables are binary.
Those constraints are linearized. The linearization presented
in expressions 16-19 is known as usual linearization [14], was
proposed in [15] and reformulated in [16]. A non linear
constraint, as in (15), is replaced by the set of equations
16-19.

 z = x × y (15)

 z ≤ x (16)
 z ≤ y (17)
 z ≥ x + y � 1 (18)
 z, x, y ∈ [0,1] (19)

This linearization was applied to solve the problem in the
GLPK solver as presented in [17].

A numerical example of the pCaRS is given in the
Appendix.

III. MEMETIC ALGORITHM
Memetic algorithms were proposed in [18] and have been

used with success in a wide range of applications [19]. The
memetic algorithm proposed to pCaRS is presented in figure
1. It receives as input parameters the name of the instance,
inst, the size of the population, sizePop, the crossover rate,
#Cross, the percentage of the population considered as elite
solutions, #Elite. In step 2 the data of the instance are read.
The initial population is generated in step 3.

The chromosome is represented in a 2-dimensional array,
as illustrated in figure 2, where the tour is represented in one
dimension and the cars are represented in the other. In figure
2 the gray array represents the tour and the white one
represents the cars. In this figure ten from twelve cities are
visited. Note that cities 10 and 11 are not visited. This
chromosome represents a solution where car 2 is hired in city
1 and delivered in city 4, car 3 is hired in city 4 and delivered
in city 5 and car 1 is rented in city 5 and delivered in city 1.

3259

1. main(inst, sizePop, #Cross, #Elite, limitIter)
2. instanceRead(inst)
3. Pop[] ← generateInitPop(sizePop); numIter ← 0
4. multiOperatorsLocalSearch(Pop)
5. elitePop[] ←generateElitePop(Pop, #Elite)
6. while(numIter ++ < limitIter) do
7. off [] ← Crossover(Pop, elitePop[], #Cross)
8. multiOperatorsLocalSearch (off)
9. Pop[] ←binaryTournament(Pop, off)
10. elitePop[] ←generateElitePop(Pop, #Elite)
11. end_while
12. end

Fig. 1. Main procedure of the memetic algorithm proposed to pCaRS

Fig. 2. Chromosome representation

The initial population is generated in procedure
generateInitPop() with the population size, sizePop, as input
parameter. A greedy heuristics adapted from CaRS is used to
generate the chromosomes of the initial population. A car, c1,
is randomly chosen for the first city. Then city i, where car c1
is delivered, is chosen at random. A path is created between
cities 1 and i with the Nearest Neighbor heuristics considering
the traveling costs associated with c1. City i is the initial city
of the next part of the tour. Then, a new car c2 and a new city j
are randomly chosen. Clearly, city j cannot be any city visited
previously. A path is built between cities i and j with not
visited cities. The procedure continues picking another city at
random and building a path until there are no cars to add to
the solution or the satisfaction level is reached. The cycle is
closed going to the starting city with the last rented car.

The major chalenge of heuristic methods that use local search
is to define an efficient strategy to cover the search space,
mainly exploiting promising regions [13]. There are three
areas where local seach can act in pCaRS: the best route, the
best points to change cars and the satisfaction level. The local
search phase of the proposed algorithm aims at dealing with
these three areas in order to improve candidate solutions.
Local search is perfomed in procedure
multiOperatorsSearch() and is composed with the methods
describe as follows.

• removeSaving: This method focuses on the cost of the
tour. It consists in removing the cities with the lowest
satisfaction scores from the candidate solution, while
the satisfaction requirement is still met.

• InvertSol: This method inverts the visiting order of the
cities in the candidate solution. The same cars are
associated with the same cities, but the hiring and
delivering points are exchanged. For instance,
consider the tour (1, 2, 3, 4, 5) on five cities with car 1

being hired in city 1 and returned in city 3 and car 2
hired in city 3 and delivered in city 1. After
application of the InvertSol method, the tour becomes
(1,5,4,3,2) with car 2 being hired in city 1 and
delivered in city 3 and car 1 being hired in city 3 and
returned in city 1. It also focuses on the cost of the
tour. The best of the original and inverted solutions
remains in the population.

• replaceSavingCar: This procedure focuses on
vehicles that are not yet in the solution examining the
insertion of a new car, if possible. The new car
replaces another in the solution. All cars not in the
input solution are considered. One car not in the
solution is inserted at each position iteratively. For
example, suppose an instance where cars 1, 2, 3 and 4
can be rented. Consider a solution with five cities
represented by the tour (1,2,3,4,5) with cars 2, 3 and 4
being hired(delivered), respectively, in cities
1,3,5(3,5,1). The vector assigning cars to cities is
represented as (2,2,3,3,4). Car 1 is not used in this
solution. Then, procedure replaceSavingCar
examines possibilities of inserting car 1. First, car 1 is
inserted in position 1 producing car sequence
(1,2,3,3,4), then car 1 is inserted in positions 2, 3, 4,
and 5 producing, respectively, (1,1,3,3,4), (1,1,1,3,4),
(1,1,1,1,4), (1,1,1,1,1). In the next step, car 1 replaces
the second car in the original car sequence, producing
(2,1,3,3,4). The substitution goes on from that point,
producing (2,1,1,3,4), (2,1,1,1,4) and (2,1,1,1,1).
Next, the third position in the original sequence is set
to 1 and the procedure continues until all possibilities
are examined.

• replaceSavingCit: This procedure focuses on the
satisfaction level, examining cities that are not yet in
the solution. It examines substituting cities in the
solution by cities out of it. All cities out of the input
solution are considered for insertion. For example,
consider the tour (1,3,4,5,6). City 2 is not in this tour.
Then, the procedure examines the following tours:
(1,2,4,5,6), (1,3,2,5,6), (1,3,4,2,6) and (1,3,4,5,2). The
vector of cars associated with the input tour is not
changed.

• insertSavingCit: This procedure also focuses on cities
that are not yet in the input solution. It inserts a new
city in the tour and does not remove any city. The car
assigned to the new city is the same one assigned to
the city immediately before the new one. The
insertion of a new city is tested between every pair of
cities of the input solution. All cities out of the input
solution are considered for insertion. For example,
consider again the tour (1,3,4,5,6). Then, the
procedure examines the following tours: (1,2,3,4,5,6),
(1,3,2,4,5,6), (1,3,4,2,5,6), (1,3,4,5,2,6) and
(1,3,4,5,6,2).

• 2-opt: is a simple local search algorithm proposed in
[20] to the TSP. A 2-opt move consists of eliminating
two edges and reconnecting the two resulting paths in
a different way to obtain a new tour. There is only one
way to reconnect the paths that yields a different tour.
Among all pairs of edges whose 2-opt exchange

3260

decreases the tour length, the pair that gives the
shortest tour is chosen. This procedure is then iterated
until no such pair of edges is found. The resulting tour
is called 2-optimal. In this case, the associated car
sequence remains the same.

These local searches are applied in sequence in procedure
multiOperatorsSearch() as depicted in figure 3. If the input
solution represented in an individual is improved during local
search, then the new individual replaces the old one.

1. multiOperatorsSearch(vector)
2. removeSaving(vector)
3. InvertSol (vector)
4. insertSavingCit(vector)
5. replaceSavingCit(vector)
6. replaceSavingCar(vector)
7. 2Opt(vector)
8. end

Fig. 3. multiOperatorsLocalSearch procedure

An elite population is considered for recombination. The
elite population, elitepop, is formed with #Elite percent best
individuals of the current population in terms of their fitness
values. Fitness is calculated with expression (1). Since,
pCaRS is a minimization problem, the lowest the fitness the
best the individual is.

The recombination procedure, Crossover(), has three
parameters: Pop, elitepop and #Cross. One parent comes
from the current population, Pop, and the other comes from
elitepop. Both are chosen at random with uniform
probability. The third parameter, #Cross, stands for the
recombination rate. The one-point crossover is utilized. Since
the number of genes in chromosomes can vary, a random
point is chosen in the range of indices of the smallest
chromosome. The recombination of two parents, A and B,
generates two offsprings, C and D, as illustrated in figure 4.
The crossover point is illustrated with a dashed line in
chromosomes A and B.

Fig. 4. Recombination operator

It may be necessary to restore feasibility of solutions
generated during recombination. Infeasibility may occur
regarding routes, cars assignment or total satisfaction. For
example, in figure 4, chromosome C represents an infeasible
solution, once cities 3 and 7 are visited twice and assigned
vehicles. Infeasibility regarding the cities in the route occurs
due to cities 3 and 7 appear twice each. Infeasibility regarding
cars assignment occurs due to cars 3 and 2 are rented twice.
The restoration procedure used in this work is the same
presented in [1]. To restore feasibility regarding the cities in
the route, the second time each city appears in chromosome
C, it is replaced by an asterisk. For instance the sequence

(1,3,7,4,6,3,7,9) is replaced by (1,3,7,4,6,*,*,9). Each asterisk
is replaced by a city different from those in the chromosome,
chosen at random, if such cities exist. The car assignment of
chromosome C, (2,2,2,3,2,3,3,3), is also not feasible, for the
problem considered in this paper requires each car is rented
once. The restoration procedure replaces car repetitions by
asterisks. Then each asterisk is replaced by the car which
appears in the first preceding position. Thus, the car
assignment of chromosome C is replaced by (2,2,2,3,*,*,*,*)
and each asterisk is replaced by car 3.

If after restoring cities and cars, the chromosome does not
meet the minimum satisfaction requirement, a procedure to
restore satisfaction is executed. First, cities with low degree
of satisfaction are replaced by others with better satisfaction
levels. If the minimum satisfaction level is still not reached,
then cities are added randomly at the end of the solution up to
reaching the required minimum satisfaction. The car assigned
to each new city is the one assigned to the city immediately
before it.

IV. COMPUTATIONAL EXPERIMENTS
Since pCaRS is a new problem, an instance library, named

pCaRSLIB, was created. They were adapted from the
CaRSLIB instances [1] and are available at
http://www.dimap.ufrn.br/lae/en/projects/CaRS.php. Those
instances have the following characteristics: all cars can be
rented in all cities; all cars can be delivered in all cities; each
car can be rented only once; the fee paid to take a car back to
its home city is not associated with the instance topology;
symmetry, i.e., the costs to go from i to j and from j to i are
equal; the underlying graph is complete. Instances are divided
into two classes: Euclidean and non-Euclidean. Three groups
of instances were created for each class. The difference
between the instances of each group is on how the edges
weights were generated. First, a primary set of edge weights
is established for each group. Those weights are associated
with the first car. In the first group of instances, the primary
edge weights were taken from real maps. The weights of the
second group were generated uniformly in the range [10,500].
The third group of instances is based on the TSPLIB [21]. The
weight of each edge corresponding to car c, 1 < c ≤ |C|, was
randomly chosen, with uniform probability, in the range
[1.1we,2.0we] where we stands for the primary weight of edge
e. The satisfaction level assigned to each city was uniformly
generated in the range [0,100].

The mathematical formulation presented in Section II was
implemented in the GLPK software [11], version 4.45.2.
Memory was limited to 14 Gb RAM. Processing time was
limited to 80000 s. GLPK was finished if the problem was
solved or if the limit due to memory or processing time was
reached.

The parameters of the memetic algorithm were tuned in
preliminary tests and were: sizePop = 150 and #Cross = 0.4,
limitIter = 100 and #Elite=0.3.

Figures 5-7 illustrate the parameters sizePop and #Cross in
three different instances used in the preliminary experiments.
These figures show the typical behavior of the algorithm in a

3261

computational experiment on 64 instances with 10 to 48 cities
and 2 to 5 cars. The legend on the right hand side refers to
tested values for #Cross. The figures show that the quality of
the best solution did not improve significantly to values of
sizePop greater than 150. Stability of the best solution was
also reached for #Cross = 0.4.

The algorithms were executed on a PC Intel Core i5, 16G
of RAM, running Ubuntu 12.04 64bits. Thirty independent
executions of the Memetic Algorithm were performed for
each instance.

Tables I and II show the results of the computational
experiments. Columns Name, nCity and nCar are related to
the characteristics of each instance being, respectively, the
identification, the number of cities and the number of
available cars. Columns Min and T(s), related to the GLPK
solver, show the value of the best feasible integer solution and
the processing time in seconds. Columns Min, Av, F and T(s),
related to the Memetic Algorithm, show, respectively, the
value of the minimum solution, the average of the minimum
solutions on the thirty independent executions, the number of
times the best solution was found and the average processing
time in seconds. Column Gap, for each algorithm, presents
the percent deviation of the value presented in column Min
from a lower bound for the exact solution computed by the
GLPK. Let the upper bound on the relative error due to
rounding in floating point arithmetic in the manchine be ∈,
the gap is given in (19), where best_mip and best_bound stand
for, best integer solution and the best relaxed solution,
respectively.

 GAP =
|_|

|__|
∈+

−
mipbest

boundbestmipbest (19)

Table I shows that GLPK solves all Euclidean instances,
except for China17e, Russia17e, BrasilAM26e, BrasilMG30e
and att48eA for which the solver stopped due to memory
limitation. The percent deviation produced by the GLPK for
those instances were 6.40, 10.47, 20.50 28.60 and 38.12,
respectively. All optima found by GLPK were also found by
the Memetic Algorithm, except for instance Brasil16e where
the solution produced by the latter presented percent
deviation 2.83 from the former. GLPK spent less time to
solve eleven instances than the average processing time of the
Memetic Algorithm. This fact occurred since the six local
search phases of the latter algorithm, implemented in
multiOperatorSearch, require significant processing times.
Remark that on instances larger than those eleven, the
computational effort spent on the local search phases benefits
the search made by the Memetic Algorithm. The tables show
that the performance of the Memetic Algorithm improves as
instances grow larger. This tendency is also observed with
the analysis of the data presented in Table II. On the other
twenty-two Euclidean instances the Memetic Algorithm
spent, in average, less processing time than the GLPK. In
average, the GLPK spent 12089.39 seconds to produce
solutions to the Euclidean instances while the Memetic
Algorithm took 88.00 seconds. The average frequency of the

best solution found by the Memetic Algorithm is 21.34 for the
Euclidean instances.

Fig. 5. Population size versus value of the best solution on Egito9n

Fig. 6. Population size versus value of the best solution on BrasilRN16e

Fig. 7. Population size versus value of the best solution on BrasilPR25e

Table II shows that the GLPK did not solve nineteen
non-Euclidean instances for which the algorithm stopped due
to time or memory limitation. The algorithm stopped due to
memory limitation on instances: Argentina16n, Argelia15n,
India15n, India16n, Chade12n, Ira13n, Mexico14n,
Canada17n, Arabia14n, Cazaquistao15n, Brasil16n and
Russia17n. The algorithm stopped due to time limitation on
instances: EUA17n, Mongolia13n, Sudao15n, Australia16n,
BrasilAM26n, BrasilMG30n and att48nA. The percent
deviations varied from 2 to 37.60. On sixteen among those
nineteen instances the Memetic Algorithm found better
solutions than those produced by the GLPK. The former
algorithm also spent, in average, less processing time to
obtain those solutions. The Memetic Algorithm spent, in
average, from 14 to 1232 seconds to process the
non-Euclidean instances. The results obtained with the GLPK
took from 1 to 80000 seconds. The average frequency of the
best solutions found by the Memetic Algorithm is 16.88 for
the non-Euclidean instances.

V. CONCLUSION
This paper presented the Prize-collecting Car Renter

Salesman Problem (pCaRS), a new variant of CaRS [2]. A

3262

mathematical model was presented and submitted to the
GLPK solver with time and memory limitations. A Memetic
Algorithm that uses six local search procedures was
proposed. An experimental investigation was carried out to
investigate the potential of the proposed Memetic Algorithm.
The solutions and processing times produced by the latter
were compared with the results of the implementation of the
mathematical model in the GLPK solver. A set with thirty two
Euclidean and thirty two non-Euclidean instances was used in
the experiments. Fourty exact solutions were found with the
solver and the proposed heuristic algorithm established the
first upper limits for other twenty four instances. The results
of the computational experiments showed that for Euclidean
instances the proposed Memetic Algorithm found almost all
optima obtained with the GLPK with some advantage for the
former. The Memetic Algorithm found also better solutions
than the ones produced by the GLPK when it terminated due
to time or memory limitations. The best performance due to
quality of solution and processing time of Memetic
Algorithm is observed on the non-Euclidean instances. The
experiment also showed that as instances grow larger there is
a tendency of the Memetic Algorithm improves its behavior
in comparison to the GLPK solver.

As the problem proposed here is new, several innovations
can be implemented for future research, such as: (a) to
develop other metaheuristics to pCaRS, (b) to investigate
other local search procedures and (c) to develop algorithms
for other variations of the problem.

APPENDIX
An instance of pCaRS is illustrated in figure 8 on a

complete graph with five vertices (cities) and three types of
cars. A graph and a square matrix of order five are associated
with each car. The graph associated with a car, shows the cost
to use that car on each edge (the value on the edge). The
satisfaction associated with each city (the number in brackets
at each vertex) is shown in the three graphs. Those values are
the same in the three graphs, once they do not depend on the
car. Each car can be rented and delivered in any city. Thus,
the element (i,j) of the matrix associated with each car shows
the fee to deliver that car in city i when it was rented in the
city j. Figure 9 shows the example of a solution to pCaRS.
City A is the starting (and ending) point of the tour. Figure
9(a) shows that car 2 is rented in A, used to go from A to B
and delivered in B. The cost associated with car 2 is the cost
to travel road AB, 1, and the cost to be delivered in B, 1. The
accumulated satisfaction up to this moment is given by 81+68
= 149. Figure 9(b) shows that car 3 is rented in city B, used to
go travel roads BD and DE and delivered in E. The cost to go
from B to E through D is 2 + 2 = 4. The cost to deliver car 3 in
E is 3 The satisfaction to visit cities E and D is 73+27 = 100.
Figure 9(c) shows that car 1 is rented in city E, goes from E to
A, completing the tour, and is delivered in A. The cost to
travel from E to A is 2 and the delivery fee is 3 Figure 9(d)
shows the solution where the cities A, B, D and E form a tour.
The costs associated to traveling the roads are 1 + 2 + 2 + 2 =
7. The costs associated with delivery fees are 1 + 3 + 2 = 6.
The satisfaction to visit the cities in the tour is 81 + 68 +73 +

27 = 249. The final solution presented in figure 9(d) does not
include city C. The final cost is 13 and the satisfaction
reached is 249.

REFERENCES
[1] M. C. Goldbarg, A P.H. S. Asconavieta, E. F. G. Goldbarg “Memetic

algorithm for the traveling car renter problem: an experimental
investigation”. Memetic Computing, v. 4, 2012, pp. 89-108.

[2] G. Gutin, and A.P. Punnen. “Traveling salesman problem and its
variations”, Kluwer Academic Publishers, Dordrecht, 2002

[3] P H. S. Asconavieta, M. C. Goldbarg and E. F. G. Goldbarg,
“Evolutionary algorithm for the car renter salesman,” Proceedings of
the IEEE CEC Congress on Evolutionary Computation , vol. 1, pp.
593-600, 2011.

[4] M. C. Goldbarg, E. F. G. Goldbarg, P. H. Asconavieta, M. Menezes, H.
P. L. Luna, “A transgenetic algorithm applied to the traveling car renter
problem,” Expert Systems with Applications, vol. 40, no 16, pp.
6298-6310, 2013.

[5] W. Souffriau, , P. Vansteenwegen, J. Vertommen, G. Vanden Berghe,
and D. Van Oudheusden, “A personalised tourist trip design algorithm
for mobile tourist guides”. Applied Artificial Intelligence Vol. 22 ,
2008, pp. 964–985.

[6] P. Vansteenwegen, D. Van Oudheusden. “The mobile tourist guide: An
or opportunity”. OR Insights vol. 20, 2007, pp. 21–27.

[7] P. Vansteenwegen, W. Souffriau, , G. Vander Berghe, D. Van
Oudheusden, “The city trip planner: an expert system for tourists”,
Expert Systems with Applications 38, 2011, pp. 6540–6546

[8] Y. Yang; W. Jin, X. Hao. “Car rental logistics problem: A review of
literature”. In: Service Operations and Logistics, and Informatics,
2008. IEEE/SOLI 2008. IEEE International Conference on. [S.l.: s.n.],
2008. v. 2, p. 2815 - 2819.

[9] D. K. George,.C. H. Xia, “Fleet-sizing and service availability for a
vehicle rental system via closed queueing networks”. European
Journal of Operational Research, v. 211, n. 1, p. 198 - 207, 2011.

[10] E. Balas, “The prize collecting traveling salesman problem”.
Networks, Vol. 19, 1989, pp. 621-636.

[11] GLPK (GNU Linear Programming Kit) package. Version 4.45.2,
Avaliable: http://www.gnu.org/software/glpk/

[12] C. Miller, A. Tucker, R. Zemlin, “Integer programming formulations
and travelling salesman problems”. Journal of the ACM vol. 7, 1960,
pp. 326–329.

[13] P. Vansteenwegen, W. Souffriau. and D. Van Oudheusden. “The
orienteering problem: a survey”. European Journal of Operational
Research, 2010.

[14] L. Liberti, “Compact linearization for binary quadratic problems”.
4OR: Springer-Verlag , Volume 5, Issue 3, September 2007, pp.
231-245.

[15] R. Fortet. “Applications de l'algebre de boole en recherche
operationelle”. Revue Francaise de Recherche Operationelle, 4ed ,
1960, pp. 17-26.

[16] F. Glover, E. Woolsey. “Converting the 0 - 1 polynomial programming
problem to a 0 - 1 linear program”. Operations Research, v. 22, n. 1, p.
180 - 182, 1974.

[17] AIMMS (2012, september, 12) “Integer Programming Tricks”,
Avaliable: http://www.aimms.com..

[18] P. Moscato. “On evolution, search, optimization, genetic algorithms
and martial arts: Towards Memetic Algorithm”. Caltech Concurrent
Computation Program. California Institute of Technology, USA. 1989

[19] Y. S. Ong, M. H. Lim and X. S. Chen, "Research frontier: memetic
computation - past, present & future", IEEE Computational
Intelligence Magazine, Vol. 5, No. 2, 2010, pp. 24 -36

[20] G. A. Croes. “A method for solving traveling salesman problems”
Operations Res. Vol. 6 , 1958 , pp., 791-812..

[21] G. Reinelt, “TSPLIB – A traveling salesman problem library”, ORSA
Journal on Computing vol. 3, 1991, pp. 376-384.

3263

Fig. 8. Operational costs and return fees for cars 1, 2 and 3.

Fig. 9. Routes with edges associated with each car, the return fees and the final Hamiltonian cycle

TABLE I. RESULTS ON EUCLIDEAN INSTANCES

Instances Exact (GLPK) Memetic

3264

Name nCity nCar Min T(s) GAP(%) Min Av F T(s) GAP(%)
Mauritania10e 10 2 422 5 0.00 422 422 30 17 0.00
Colombia11e 11 2 326 1 0.00 326 326 30 14 0.00
Angola12e 12 2 490 8 0.00 490 490 30 17 0.00
Peru13e 13 2 556 46 0.00 556 556 30 33 0.00
Libia14e 14 2 521 45 0.00 521 521 30 36 0.00
BrasilRJ14e 14 2 230 560 0.00 230 230 29 42 0.00
Congo15e 15 2 513 28 0.00 513 513 30 40 0.00
Argentina16e 16 2 719 2276 0.00 719 719 30 47 0.00
EUA17e 17 2 602 71,5 0.00 602 602 29 62 0.00
Bolivia10e 10 3 384 3 0.00 384 384 30 23 0.00
AfricaSul11e 11 3 402 11 0.00 402 402 30 24 0.00
Niger12e 12 3 564 53 0.00 564 567 24 39 0.00
Mongolia13e 13 3 543 607 0.00 543 545 1 31 0.00
Indonesia14e 14 3 504 22 0.00 504 504 28 43 0.00
Argelia15e 15 3 487 351 0.00 487 492 15 34 0.00
India16e 16 3 705 36 0.00 705 713 19 68 0.00
China17e 17 3 735 57332 6.40 728 731 13 86 5.50
Etiopia10e 10 4 283 2 0.00 283 283 30 17 0.00
Mali11e 11 4 428 10 0.00 428 428 30 28 0.00
Chade12e 12 4 655 861 0.00 655 657 25 48 0.00
Ira13e 13 4 532 49 0.00 532 533 24 64 0.00
Mexico14e 14 4 492 144 0.00 492 492 30 31 0.00
Sudao15e 15 4 422 46 0.00 422 422 29 28 0.00
Australia16e 16 4 682 453 0.00 682 710 3 98 0.00
Canada17e 17 4 783 1599 0.00 783 785 18 102 0.00
Arabia14e 14 5 482 50 0.00 482 482 30 37 0.00
Cazaquistao15e 15 5 574 1473 0.00 574 587 2 71 0.00
Brasil16e 16 5 619 718 0.00 637 637 28 64 2.83
Russia17e 17 5 760 80000 10.40 750 787 1 100 9.21
BrasilAM26e 26 3 371 80000 20.50 338 344 3 226 12.74
BrasilMG30e 30 3 419 80000 28.60 368 375 1 296 18.70
att48eA 48 3 25234 80000 38.12 20444 20954 1 950 23.62

TABLE II. RESULTS ON NON EUCLIDEAN INSTANCES

Instances Exact (GLPK) Memetic
Name nCity nCar Min T(s) GAP(%) Min Av F T(s) GAP(%)
Mauritania10n 10 2 306 1 0.00 306 306 30 14 0.00
Colombia11n 11 2 461 224 0.00 461 461 30 19 0.00
Angola12n 12 2 409 50 0.00 409 409 30 21 0.00
Peru13n 13 2 502 3634 0.00 502 502 29 42 0.00
Libia14n 14 2 504 77307 0.00 504 504 30 34 0.00
BrasilRJ14n 14 2 101 58346 0.00 101 101 16 39 0.00
Congo15n 15 2 573 5747 0.00 573 573 27 35 0.00
Argentina16n 16 2 647 62007 22.70 642 644 6 56 22.10
EUA17n 17 2 579 80000 8.10 579 589 2 75 8.10
Bolivia10n 10 3 448 54 0.00 448 448 30 19 0.00
AfricaSul11n 11 3 537 7755 0.00 537 537 29 22 0.00
Niger12n 12 3 607 4069 0.00 607 630 1 34 0.00
Mongolia13n 13 3 551 80000 2.00 551 551 30 43 2.00
Indonesia14n 14 3 522 16188 0.00 522 522 30 38 0.00
Argelia15n 15 3 619 48859 17.30 616 620 8 65 16.90
India16n 16 3 734 73024 24.90 723 725 17 79 23.76
China17n 17 3 651 62162 20.10 645 654 3 72 19.36
Etiopia10n 10 4 403 153 0.00 403 403 30 22 0.00
Mali11n 11 4 494 262 0.00 494 494 30 32 0.00
Chade12n 12 4 654 69111 10.40 649 649 22 45 9.71
Ira13n 13 4 697 54936 20.90 693 693 10 41 20.44
Mexico14n 14 4 620 61358 18.70 610 612 24 38 17.37
Sudao15n 15 4 793 80000 29.50 769 776 2 67 27.30
Australia16n 16 4 551 80000 16.90 525 526 24 85 12.78
Canada17n 17 4 827 77542 23.80 825 872 2 112 23.62
Arabia14n 14 5 701 37832 27.80 688 693 6 76 26.44
Cazaquistao15n 15 5 843 67421 28.80 830 858 2 103 27.68
Brasil16n 16 5 769 32052 32.50 742 744 23 57 30.04
Russia17n 17 5 820 52468 37.60 778 782 8 118 34.23
BrasilAM26n 26 3 107 80000 17.80 107 108 4 197 17.80
BrasilMG30n 30 3 179 80000 30.20 160 161 4 352 21.91
att48nA 48 5 443 80000 17.50 443 598 1 1232 17.50

3265

