
 
 

 

  

Abstract—This paper introduces a new variant of the 
Traveling Car Renter Problem, named Prize-collecting 
Traveling Car Renter Problem. In this problem, a set of 
vertices, each associated with a bonus, and a set of vehicles are 
given. The bonus represents a degree of satisfaction to visit the 
vertex. The objective is to determine a cycle that visits some 
vertices collecting, at least, a pre-defined bonus, i.e. reaching a 
pre-specified satisfaction, and minimizing the cost of the tour 
that can be traveled with different vehicles. A mathematical 
formulation is presented and implemented in a solver to 
produce results for sixty-four instances. A memetic algorithm is 
proposed and its performance is evaluated in comparison to the 
results obtained with the solver. 

I. INTRODUCTION 
HIS paper investigates a variant of the Traveling Car 

Renter Problem (CaRS), named Prize-collecting 
Traveling Car Renter Problem (pCaRS). The former was 

introduced in [1] and is a generalization of the Traveling 
Salesman Problem (TSP). In the TSP, the objective is to find 
a Hamiltonian cycle in a weighted simple graph, G, given as 
input, that has the minimum cost among all Hamiltonian 
cycles of G.  The cost is given by the sum of the weights of the 
edges of the Hamiltonian cycle. The TSP is a classical 
Combinatorial Optimization problem and a revision of 
models and algorithms to this problem is given in [2]. The 
cost of the edges of the TSP can be thought of as the cost of 
using a car to travel a road between two cities represented by 
two vertices of G. CaRS generalizes the TSP allowing that 
several cars, with different costs, are available to be used 
during the tour. This situation occurs, for instance, when a 
tourist wants to visit a set of cities traveling with rented cars 
paying as little as possible for the cars. There are several 
options of rental cars of different companies in each city. The 
multiplicity of options opens a range of alternatives. The 
problem consists in visiting a set of cities, starting and ending 
at the same point, minimizing the cost due to car rentals. To 
make the decision on which car to rent at each part of the 
route, the customer should consider, besides renting, costs 
due to fuel consumption and payment of tolls. If a car is 
rented in a city and delivered in a different one, then the user 
needs to consider also some extra fee to take the car back to 
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its origin. Since the Traveling Salesman Problem is NP-hard 
[2] and a special case of CaRS when only one car is used in 
the tour, CaRS is also NP-hard. Metaheuristic algorithms 
were presented for cars in [3] [4]. 

It is usual the case where the tourist cannot visit all the 
existing attractions during a trip. In those cases it is 
interesting to maximize satisfaction visiting the most 
attractive points. The Mobile Tourist Guide, presented in [5], 
was designed to tourists who cannot visit all places they are 
interested in a large city. Some tourist trip design problems 
are introduced in [6] and an increasing volume of research has 
been dedicated to those problems [7]. A revision of routing 
problems in the car rental industry is presented in [8]. In [9] 
systems where rent and delivery occur in distinct places are 
investigated. Those papers, however, do not address the 
problem when more than one vehicle can be used by the 
tourists. 

The pCaRS problem, investigated in this paper, is a 
generalization of the Prize-collecting Traveling Salesman 
Problem (PCTSP). The latter was introduced in [10] and is 
NP-hard. In the PCTSP a reward and a penalty are assigned to 
each city and one must choose a subset of cities to be visited 
so that the cost of the tour and the penalties associated with 
each non visited city are minimized and the total reward is at 
least a given parameter ω. pCaRS is a variant of CaRS that, as 
in PCTSP, a bonus is associated to each city. The bonus 
defines a satisfaction level in visiting the associated city.  A 
minimal pre-defined cumulative satisfaction must be met. In 
pCaRS, it is also considered that the tour begins and ends at 
the same point. The objective is to select a subset of cities 
(points) to be visited so that the total traveling cost regarding 
rental cars is minimized and the total satisfaction is at least a 
given parameter ω. In this paper, the problem is formulated 
and results of the mathematical formulation implemented in 
the GLPK solver [11] are presented. A memetic algorithm is 
proposed to pCaRS and applied to sixty-four instances. The 
results obtained with the heuristic algorithm are compared to 
the ones obtained with the solver. 

This paper is organized in other four sections, besides this 
one. The problem and the proposed mathematical formulation 
are presented in Section II. The memetic algorithm is 
presented in Section III. Computational experiments are 
reported in Section IV.  Finally, some conclusions are 
presented in Section V. 

  

II. THE PRIZE-COLLECTING CAR RENTER SALESMAN 
Let G=(V,A) be a complete graph where V is a set with n 
nodes (cities) and A is a set of arcs (roads between cities). A 

A Memetic Algorithm for the Prize-collecting Traveling Car Renter 
Problem 

Matheus da Silva Menezes, Marco César Goldbarg, and Elizabeth F. G. Goldbarg 

T

3258

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



 
 

 

bonus SVi, i = 1,…,n, is assigned to each city i ∈ V.  In this 
problem, C denotes the set of cars. All cars are available for 
rent and delivery in all cities. Specific operational costs are 
associated with each car including fuel consumption, toll 
payment and rent cost. Since toll fees usually depend on the 
car type and on the length of the traveled route, it is possible 
to assume, without loss of generality, that the operational cost 
of each car to traverse edge (i,j) ∈ A is a function of that car. 
The operational cost associated to car c ∈ C to traverse edge 
(i,j) ∈ A is denoted by c

ijd . Vertex 1 is chosen as the starting 

and ending vertex. If car c ∈ C is rented in city i and delivered 
in city j, i ≠ j, a fee to take c back to city i, c

ijγ , is  paid. The 
mathematical formulation considers the following binary 
variables: c

ijf with value 1 when car c traverses edge (i,j) from 

i to j and 0 otherwise; c
ijw with value 1 when car c is rented in 

city j and delivered in i;  c
ia with value 1 when car c is rented 

in city i; c
ie with value 1 when car k is delivered in city i. The 

formulation also considers parameter ω, the minimum total 
satisfaction to be reached in the tour, which is given 
by ∑

∈

=
Vi

iSV8.0ω , and the integer variable ui that gives the 

position of vertex i in the tour. 
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The objective function is expressed in (1). It includes the 
cost of traversing edges with different cars and fees related to 
cars return. Constraint (2) states that the tour begins and ends 
at city 1. Constraints (3) state that each vertex is visited, at 
most, once and if a car arrives at vertex i then a car must leave 
that vertex. Constraints (4) associate if a car is located at the 
node i and constraints (5) associate if a car is delivered in 
node i. Constraints (6) are related to a car being rented in a 
city and delivered in another. Constraint (7) assures that a car 
is rented in node 1. Constraints (8) ensure the each car is used 
only once, and constraints (9) guarantee that every located car 
is delivered. Constraint (10) assures that a minimum 
satisfaction level is met. Constraints (11) and (12) forbid 
subtours and were adapted from the Miller-Tucker-Zemlin 
(MTZ) TSP formulation presented in [12] and also utilized in 
[13]. Constraints (13) state that those variables are binary and 
(14) that variables ui are positive integers. 

Constraints 4-6 are quadratic and their variables are binary. 
Those constraints are linearized.  The linearization presented 
in expressions 16-19 is known as usual linearization [14], was 
proposed in [15] and reformulated in [16]. A non linear 
constraint, as in (15), is replaced by the set of equations 
16-19. 

 z = x × y (15) 

 z ≤ x (16) 
 z ≤ y (17) 
 z ≥ x + y � 1 (18) 
 z, x, y ∈ [0,1] (19) 
 

This linearization was applied to solve the problem in the 
GLPK solver as presented in [17].  

A numerical example of the pCaRS is given in the 
Appendix. 

III. MEMETIC ALGORITHM  
Memetic algorithms were proposed in [18] and have been 

used with success in a wide range of applications [19]. The 
memetic algorithm proposed to pCaRS is presented in figure 
1. It receives as input parameters the name of the instance, 
inst, the size of the population, sizePop, the crossover rate, 
#Cross, the percentage of the population considered as elite 
solutions, #Elite. In step 2 the data of the instance are read. 
The initial population is generated in step 3. 

The chromosome is represented in a 2-dimensional array, 
as illustrated in figure 2, where the tour is represented in one 
dimension and the cars are represented in the other. In figure 
2 the gray array represents the tour and the white one 
represents the cars. In this figure ten from twelve cities are 
visited. Note that cities 10 and 11 are not visited. This 
chromosome represents a solution where car 2 is hired in city 
1 and delivered in city 4, car 3 is hired in city 4 and delivered 
in city 5 and car 1 is rented in city 5 and delivered in city 1. 
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1. main(inst, sizePop,  #Cross, #Elite, limitIter) 
2.  instanceRead(inst) 
3.  Pop[ ] ← generateInitPop(sizePop); numIter ← 0 
4.  multiOperatorsLocalSearch(Pop) 
5. elitePop[ ] ←generateElitePop(Pop, #Elite) 
6.   while(numIter ++  <  limitIter ) do 
7.  off [ ] ← Crossover(Pop, elitePop[ ], #Cross ) 
8.  multiOperatorsLocalSearch (off) 
9.   Pop[ ] ←binaryTournament(Pop, off) 
10.  elitePop[ ] ←generateElitePop(Pop, #Elite) 
11.  end_while 
12. end 

Fig. 1.  Main procedure of the memetic algorithm proposed to pCaRS 

 

 

Fig. 2.  Chromosome representation 

The initial population is generated in procedure 
generateInitPop( ) with the population size, sizePop, as input 
parameter. A greedy heuristics adapted from CaRS is used to 
generate the chromosomes of the initial population. A car, c1, 
is randomly chosen for the first city. Then city i, where car c1 
is delivered, is chosen at random. A path is created between 
cities 1 and i with the Nearest Neighbor heuristics considering 
the traveling costs associated with c1. City i is the initial city 
of the next part of the tour. Then, a new car c2 and a new city j 
are randomly chosen. Clearly, city j cannot be any city visited 
previously. A path is built between cities i and j with not 
visited cities. The procedure continues picking another city at 
random and building a path until there are no cars to add to 
the solution or the satisfaction level is reached. The cycle is 
closed going to the starting city with the last rented car. 

The major chalenge of heuristic methods that use local search 
is to define an efficient strategy to cover the search space, 
mainly exploiting promising regions [13]. There are three 
areas where local seach can act in pCaRS: the best route, the 
best points to change cars and the satisfaction level. The local 
search phase of the proposed algorithm aims at dealing with 
these three areas in order to improve candidate solutions. 
Local search is perfomed in procedure 
multiOperatorsSearch( ) and is composed with the methods 
describe as follows. 

• removeSaving: This method focuses on the cost of the 
tour. It consists in removing the cities with the lowest 
satisfaction scores from the candidate solution, while 
the satisfaction requirement is still met.  

• InvertSol: This method inverts the visiting order of the 
cities in the candidate solution. The same cars are 
associated with the same cities, but the hiring and 
delivering points are exchanged. For instance, 
consider the tour (1, 2, 3, 4, 5) on five cities with car 1 

being hired in city 1 and returned in city 3 and car 2 
hired in city 3 and delivered in city 1. After 
application of the InvertSol method, the tour becomes 
(1,5,4,3,2) with car 2 being hired in city 1 and 
delivered in city 3 and car 1 being hired in city 3 and 
returned in city 1. It also focuses on the cost of the 
tour. The best of the original and inverted solutions 
remains in the population. 

• replaceSavingCar: This procedure focuses on 
vehicles that are not yet in the solution examining the 
insertion of a new car, if possible. The new car 
replaces another in the solution. All cars not in the 
input solution are considered. One car not in the 
solution is inserted at each position iteratively. For 
example, suppose an instance where cars 1, 2, 3 and 4 
can be rented. Consider a solution with five cities 
represented by the tour (1,2,3,4,5) with cars 2, 3 and 4 
being hired(delivered), respectively, in cities 
1,3,5(3,5,1). The vector assigning cars to cities is 
represented as (2,2,3,3,4).  Car 1 is not used in this 
solution. Then, procedure replaceSavingCar 
examines possibilities of inserting car 1. First, car 1 is 
inserted in position 1 producing car sequence 
(1,2,3,3,4), then car 1 is inserted in positions 2, 3, 4, 
and 5 producing, respectively, (1,1,3,3,4), (1,1,1,3,4), 
(1,1,1,1,4), (1,1,1,1,1). In the next step, car 1 replaces 
the second car in the original car sequence, producing 
(2,1,3,3,4). The substitution goes on from that point, 
producing (2,1,1,3,4), (2,1,1,1,4) and (2,1,1,1,1). 
Next, the third position in the original sequence is set 
to 1 and the procedure continues until all possibilities 
are examined.  

• replaceSavingCit: This procedure focuses on the 
satisfaction level, examining cities that are not yet in 
the solution. It examines substituting cities in the 
solution by cities out of it. All cities out of the input 
solution are considered for insertion. For example, 
consider the tour (1,3,4,5,6). City 2 is not in this tour. 
Then, the procedure examines the following tours: 
(1,2,4,5,6), (1,3,2,5,6), (1,3,4,2,6) and (1,3,4,5,2). The 
vector of cars associated with the input tour is not 
changed. 

• insertSavingCit: This procedure also focuses on cities 
that are not yet in the input solution. It inserts a new 
city in the tour and does not remove any city. The car 
assigned to the new city is the same one assigned to 
the city immediately before the new one. The 
insertion of a new city is tested between every pair of 
cities of the input solution. All cities out of the input 
solution are considered for insertion. For example, 
consider again the tour (1,3,4,5,6). Then, the 
procedure examines the following tours: (1,2,3,4,5,6), 
(1,3,2,4,5,6), (1,3,4,2,5,6), (1,3,4,5,2,6) and 
(1,3,4,5,6,2). 

• 2-opt: is a simple local search algorithm proposed in 
[20] to the TSP. A 2-opt move consists of eliminating 
two edges and reconnecting the two resulting paths in 
a different way to obtain a new tour. There is only one 
way to reconnect the paths that yields a different tour. 
Among all pairs of edges whose 2-opt exchange 
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decreases the tour length, the pair that gives the 
shortest tour is chosen. This procedure is then iterated 
until no such pair of edges is found. The resulting tour 
is called 2-optimal. In this case, the associated car 
sequence remains the same. 

These local searches are applied in sequence in procedure 
multiOperatorsSearch( )  as depicted in figure 3. If the input 
solution represented in an individual is improved during local 
search, then the new individual replaces the old one.  

1. multiOperatorsSearch(vector) 
2.   removeSaving(vector) 
3.   InvertSol (vector) 
4.   insertSavingCit(vector) 
5.   replaceSavingCit(vector) 
6.   replaceSavingCar(vector) 
7.   2Opt(vector) 
8. end 

Fig. 3.  multiOperatorsLocalSearch procedure  

An elite population is considered for recombination. The 
elite population, elitepop, is formed with #Elite percent best 
individuals of the current population in terms of their fitness 
values. Fitness is calculated with expression (1). Since, 
pCaRS is a minimization problem, the lowest the fitness the 
best the individual is.  

The recombination procedure, Crossover( ), has three 
parameters: Pop, elitepop and #Cross. One parent comes 
from the current population, Pop, and the other comes from 
elitepop.  Both are chosen at random with uniform 
probability. The third parameter, #Cross, stands for the 
recombination rate. The one-point crossover is utilized. Since 
the number of genes in chromosomes can vary, a random 
point is chosen in the range of indices of the smallest 
chromosome. The recombination of two parents, A and B, 
generates two offsprings, C and D, as illustrated in figure 4. 
The crossover point is illustrated with a dashed line in 
chromosomes A and B. 

 

Fig. 4.  Recombination operator 

It may be necessary to restore feasibility of solutions 
generated during recombination. Infeasibility may occur 
regarding routes, cars assignment or total satisfaction. For 
example, in figure 4, chromosome C represents an infeasible 
solution, once cities 3 and 7 are visited twice and assigned 
vehicles. Infeasibility regarding the cities in the route occurs 
due to cities 3 and 7 appear twice each. Infeasibility regarding 
cars assignment occurs due to cars 3 and 2 are rented twice. 
The restoration procedure used in this work is the same 
presented in [1]. To restore feasibility regarding the cities in 
the route, the second time each city appears in chromosome 
C, it is replaced by an asterisk. For instance the sequence 

(1,3,7,4,6,3,7,9) is replaced by (1,3,7,4,6,*,*,9). Each asterisk 
is replaced by a city different from those in the chromosome, 
chosen at random, if such cities exist. The car assignment of 
chromosome C, (2,2,2,3,2,3,3,3), is also not feasible, for the 
problem considered in this paper requires each car is rented 
once. The restoration procedure replaces car repetitions by 
asterisks. Then each asterisk is replaced by the car which 
appears in the first preceding position. Thus, the car 
assignment of chromosome C is replaced by (2,2,2,3,*,*,*,*) 
and each asterisk is replaced by car 3.  

If after restoring cities and cars, the chromosome does not 
meet the minimum satisfaction requirement, a procedure to 
restore satisfaction is executed. First, cities with low degree 
of satisfaction are replaced by others with better satisfaction 
levels. If the minimum satisfaction level is still not reached, 
then cities are added randomly at the end of the solution up to 
reaching the required minimum satisfaction. The car assigned 
to each new city is the one assigned to the city immediately 
before it. 

IV. COMPUTATIONAL EXPERIMENTS 
Since pCaRS is a new problem, an instance library, named 

pCaRSLIB, was created. They were adapted from the 
CaRSLIB instances [1] and are available at 
http://www.dimap.ufrn.br/lae/en/projects/CaRS.php. Those 
instances have the following characteristics: all cars can be 
rented in all cities; all cars can be delivered in all cities; each 
car can be rented only once; the fee paid to take a car back to 
its home city is not associated with the instance topology; 
symmetry, i.e., the costs to go from i to j and from j to i are 
equal; the underlying graph is complete. Instances are divided 
into two classes: Euclidean and non-Euclidean. Three groups 
of instances were created for each class. The difference 
between the instances of each group is on how the edges 
weights were generated. First, a primary set of edge weights 
is established for each group. Those weights are associated 
with the first car. In the first group of instances, the primary 
edge weights were taken from real maps. The weights of the 
second group were generated uniformly in the range [10,500]. 
The third group of instances is based on the TSPLIB [21]. The 
weight of each edge corresponding to car c, 1 < c ≤ |C|, was 
randomly chosen, with uniform probability, in the range 
[1.1we,2.0we] where we stands for the primary weight of edge 
e. The satisfaction level assigned to each city was uniformly 
generated in the range [0,100]. 

The mathematical formulation presented in Section II was 
implemented in the GLPK software [11], version 4.45.2. 
Memory was limited to 14 Gb RAM. Processing time was 
limited to 80000 s. GLPK was finished if the problem was 
solved or if the limit due to memory or processing time was 
reached.  

The parameters of the memetic algorithm were tuned in 
preliminary tests and were: sizePop = 150 and #Cross = 0.4, 
limitIter = 100 and #Elite=0.3. 

Figures 5-7 illustrate the parameters sizePop and #Cross in 
three different instances used in the preliminary experiments. 
These figures show the typical behavior of the algorithm in a 
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computational experiment on 64 instances with 10 to 48 cities 
and 2 to 5 cars. The legend on the right hand side refers to 
tested values for #Cross. The figures show that the quality of 
the best solution did not improve significantly to values of 
sizePop greater than 150. Stability of the best solution was 
also reached for #Cross = 0.4. 

The algorithms were executed on a PC Intel Core i5, 16G 
of RAM, running Ubuntu 12.04 64bits. Thirty independent 
executions of the Memetic Algorithm were performed for 
each instance. 

Tables I and II show the results of the computational 
experiments. Columns Name, nCity and nCar are related to 
the characteristics of each instance being, respectively, the 
identification, the number of cities and the number of 
available cars. Columns Min and T(s), related to the GLPK 
solver, show the value of the best feasible integer solution and 
the processing time in seconds. Columns Min, Av, F and T(s), 
related to the Memetic Algorithm, show, respectively, the 
value of the minimum solution, the average of the minimum 
solutions on the thirty independent executions, the number of 
times the best solution was found and the average processing 
time in seconds. Column Gap, for each algorithm, presents 
the percent deviation of the value presented in column Min 
from a lower bound for the exact solution computed by the 
GLPK. Let the upper bound on the relative error due to 
rounding in floating point arithmetic in the manchine be ∈, 
the gap is given in (19), where best_mip and best_bound stand 
for, best integer solution and the best relaxed solution, 
respectively. 

 GAP =
|_|

|__|
∈+

−
mipbest

boundbestmipbest  (19) 

Table I shows that GLPK solves all Euclidean instances, 
except for China17e, Russia17e, BrasilAM26e, BrasilMG30e 
and att48eA for which the solver stopped due to memory 
limitation. The percent deviation produced by the GLPK for 
those instances were 6.40, 10.47, 20.50 28.60 and 38.12, 
respectively. All optima found by GLPK were also found by 
the Memetic Algorithm, except for instance Brasil16e where 
the solution produced by the latter presented percent 
deviation 2.83 from the former. GLPK spent less time to 
solve eleven instances than the average processing time of the 
Memetic Algorithm. This fact occurred since the six local 
search phases of the latter algorithm, implemented in 
multiOperatorSearch, require significant processing times.  
Remark that on instances larger than those eleven, the 
computational effort spent on the local search phases benefits 
the search made by the Memetic Algorithm. The tables show 
that the performance of the Memetic Algorithm improves as 
instances grow larger.  This tendency is also observed with 
the analysis of the data presented in Table II. On the other 
twenty-two Euclidean instances the Memetic Algorithm 
spent, in average, less processing time than the GLPK. In 
average, the GLPK spent 12089.39 seconds to produce 
solutions to the Euclidean instances while the Memetic 
Algorithm took 88.00 seconds. The average frequency of the 

best solution found by the Memetic Algorithm is 21.34 for the 
Euclidean instances. 

 

Fig. 5.  Population size versus value of the best solution on Egito9n 

 

Fig. 6.  Population size versus value of the best solution on BrasilRN16e 

 

Fig. 7.  Population size versus value of the best solution on BrasilPR25e 

Table II shows that the GLPK did not solve nineteen 
non-Euclidean instances for which the algorithm stopped due 
to time or memory limitation. The algorithm stopped due to 
memory limitation on instances: Argentina16n, Argelia15n, 
India15n, India16n, Chade12n, Ira13n, Mexico14n, 
Canada17n, Arabia14n, Cazaquistao15n, Brasil16n and 
Russia17n.  The algorithm stopped due to time limitation on 
instances: EUA17n, Mongolia13n, Sudao15n, Australia16n, 
BrasilAM26n, BrasilMG30n and att48nA. The percent 
deviations varied from 2 to 37.60. On sixteen among those 
nineteen instances the Memetic Algorithm found better 
solutions than those produced by the GLPK. The former 
algorithm also spent, in average, less processing time to 
obtain those solutions. The Memetic Algorithm spent, in 
average, from 14 to 1232 seconds to process the 
non-Euclidean instances. The results obtained with the GLPK 
took from 1 to 80000 seconds. The average frequency of the 
best solutions found by the Memetic Algorithm is 16.88 for 
the non-Euclidean instances. 

V. CONCLUSION 
This paper presented the Prize-collecting Car Renter 

Salesman Problem (pCaRS), a new variant of CaRS [2]. A 
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mathematical model was presented and submitted to the 
GLPK solver with time and memory limitations. A Memetic 
Algorithm that uses six local search procedures was 
proposed. An experimental investigation was carried out to 
investigate the potential of the proposed Memetic Algorithm. 
The solutions and processing times produced by the latter 
were compared with the results of the implementation of the 
mathematical model in the GLPK solver. A set with thirty two 
Euclidean and thirty two non-Euclidean instances was used in 
the experiments. Fourty exact solutions were found with the 
solver and the proposed heuristic algorithm established the 
first upper limits for other twenty four instances. The results 
of the computational experiments showed that for Euclidean 
instances the proposed Memetic Algorithm found almost all 
optima obtained with the GLPK with some advantage for the 
former. The Memetic Algorithm found also better solutions 
than the ones produced by the GLPK when it terminated due 
to time or memory limitations. The best performance due to 
quality of solution and processing time of Memetic 
Algorithm is observed on the non-Euclidean instances. The 
experiment also showed that as instances grow larger there is 
a tendency of the Memetic Algorithm improves its behavior 
in comparison to the GLPK solver. 

As the problem proposed here is new, several innovations 
can be implemented for future research, such as: (a) to 
develop other metaheuristics to pCaRS, (b) to investigate 
other local search procedures and (c) to develop algorithms 
for other variations of the problem. 

APPENDIX 
An instance of pCaRS is illustrated in figure 8 on a 

complete graph with five vertices (cities) and three types of 
cars. A graph and a square matrix of order five are associated 
with each car. The graph associated with a car, shows the cost 
to use that car on each edge (the value on the edge). The 
satisfaction associated with each city (the number in brackets 
at each vertex) is shown in the three graphs. Those values are 
the same in the three graphs, once they do not depend on the 
car. Each car can be rented and delivered in any city. Thus, 
the element (i,j) of the matrix associated with each car shows 
the fee to deliver that car in city i when it was rented in the 
city j. Figure 9 shows the example of a solution to pCaRS. 
City A is the starting (and ending) point of the tour. Figure 
9(a) shows that car 2 is rented in A, used to go from A to B 
and delivered in B. The cost associated with car 2 is the cost 
to travel road AB, 1, and the cost to be delivered in B, 1. The 
accumulated satisfaction up to this moment is given by 81+68 
= 149. Figure 9(b) shows that car 3 is rented in city B, used to 
go travel roads BD and DE and delivered in E. The cost to go 
from B to E through D is 2 + 2 = 4. The cost to deliver car 3 in 
E is 3 The satisfaction to visit cities E and D is 73+27 = 100. 
Figure 9(c) shows that car 1 is rented in city E, goes from E to 
A, completing the tour, and is delivered in A. The cost to 
travel from E to A is 2 and the delivery fee is 3 Figure 9(d) 
shows the solution where the cities A, B, D and E form a tour. 
The costs associated to traveling the roads are 1 + 2 + 2 + 2 = 
7. The costs associated with delivery fees are 1 + 3 + 2 = 6. 
The satisfaction to visit the cities in the tour is 81 + 68 +73 + 

27 = 249. The final solution presented in figure 9(d) does not 
include city C. The final cost is 13 and the satisfaction 
reached is 249. 
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Fig. 8.  Operational costs and return fees for cars 1, 2 and 3. 

 
Fig. 9.  Routes with edges associated with each car, the return fees and the final Hamiltonian cycle 

 

 

 

 

 

 

 

TABLE I.  RESULTS ON EUCLIDEAN INSTANCES 

Instances Exact (GLPK) Memetic 
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Name nCity nCar Min T(s) GAP(%) Min Av F T(s) GAP(%) 
Mauritania10e 10 2 422 5 0.00 422 422 30 17 0.00 
Colombia11e 11 2 326 1 0.00 326 326 30 14 0.00 
Angola12e 12 2 490 8 0.00 490 490 30 17 0.00 
Peru13e 13 2 556 46 0.00 556 556 30 33 0.00 
Libia14e 14 2 521 45 0.00 521 521 30 36 0.00 
BrasilRJ14e 14 2 230 560 0.00 230 230 29 42 0.00 
Congo15e 15 2 513 28 0.00 513 513 30 40 0.00 
Argentina16e 16 2 719 2276 0.00 719 719 30 47 0.00 
EUA17e 17 2 602 71,5 0.00 602 602 29 62 0.00 
Bolivia10e 10 3 384 3 0.00 384 384 30 23 0.00 
AfricaSul11e 11 3 402 11 0.00 402 402 30 24 0.00 
Niger12e 12 3 564 53 0.00 564 567 24 39 0.00 
Mongolia13e 13 3 543 607 0.00 543 545 1 31 0.00 
Indonesia14e 14 3 504 22 0.00 504 504 28 43 0.00 
Argelia15e 15 3 487 351 0.00 487 492 15 34 0.00 
India16e 16 3 705 36 0.00 705 713 19 68 0.00 
China17e 17 3 735 57332 6.40 728 731 13 86 5.50 
Etiopia10e 10 4 283 2 0.00 283 283 30 17 0.00 
Mali11e 11 4 428 10 0.00 428 428 30 28 0.00 
Chade12e 12 4 655 861 0.00 655 657 25 48 0.00 
Ira13e 13 4 532 49 0.00 532 533 24 64 0.00 
Mexico14e 14 4 492 144 0.00 492 492 30 31 0.00 
Sudao15e 15 4 422 46 0.00 422 422 29 28 0.00 
Australia16e 16 4 682 453 0.00 682 710 3 98 0.00 
Canada17e 17 4 783 1599 0.00 783 785 18 102 0.00 
Arabia14e 14 5 482 50 0.00 482 482 30 37 0.00 
Cazaquistao15e 15 5 574 1473 0.00 574 587 2 71 0.00 
Brasil16e 16 5 619 718 0.00 637 637 28 64 2.83 
Russia17e 17 5 760 80000 10.40 750 787 1 100 9.21 
BrasilAM26e 26 3 371 80000 20.50 338 344 3 226 12.74 
BrasilMG30e 30 3 419 80000 28.60 368 375 1 296 18.70 
att48eA 48 3 25234 80000 38.12 20444 20954 1 950 23.62 

TABLE II.  RESULTS ON NON EUCLIDEAN INSTANCES 

Instances Exact (GLPK) Memetic 
Name nCity nCar Min T(s) GAP(%) Min Av F T(s) GAP(%) 
Mauritania10n 10 2 306 1 0.00 306 306 30 14 0.00 
Colombia11n 11 2 461 224 0.00 461 461 30 19 0.00 
Angola12n 12 2 409 50 0.00 409 409 30 21 0.00 
Peru13n 13 2 502 3634 0.00 502 502 29 42 0.00 
Libia14n 14 2 504 77307 0.00 504 504 30 34 0.00 
BrasilRJ14n 14 2 101 58346 0.00 101 101 16 39 0.00 
Congo15n 15 2 573 5747 0.00 573 573 27 35 0.00 
Argentina16n 16 2 647 62007 22.70 642 644 6 56 22.10 
EUA17n 17 2 579 80000 8.10 579 589 2 75 8.10 
Bolivia10n 10 3 448 54 0.00 448 448 30 19 0.00 
AfricaSul11n 11 3 537 7755 0.00 537 537 29 22 0.00 
Niger12n 12 3 607 4069 0.00 607 630 1 34 0.00 
Mongolia13n 13 3 551 80000 2.00 551 551 30 43 2.00 
Indonesia14n 14 3 522 16188 0.00 522 522 30 38 0.00 
Argelia15n 15 3 619 48859 17.30 616 620 8 65 16.90 
India16n 16 3 734 73024 24.90 723 725 17 79 23.76 
China17n 17 3 651 62162 20.10 645 654 3 72 19.36 
Etiopia10n 10 4 403 153 0.00 403 403 30 22 0.00 
Mali11n 11 4 494 262 0.00 494 494 30 32 0.00 
Chade12n 12 4 654 69111 10.40 649 649 22 45 9.71 
Ira13n 13 4 697 54936 20.90 693 693 10 41 20.44 
Mexico14n 14 4 620 61358 18.70 610 612 24 38 17.37 
Sudao15n 15 4 793 80000 29.50 769 776 2 67 27.30 
Australia16n 16 4 551 80000 16.90 525 526 24 85 12.78 
Canada17n 17 4 827 77542 23.80 825 872 2 112 23.62 
Arabia14n 14 5 701 37832 27.80 688 693 6 76 26.44 
Cazaquistao15n 15 5 843 67421 28.80 830 858 2 103 27.68 
Brasil16n 16 5 769 32052 32.50 742 744 23 57 30.04 
Russia17n 17 5 820 52468 37.60 778 782 8 118 34.23 
BrasilAM26n 26 3 107 80000 17.80 107 108 4 197 17.80 
BrasilMG30n 30 3 179 80000 30.20 160 161 4 352 21.91 
att48nA 48 5 443 80000 17.50 443 598 1 1232 17.50 
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