
An Evolutionary Multi-Objective Approach for
Prototype Generation

Alejandro Rosales-Pérez∗, Hugo Jair Escalante∗, Carlos A. Coello Coello†, Jesus A. Gonzalez∗,
and Carlos A. Reyes-Garcia∗

∗ Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE)
Tonantzintla, Puebla, 72840, Mexico

Email: {arosales, hugojair, jagonzalez, kargaxxi}@inaoep.mx
† CINVESTAV-IPN, Evolutionary Computation Group (EVOCINV),

Mexico City, 07360, Mexico
Email: ccoello@cs.cinvestav.mx

Abstract—k-NN is one of the most popular and effec-
tive models for pattern classification. However, it has
two main drawbacks that hinder the application of this
method for large data sets: (1) the whole training set
has to be stored in memory, and (2) for classifying a
test pattern it has to be compared to all other training
instances. In order to overcome these shortcomings,
prototype generation (PG) methods aim to reduce the
size of the training set while maintaining or increasing
the classification performance of k-NN. Accordingly,
most PG methods aim to generate instances that try
to maximize classification performance. Nevertheless,
in most cases, the reduction objective is only im-
plicitly optimized. This paper introduces EMOPG, a
novel approach to PG based on multi-objective op-
timization that explicitly optimizes both objectives:
accuracy and reduction. Under EMOPG, prototypes
are initialized with a subset of training instances se-
lected through a tournament, according to a weighting
term. A multi-objective evolutionary algorithm, PAES
(Pareto Archived Evolution Strategy), is implemented
to adjust the position of the initial prototypes. The
optimization process aims to simultaneously maximize
the classification performance of prototypes while re-
ducing the number of instances with respect to the
training set. A strategy for selecting a single solution
from the set of non-dominated solutions is proposed.
We evaluate the performance of EMOPG using a suite
of benchmark data sets and compare the performance
of our proposal with respect to the one obtained by
alternative techniques. Experimental results show that
our proposed method offers a better trade-off between
accuracy and reduction than other methods.

I. Introduction

A vast number of pattern classification methods have
been proposed so far, being the k-nearest neighbor (k-NN)
classifier one of the most well-known [1]. Its popularity
relies on its simplicity and good performance. The k-NN
classifier belongs to the lazy learning family, meaning that
no training phase is needed for this method. Instead, k-
NN represents each training sample as a point in a multi-
dimensional feature space, and new samples are classified
based on the labels assigned to their closest training
samples. In this sense, the standard k-NN requires the
entire training set to be stored in memory, and it performs

as many distance/similarity computations as samples are
available in the training set for classifying a single test
pattern. These are major concerns when using the k-NN
classifier on large data sets, which are becoming ubiquitous
nowadays.

To overcome the above mentioned shortcomings, a num-
ber of techniques have been proposed aiming to reduce the
number of instances of the training set, while preserving
a good classification performance. There are two main ap-
proaches for instance reduction: prototype selection meth-
ods [2], which attempt to select a representative subset of
samples from the training set, and prototype generation
(PG) methods [3], whose goal is to generate a small set
of artificial prototypes to replace the original training set.
Both approaches have benefits and limitations, although
an important advantage of PG methods is that they
subsume the prototype selection techniques. Hence, we
focus on PG in this work.

Among the available methods for PG, techniques based
on bio-inspired optimization have reported the best per-
formance in recent years [3]–[8]. These methods aim at
optimizing a criterion related to the classification perfor-
mance of prototypes; in a few cases, a reduction term
is also implicitly considered. Whereas satisfactory results
have been reported with such methods, the optimization
of a single objective may not be the best option for PG,
as classification performance and training set reduction
are two objectives that are in conflict with each other
(i.e., maximizing accuracy may decrease the reduction
performance, and viceversa). Therefore, methods that can
explicitly deal with both objectives may obtain solutions
that offer a better trade-off between classification and
reduction performance.

This paper introduces EMOPG: an evolutionary multi-
objective approach for the generation of prototypes.
EMOPG aims at adjusting the positioning of prototypes
in the input space by using PAES (Pareto Archived Evo-
lution Strategy) [9]. A solution is initialized with a set
of potentially good instances (prototypes). Then, PAES
optimizes the positioning of these instances aiming to
explicitly maximize classification and reduction perfor-

1100

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

mance. A strategy for generating a single solution from
the set of non-dominated solutions obtained by PAES
is proposed. We report experimental results in a suite
of data sets used for benchmarking PG methods and
compare the performance of EMOPG to that of alternative
techniques [3]. Experimental results reveal that EMOPG
compares favorably with most PG methods proposed so
far. In fact, our proposed method achieves the best trade-
off in terms of reduction and accuracy.

The remainder of this paper is organized as follows.
Section II, briefly reviews the most relevant previous
related work on PG, focusing on evolutionary computation
approaches. Section III explains in detail the formulation
of the PG problem as a multi-objective optimization one
and introduces our proposed approach. Section IV reports
experimental results that provide an experimental valida-
tion of the suitability of our proposal. Finally, Section V
presents our conclusions, and outlines some possible paths
for future work.

II. Previous Related Work
Among the variety of PG methods proposed so far,

recent methods based on evolutionary algorithms and
related techniques have reported better results than alter-
native approaches [3]–[8], [10]. In these approaches, the PG
method is treated as one of optimization, where the goal is
to find (to optimize) the best set of prototypes for pattern
classification with k-NN. These methods start from a set
of solutions (prototypes) that are iteratively modified by
applying ad-hoc operators with the goal of optimizing a
criterion related to the classification performance of the
prototypes.

A PG method based on particle swarm optimization
(PSO) was proposed in [5], where the authors try to
minimize the classification error in the training set. The
method is run for several times in order to obtain varied
solutions (sets of prototypes). When classifying a new
object, the outputs of all of the set of prototypes are
combined via voting, i.e., an instance is assigned to the
most voted class. Another variant of PSO, called adaptive
Michigan PSO (AMPSO), has also been used for the
generation of prototypes. In AMPSO, each particle of the
swarm is associated to a prototype in such a way that
the whole population is the set of prototypes that are
optimized [6]. Fernandez et al. proposed ENPC (Evolu-
tionary Design of NN classifiers), which consists of an
evolutionary algorithm that starts from a single individual
that is evolved by applying a variety of operators that
merge and split prototypes [8]. The method is able to
automatically determine the number of prototypes and
requires little information from the user. Escalante et al.
proposed a PG method based on genetic programming
(GPGP) [7]. The idea consists of exploiting a tree struc-
ture to combine instances using arithmetic operators. The
objective function combines the accuracy and reduction
criteria in a single formula.

Triguero et al. reported a comparative study among the
above mentioned methods and several other techniques [3].
The most representative PG methods are considered in
that study. Therefore, in Section IV we compare the per-
formance of our proposed method with all of the methods
considered in [3].

One should note that in most of the above reviewed
works, a single objective (i.e., accuracy) is being optimized.
Some methods combine both objectives into a single one
or exploit the structure of the optimization strategy to
incorporate one of the objectives. In this work, however,
we explicitly aim to optimize both objectives by using a
multi-objective evolutionary algorithm. Our hypothesis is
that by explicitly modeling these aspects, we will be able
to obtain solutions that offer a better trade-off between
accuracy and reduction.

III. Evolutionary Multi-Objective Approach
for Prototype Generation

In this section, we describe the proposed multi-objective
optimization approach to the PG problem. First, we pro-
vide a brief introduction to multi-objective evolutionary
optimization and then we introduce the proposed tech-
nique.

A. Evolutionary Multi-Objective Optimization
Evolutionary algorithms are stochastic search tech-

niques which mimic the principles of Darwin’s evolution-
ary theory. These algorithms are well-suited for solving
multi-objective problems (MOPs), due to the fact that
they work with a population of solutions, allowing them
to obtain a widespread set of non-dominated solutions
in a single run. Furthermore, they are less susceptible
to the shape and continuity of the Pareto front than
mathematical programming techniques [11], [12].

A MOP can be formulated as follows:

minimize f (x) = [f1 (x) , . . . , fl (x)]T

subject to x ∈ X
(1)

where x = [x1, . . . , xn]T ∈ Rn is a vector of decision
variables, fi (x), i = 1, . . . , l, are the l−objective functions,
and X is the set of feasible solutions.

In the case that the objectives are in conflict, there does
not exist a single solution that minimizes simultaneously
all of the objectives. Therefore, the notion of optimum in
MOPs differs from that in single-objective optimization,
since in this case, the focus is on finding solutions that
provide a good trade-off among the objectives. Pareto
optimality provides a framework to determine such trade-
offs. We say that a solution x1 dominates a solution x2

(denoted by x1 � x2) if and only if x1 is not worse than
x2 in any objective, and there exists at least one objective
for which is better, i.e.:

∀i : fi

(
x1) ≤ fi

(
x2) ∧ ∃i : fi

(
x1) < fi

(
x2) (2)

1101

A solution x∗ is a Pareto optimal solution if there does
not exist another solution x′ ∈ X such that x′ � x∗. The
set of all Pareto optimal solutions is known as the Pareto
optimal set, and the image of this in objective space is
referred to as the Pareto Front.

A large number of evolutionary algorithms for solv-
ing multi-objective problems have been proposed so far.
Among these, we can find the NSGA-II [13], SPEA2 [14],
PAES [9], etc. Interested readers are referred to [11], [12]
for a comprehensive review of multi-objective evolutionary
algorithms.

B. EMOPG: Evolutionary Multi-Objective Prototype Gen-
eration

In this work, the PG task is treated as a multi-objective
optimization problem where two objectives are considered:
(1) classification performance, via the minimization of
the 1-NN classification error in the training set when
using the prototypes; and (2) reduction performance, via
minimization of the number of prototypes. Both objectives
would correspond to f1 (x) and f2 (x), respectively, in
equation (1). Moreover, we constrain the set of feasible
solutions (X) to be formed by all possible sets of proto-
types that have at least one prototype per class.

We adopted a position-adjustment approach for gener-
ating the prototypes starting from a subset of training
samples [3]. The initial training samples are selected by
considering a weight that accounts for the discrimination
power of instances. Then, through an optimization process
the positions of the initial prototypes (training samples)
in the feature space are modified. The multi-objective
optimization approach returns a set of solutions from
which a single one must be selected. In this regard, we
propose an effective strategy for selecting a single solution.
Algorithm 1 describes the proposed approach, the rest of
this section details the proposed approach.

1) Weighting Instances: The first step of the proposed
algorithm is to obtain a weight for each training in-
stance related to their discrimination power. The goal is
to use this weight for the selection of initial prototypes
for the evolutionary algorithm. We consider an instance
weighting scheme inspired by the criteria considered for
condensation-based instance selection, see e.g., [15]. The
main idea behind the weighting scheme is that instances
that are closer to instances from different classes have a
higher weight than those that are farther away, due to the
fact that instances closest to the borders are expected to
be the most difficult to classify and, therefore, give more
information that allows us to discriminate among classes.

The weighting procedure is described in the steps 2 to
5 in Algorithm 1. For each instance xi, we first determine
N 6=xi , the set of its k nearest neighbors of different classes.
Next, we assign a weight to each instance xi depending on
its closeness with its neighbors of different class as follows:

Algorithm 1 EMOPG
Require: X: training set,

N : maximum number of prototypes,
k : number of nearest neighbors,
IC: number of instances competing in a tournament,
MOEA’s parameters

Ensure: A set of prototypes
1: Let N = [n1, . . . , nm] be the number of instances for each

class, such that
∑m

i=1 ni = N for m classes
{Weight each instance in the training set based on its k
nearest neighbors from other classes}

2: for each instance xi ∈ X do
3: Find the k nearest neighbor from other classes
4: Compute the weight of the instance xi using equation (3)
5: end for
{Construct an initial set of N prototypes giving preference
to border instances}

6: for each class ci ∈ C do
7: while the cardinality of prototypes from ci < ni do
8: Choose randomly IC prototypes from X that belong

to ci

9: Add to the set of prototype the prototype with the
highest weight among the IC prototypes

10: end while
11: end for
12: Apply a multi-objective evolutionary algorithm for adjust-

ing the positions of the prototypes
13: Select a single solution from the resulting non-dominated

front based on some preference

w (xi) = 1
k

k∑
xj∈N 6=

xi

1
‖xi − xj‖

(3)

where ‖xi−xj‖ is the Euclidean norm between xi and xj .
This weight is used to generate the initial prototypes as
described below.

2) Constructing an Initial Set of Prototypes: The sec-
ond step of our proposal is to generate an initial set
of prototypes through the selection of samples from the
training set. As we previously stated, border instances
could provide useful information that help to discriminate
the classes. Therefore, the initial set of prototypes should
give more preference to such instances. One way of doing
this would consist in choosing the instances with the
highest weights according to equation (3). Nonetheless,
under this approach, the chosen prototypes could belong to
a specific region of the feature space, reducing the diversity
among the prototypes for the further optimization process.
To overcome this shortcoming, we propose an initialization
process inspired on the tournament selection from evolu-
tionary algorithms.

The procedure for choosing an initial set of N proto-
types is described in steps 6 to 11 in Algorithm 1. First,
we determine the maximum number of prototypes for each
class, which is determined in a stratified fashion, looking
to preserve, in the prototypes set, the original proportions
of examples of each class as in the training set. After that,
for each class, we select IC prototypes at random, and the

1102

one with the highest weight is added to the initial set of
prototypes. This process is repeated until the maximum
number of prototypes is reached. It is worth indicating
that the tournament selection is done with replacement.

One should note that by proceeding in this manner, we
guarantee that there is at least one prototype per class in
the set of initial prototypes. The motivation for using this
sort of initialization instead of a random one, is to help
the optimization process to converge faster.
C. Evolutionary Multi-Objective Optimization for Posi-
tion Adjusting

In the problem that we faced, the positions of the
prototypes are adjusted through an evolutionary process.
Due to the way in which the set of prototypes is initial-
ized, we expect that this set would be a good enough
solution, which should be improve it by a local search
engine that considers the two considered objectives in our
formulation. To this aim, we used the (1+1)-PAES [9] for
solving this problem. A description of PAES is presented
in Algorithm 2. An initial individual is first created, who
serves as a parent to create new solutions. Under the
adopted approach, the initial set of prototypes (see steps
6 to 11 from Algorithm 1) is a potential solution to the
problem at hand, and it is used as the initial individual
for PAES. The next step is to create an offspring from
the parent individual, which is achieved by applying a
mutation operator over the parent. After that, a series of
comparisons are performed in order to determine whether
the child individual should be added to an external archive
or not, and what solution should be the parent for the
next generation. PAES stores the non-dominated solutions
found so far during the search in an external archive. A
detailed description of PAES is given in [9]. The remain-
der of this section explains the application of PAES for
adjusting the positions of the initial set of prototypes.

1) Representation: The task of our PG method is to
adjust the position of prototypes in the feature space. To
achieve this task, the prototypes are encoded in an N × d
dimensional vector, where N is the maximum allowable
number of prototypes and d is the dimensionality of each
prototype in feature space. In addition to the position
of the prototypes in feature space, and for the sake of
reducing the initial number of prototypes as much as possi-
ble, the proposed encoding also considers a mechanism for
selecting from among the candidate prototypes. With this
in mind, each potential solution to the problem (i.e., a set
of prototypes) is represented in an N×(d+1) dimensional
vector as follows:

x(i) =
[
f1

1 , . . . , fd
1 , b1, . . . , f1

N , . . . , fd
N , bN

]
(4)

where f j
i ∈ R represents the jth feature value of the ith

prototype, and bi ∈ {0, 1} is a variable that indicates
whether the corresponding prototype is considered or not.

Alternatively, one can see the above representation as a
matrix, where each row represents a prototype, and each

Algorithm 2 PAES [9]
Require: f (x): fitness functions
Ensure: A set of non-dominated solutions

1: Create an empty external archive A
2: Create an initial individual p0
3: Add p0 to external archive A : A = A ∪ p0
4: while stopping criterion is not satisfied do
5: Mutate pt to create ct

6: if pt � ct then
7: Discard ct

8: else
9: if ct � pt then

10: Replace pt with ct, and add ct to archive A : A =
A ∪ ct

11: else
12: if ∃a ∈ A | a � ct then
13: Discard ct

14: else
15: Apply test (pt, ct, A) to determine who becomes

the new current solution and whether to add ct

to A
16: end if
17: end if
18: end if
19: end while

column represents the features that describe a particular
prototype plus a binary value. One should note that the
class label is not encoded in the adopted representation.
This is because the initial set of prototypes is chosen from
the training set. Therefore, each sample has a class label,
which is defined a priori, and remains unchanged during
the evolutionary search.

2) Evolutionary Operators: In (1+1)-PAES, the muta-
tion is the only evolutionary operator used for creating an
offspring from a parent. There are a number of mutation
operators for dealing either with a real-numbers or a
binary encoding. Notwithstanding, the adopted represen-
tation is a mixed-encoding, involving both real and binary
variables. Hence, one could use a standard mutation for a
real-numbers encoding and round off the binary parts, but
in this case, small changes made to the binary variables
by the mutation operator may be lost after performing
the rounding-off process. To overcome this limitation, we
propose to mutate both real and binary variables inde-
pendently. Therefore, the individual is decomposed in two
parts: the real part and the binary part. For each part, an
ad-hoc mutation operator is applied. For the real-numbers
part, we used polynomial-based mutation [12], and bit-flip
mutation [16] was adopted for the binary part.

3) Fitness Functions: In order to evaluate how good an
individual is, we need to assess it with the considered op-
timization criteria. We consider two objectives, related to
classification and reduction performance of the prototypes.
The first objective is assessed through a fitness function,
f1, that accounts for the error incurred by the prototypes
when used with a 1-NN rule to classify the training set.
The second objective is captured by a fitness function,

1103

f2, indicating the relative reduction rate attained by a
specific individual. One should recall the constraint that
the set of prototypes must have at least one prototype by
each class. This constraint is handled in a straightforward
fashion following a penalty function approach. The fitness
functions for our problem can be stated as follows:

f1 (x) = 1
P

P∑
i=1
L (yi, y∗i) + v (x)

f2 (x) =
∑N

i=1 bi

N
+ v (x)

(5)

where P is the number of samples in the training set, yi

is the class label, y∗i is the class predicted by the model,
L (yi, y∗i) is a suitable loss function,

∑N
i=1 bi is the total

number of prototypes chosen for a particular individual,
N is the (desired) maximum number of prototypes, and
v (x) is a function that indicates the number of classes that
are not represented by at least one prototype. The 0/1 loss
function was used for our purposes, due to the fact that
it is well suited for classification tasks. This loss function
is defined as:

L (yi, y∗i) =
{

1 if y∗i 6= yi

0 if y∗i = yi

(6)

Thus, the goal of PAES is to search the space of proto-
types aiming to simultaneously optimize f1 and f2. PAES
returns a set of non-dominated solutions found during the
search. The next section describes our approach to select a
single set of prototypes from the set of solutions obtained
by PAES.

D. Selecting a Single Solution from the Non-dominated Set
PAES returns a set of non-dominated solutions, which

is expected to be an approximation to the true Pareto
optimal set. In the absence of user preferences, all of them
are equally acceptable solutions to the problem at hand. In
our case, each of these non-dominated solutions represents
a set of prototypes to be used as a reduced data set for
the 1NN classifier.

In order to choose a single solution, we first define what
an ideal solution to the problem would be. Recall that the
first objective is to reduce the error rate and the second
one is to reduce a relative number of prototypes. Hence,
an ideal solution would not commit errors to classify
the samples and it would have one prototype per class,
i.e., zideal = [0,m /N], for a problem with m classes.
We adopted a compromise programming approach [17]
to choose a solution. We chose this method because it
allowed us to pick up a solution that is located at a
minimum distance from a given reference point (the ideal
point in our case1). As distance measure between non-
dominated solutions and zideal we used the Tchebycheff

1This allows us to choose the solution nearest to our ideal solution.
If a designer, however, has a preference for the objectives, he/she can
pick up another solution from the non-dominated set.

metric [12]. Thus, the solution is chosen through the
following expression:

S∗ = argmin
x

[max {f1 (x) , |f2 (x)−m /N |}] (7)

The next section reports the experiments that we per-
formed in order to assess the performance of EMOPG.

IV. Experiments and Results
This section describes the experimental study performed

over a suite of benchmark data sets widely used for the
evaluation of PG methods [3]. We present a statistical
analysis of the results and compare the performance of
our proposal with that of several other methods from the
state of the art.

A. Experimental Settings
For our experiments, we used 59 data sets taken from

the KEEL repository2, which were also used in the com-
parative study of PG methods performed by Triguero et
al. [3]. Table I shows some characteristics of these data
sets. They are divided according to the number of samples,
in small data sets (less than 2000 samples) and large data
sets (2000 and more samples). Each of these data sets
were previously partitioned into 10 training/test subsets
by means of a 10 fold cross validation procedure. In k
fold cross validation, the data set is divided in k disjoint
subsets, which are used for training and testing. At each
iteration, a subset is used as our test set and the rest
as our training set. This procedure is repeated k times,
until all of the subsets had been used for testing. Thus,
for each data set, we applied our proposal (EMOPG) 10
times, each time for each of the training partitions, in
order to generate a corresponding prototypes set, whose
performance is assessed by using the corresponding test
set. This leads to a total of 590 experiments performed for
PG.

For assessing the performance of the PG methods we
consider the two widely used criteria: test-set accuracy
and training-set reduction. We compare the experimental
results obtained by our proposed method with those ob-
tained by other evolutionary and non-evolutionary meth-
ods for PG and by the 1-NN classifier.

Regarding the parameters configuration used in our
experiments, we fixed the maximum number of prototypes
(N) to be a 5% of the training set size, the number of
nearest neighbors (k) used to weight instances was fixed
to 5, the number of instances competing in a tournament
(IC) was set to 2, the distribution index for the mutation
was set to 10, and the mutation rate was set to 0.06; the
stopping criterion for PAES was to perform 20,000 fitness
functions evaluations, and the external archive keeps at
most 20 solutions. These parameters were empirically
chosen. The parameters from the compared methods were

2These data sets are available at
http://sci2s.ugr.es/keel/datasets.php

1104

TABLE I: Description of the data sets used for the exper-
imental study [3]. For each data set, we show the number
of samples, the number of attributes, and the number of
classes.

Data set Samples Attributes Classes
Abalone 4174 8 28
Appendicitis 106 7 2
Australian 690 14 2
Autos 205 25 6
Balance 624 4 3
Banana 5300 2 2
Bands 539 19 2
Breast-Cancer 286 9 2
Bupa 345 6 2
Car 1728 6 4
Chess 3196 36 2
Cleveland 297 13 5
Coil2000 9822 85 2
Contraceptive 1473 9 3
Crx 125 15 2
Dermatology 366 33 6
Ecoli 336 7 8
Flare-Solar 1066 9 2
German 1000 20 2
Glass 214 9 7
Haberman 306 3 2
Hayes-Roth 133 4 3
Heart 270 13 2
Hepatitis 155 19 2
Housevotes 435 16 2
Iris 150 4 3
Led7digit 500 7 10
Lymphography 148 18 2
Magic 19020 10 2
Mammographic 961 5 2
Marketing 8993 13 9
Monks 432 6 2
Movements-libras 360 90 15
Newthyroid 215 5 3
Nursey 12960 8 5
Pageblocks 5472 10 5
Penbased 10992 16 10
Phoneme 5404 5 2
Pima 768 8 2
Ring 7400 20 2
Saheart 462 9 2
Satimage 6435 36 7
Segment 2310 19 7
Sonar 208 60 2
Spambase 4597 57 2
Spectheart 267 44 2
Splice 3190 60 3
Tae 151 5 3
Texture 5500 40 11
Thyroid 7200 21 3
Tic-tac-toe 958 9 2
Titanic 2201 3 2
Twonorm 7400 20 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Wisconsin 683 9 2
Yeast 1484 8 10
Zoo 101 16 7

those adopted in [3]. The number of fitness functions eval-
uation performed by the compared methods could differ
than those performed in our proposal, but we adopted
these parameters under the assumption that they were the

ones that gave the best performance for each method.
B. Experimental Results

In this section, we present experimental results obtained
by our proposal to show its feasibility to the PG problem.
Table II shows the average and standard deviation of the
results obtained by our proposal (EMOPG) and by the
reference studies. This table shows separately the results
obtained (in terms of test-set accuracy and training-set
reduction) when considering: all the data sets (59 data
sets), only small data sets (40 data sets), and only large
data sets (19 data sets).

From Table II, we can see that GENN, PSO, and
EMOPG reached a slightly better accuracy-performance
than the 1-NN classifier when all and the large data sets
are taken into account. For small data sets, 1-NN showed
slightly better performance than EMOPG. GENN further
reached the best performance in terms of accuracy for both
all and the small data sets. PSO had a performance similar
to that of GENN in those data sets. With respect to the
large data sets, the performance of GENN and EMOPG is
almost the same. It is also remarkable that PSCSA showed
the worst performance among the considered methods for
all, the small, and the large data sets.

On the other hand, in terms of the reduction rates
attained by each method, we can observe that PSCSA
obtained the best training-set reduction rate in all cases.
EMOPG was the second best method in terms of reduction
for both, all and the small data sets, and the third one
for the large data sets. Nonetheless, the reduction rates
achieved by the three best methods on large data sets is
virtually the same, getting rates above 99%. The worst
method in terms of reduction was GENN3. In fact, GENN
is the only method whose reduction rates were below 20%.

In order to assess if there exists a statistically significant
difference among the evaluated methods, we used the
Friedman test. This test is conducted on GENN, LVQTC,
PSCSA, PSO, 1-NN, and EMPOG, due to the fact that
they had a competitive performance either on accuracy or
on reduction. This test is suitable to compare multiple
algorithms over multiple data sets [18]. We applied it
with a 95% of confidence. Moreover, we should highlight
that our goal was to compare the performance of our
proposal (EMOPG) with respect to the reference methods.
Therefore, the Bonferroni-Dunn test is performed as a
post-hoc test. We summarize the results obtained by these
tests as follows:
• In terms of test-set accuracy for all, the small and

the large data sets, there does not exist a statistically
significant difference between EMOPG, GENN, PSO,
and 1-NN. EMOPG significantly outperforms all of
these methods in terms of reduction.

• EMOPG significantly outperforms LVQTC and
PSCSA in all and the large data sets, and it also

3One should note that 1-NN is not a PG method. For that reason,
it was not taken into consideration for comparing the reduction rate.

1105

TABLE II: Results obtained by EMOPG in terms of classification performance and reduction rate averaged over
different data sets for all, for the small and for the large data sets. It also shows the results obtained by other PG
methods, see [3]. The best results are shown in boldface.

Method Accuracy Reduction Rate
All Small Large All Small Large

1-NN 74.794± 18.478 72.451± 16.078 79.728± 22.236 00.000± 0.000 00.000± 0.000 00.000± 0.000
AMPSO 70.662± 17.676 69.028± 15.915 74.103± 20.966 95.485± 1.861 94.388± 0.991 97.973± 0.090
GENN 77.469± 17.712 75.637± 15.447 81.327± 21.696 17.701± 14.926 19.910± 14.477 15.758± 19.923
LVQTC 70.048± 18.740 69.806± 17.436 70.558± 21.736 96.874± 3.125 95.608± 2.961 99.752± 0.160
MSE 73.776± 17.640 72.366± 14.809 76.744± 22.690 96.538± 4.658 95.299± 5.104 99.363± 0.732
PSCSA 66.904± 19.676 66.824± 18.742 67.074± 22.054 99.001± 1.365 98.600± 1.469 99.879± 0.169
PSO 76.617± 16.390 75.012± 14.088 79.996± 20.438 95.900± 1.569 94.974± 0.831 97.990± 0.083
EMOPG 74.824± 17.421 71.730± 15.386 81.337± 19.974 98.568± 1.312 98.112± 1.371 99.528± 0.195

significantly outperforms PSCSA in the small data
sets with respect to accuracy-performance.

Overall, we can say that EMOPG offers a better trade-
off between accuracy and reduction than the alternative
methods considered here. GENN obtained very good re-
sults in terms of accuracy. However, it had the worst
reduction rate. On the other hand, PSCSA was able to
obtain better reduction rates than the other methods,
but its performance on accuracy was the worst among
the considered methods. EMOPG offered a more balanced
trade-off between the accuracy/reduction objectives than
any other of the considered methods. In fact, the differ-
ence in accuracy between GENN and EMOPG was not
statistically significant, while the difference in reduction
was. Notwithstanding that PSCSA clearly outperforms
EMOPG in terms of reduction, the difference between
both approaches is less than a 0.50% for all the data
sets adopted in our study, and less than a 0.30% for the
large data sets. Moreover, the accuracy performance of
PSCSA was the worst, being outperformed even by the 1-
NN classifier. These results are interesting, since EMOPG
was able to reduce the number of samples in the training
set, without significantly overfitting.

Figure 1 shows the non-dominated front generated by
EMPOG for the Car data set. This non-dominated front
is expected to be an approximation to the true Pareto
front. From this figure, we can note that there is a trade-
off between the reduction rate and the accuracy, such
that by reducing the number of prototypes, it is expected
that the error increases. From the shape of the front, we
can clearly see that solutions are well distributed across
the objective space and provide the decision maker with
a variety of possibilities including highly accurate (and
many prototypes) and very compact (but not so accurate)
solutions.

Figure 2 graphically depicts the behavior of several
evolutionary and non-evolutionary methods for PG (which
were considered in the comparative study performed in [3])
and EMOPG with respect to the training-set reduction
and test-accuracy. It can be seen from Figure 2a that for
small data sets, EMOPG was outperformed by several
methods in terms of test-accuracy. GENN was the best
one, but as we previously stated, the difference in accuracy

f1 (x)

f2 (x)

0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Fig. 1: Non-dominated fronts generated by EMOPG for
the Car data set in a particular trial.

between both methods is not statistically significant. How-
ever, the training-reduction attained by EMPOG was the
second best. Regarding large data sets, from Figure 2b one
can note that EMOPG outperforms most of the existing
methods in terms of both reduction and accuracy. In
fact, the performance of EMOPG on large data sets is
better than that of the methods that outperformed it on
small data sets. This is interesting, since PG methods are
normally applied on large data sets. The accuracy with
respect to GENN is similar, but EMOPG has a better
reduction rate. In fact, from this figure it can be observed
that the performance of EMOPG is the closest to the top
right corner, where hypothetically, the best method would
be located.

V. Conclusions and Future Work
We have proposed EMOPG, a novel evolutionary multi-

objective approach for dealing with the prototype gen-
eration (PG) problem. Our approach explicitly aims to
optimize the two main criteria that are directly related to
the two main drawbacks of the k-NN classifier that affect
its use on large data sets. EMOPG obtains prototypes
that do not significantly degrade the performance of k-
NN, with reduction rates above 98%. This makes this
approach applicable to problems from different domains,
specially on large data sets. EMOPG outperformed several
PG methods reported in the state of the art, and it was not
significantly worse compared to the best ones. Hence, we

1106

Reduction

A
cc

ur
ac

y

0 10 20 30 40 50 60 70 80 90 100
60

62

64

66

68

70

72

74

76

78

80

GENN

Depur

BTS3

MixtGaussSGP

LVQ3

MSE

DSM

LVQTC

VQ

AVQ

HYB
LVQPRU

Chen

RSP3

ENPC

PSO

AMPSO

PSCSA

1NN
EMPOG

(a) Small
Reduction

A
cc

ur
ac

y

0 10 20 30 40 50 60 70 80 90 100
60

62.5

65

67.5

70

72.5

75

77.5

80

82.5

85

GENN
Depur

BTS3

SGP

LVQ3

MSE

DSM

LVQTC

MixtGaussVQ

AVQ

HYB

LVQPRU

Chen
RSP3

ENPC PSO

AMPSO

PSCSA

1NN

EMPOG

(b) Large

Fig. 2: Trade-off between training-reduction and test-accuracy reached by several evolutionary and non-evolutionary
methods for prototype generation and EMPOG for both (a) small and (b) large data sets.

can conclude that EMOPG can be seen as a new baseline-
to-beat PG technique.

The contributions of our proposed method are as fol-
lows: (i) the initialization of the prototypes giving prefer-
ence to border instances allows to improve the convergence
of the algorithm; (ii) the optimization is formulated such
that the solutions simultaneously improve the accuracy-
performance and the reduction rate; (iii) our proposal
obtained competitive performance over a large number
of data sets; and (iv) the multiple solutions in the non-
dominated front allow the user to choose different solutions
based on his/her preferences without performing a new
search.

As part of our future work, we would like to extend
EMOPG for dealing with the reduction of both the number
of samples and the number of features. Including prefer-
ences during the optimization is also another interesting
path for future research. We want to evaluate EMOPG
for different values of k of k-NN. We would also like to
study the impact of the evolutionary parameters on the
quality of the prototypes found by EMOPG. Finally, we
are interested in testing EMOPG on large scale data sets.

Acknowledgements
The first author is grateful for the support from CONA-

CyT scholarship no. 329013.

References
[1] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Mo-

toda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou,
M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms
in data mining,” Knowl. Inf. Sys., vol. 14, no. 1, pp. 1–37, 2007.

[2] S. Garćıa, J. Derrac, J. R. Cano, and F. Herrera, “Prototype
selection for nearest neighbor classification: Taxonomy and em-
pirical study,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 3, pp. 417–435, 2012.

[3] I. Triguero, J. Derrac, S. Garcia, and F. Herrera, “A taxonomy
and experimental study on prototype generation for nearest
neighbor classification,” IEEE Trans. Syst. Man Cy. C, vol. 42,
no. 1, pp. 86–100, Jan. 2012.

[4] I. Triguero, S. Garcia, and F. Herrera, “Differential evolution
for optimizing the positioning of prototypes in nearest neighbor
classification,” Pattern Recogn., vol. 44, pp. 901–916, 2011.

[5] L. Nanni and A. Lumini, “Particle swarm optimization for
prototype reduction,” Neurocomputing, vol. 72, no. 4–6, pp.
1092–1097, 2008.

[6] A. Cervantes, I. M. Galvan, and P. Isasi, “AMPSO: a new
particle swarm method for nearest neighborhood classification,”
IEEE Trans. Sys. Man Cy. B, vol. 39, no. 5, pp. 1082–1091,
2009.

[7] H. J. Escalante, K. M. Mendoza, M. Graff, and A. Morales-
Reyes, “Genetic programming of prototypes for pattern clas-
sification,” in Proc. of IbPRIA 2013, ser. LNCS, vol. 7887.
Springer, 2013, pp. 100–107.

[8] F. Fernandez and P. Isasi, “Evolutionary design of nearest
prototype classifiers,” J. Heuristics, vol. 10, pp. 431–454, 2004.

[9] J. Knowles and D. Corne, “Approximating the nondominated
front using the pareto archived evolution strategy,” Evol. Com-
put., vol. 8, no. 2, pp. 149–172, 2000.

[10] U. Garain, “Prototype reduction using an artificial immune
system,” Pattern Anal. Appl., vol. 11, no. 3–4, pp. 353–363,
2008.

[11] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen,
Evolutionary algorithms for solving multi-objective problems,
2nd ed. Springer, US, 2007.

[12] K. Deb, Multi-Objective Optimization Using Evolutionary Algo-
rithms. New York, NY, USA: John Wiley & Sons, Inc., 2001.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans.
Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[14] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the strength pareto evolutionary algorithm for multiobjective
optimization,” in Evolutionary Methods for Design Optimiza-
tion and Control with Applications to Industrial Problems, K. C.
Giannakoglou, D. T. Tsahalis, J. Périaux, K. D. Papailiou, and
T. Fogarty, Eds. International Center for Numerical Methods
in Engineering, 2001, pp. 95–100.

[15] D. R. Wilson and T. R. Martinez, “Reduction techniques for
instance-based learning algorithms,” Mach. Learn., vol. 38, pp.
257–286, 2000.

[16] X. Yu and M. Gen, Introduction to Evolutionary Algorithms.
Springer, 2010.

[17] M. Zeleny, “Compromise programming,” Multiple criteria deci-
sion making, pp. 262–301, 1973.

[18] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

1107

