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Abstract—In evolutionary algorithms, the reproduction opera-
tors play an important role. It is arguable that different operators
may be suitable for different kinds of problems. Therefore,
it is natural to combine multiple operators to achieve better
performance. To demonstrate this idea, in this paper, we pro-
pose an MOEA/D with multiple differential evolution mutation
operators called MOEA/D-MO. MOEA/D aims to decompose a
multiobjective optimization problem (MOP) into a number of single
objective optimization problems (SOPs) and optimize those SOPs
simultaneously. In MOEA/D-MO, we combine multiple operators
to do reproduction. Three mutation strategies with randomly
selected parameters from a parameter pool are used to generate
new trial solutions. The proposed algorithm is applied to a set
of test instances with different complexities and characteristics.
Experimental results show that the proposed combining method
is promising.

I. INTRODUCTION

In the past decades, multiobjective optimization problems
(MOPs) have attracted much attention. In this paper, we
consider continuous MOPs, without loss of generality, which
can be formulated as follows:

min 𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑚(𝑥))
s.t. 𝑥 ∈

∏𝑛
𝑖=1 [𝑎𝑖, 𝑏𝑖]

(1)

where 𝑥 = (𝑥𝑖, ..., 𝑥𝑛)
𝑇 ∈ 𝑅𝑛 is a decision variable vector,∏𝑛

𝑖=1 [𝑎𝑖, 𝑏𝑖] ∈ 𝑅𝑛 is the feasible region of the search space,
𝑓𝑖 : 𝑅

𝑛 → 𝑅, 𝑖 = 1, ...,𝑚, is a continuous mapping, and 𝐹 (𝑥)
is an objective vector.

In an MOP, the objectives usually conflict with each other.
As a result, there does not exist one optimal solution that can
optimize all the objectives in (1) at the same time. Let 𝑢, 𝑣 ∈
𝑅𝑛 be two vectors, 𝑢 is said to dominate 𝑣 if 𝑢𝑖 ≤ 𝑣𝑖 for all
𝑖 = 1, ..., 𝑛, and 𝑢 ∕= 𝑣. A vector 𝑥∗ ∈

∏𝑛
𝑖=1 [𝑎𝑖, 𝑏𝑖] is called

Pareto optimal if there doesn’t exist an 𝑥 ∈
∏𝑛

𝑖=1 [𝑎𝑖, 𝑏𝑖] such
that 𝐹 (𝑥) dominates 𝐹 (𝑥∗). All the Pareto optimal vectors
are called Pareto set (PS) and their objective vectors, 𝑃𝐹 =
{𝐹 (𝑥) ∈ 𝑅𝑚∣𝑥 ∈ 𝑃𝑆}, are called the Pareto front.

A number of multiobjective evolutionary algorithms
(MOEAs) have been proposed to deal with MOPs [1], [2], [3],
[4], since an MOEA can obtain the approximation in a single
run. Among them, the multiobjective evolutionary algorithm
based on decomposition, called MOEA/D, has shown promis-
ing results [5]. The basic idea of MOEA/D is to decompose

an MOP into a set of single objective problems (SOPs), then
the SOPs are optimized simultaneously to get a solution set
of the original MOP. Neighborhood is another key concept in
MOEA/D. Each SOP has a neighborhood which contains the
most similar SOPs. The assumption is that the SOPs in the
same neighborhood may have similar fitness landscapes and
their solutions might be close to each other. The reproduction
and update procedures are done within neighborhoods. Since
MOEA/D was proposed in 2007, a lot of variants which
mainly modify the reproduction operator have been presented.
The original version of MOEA/D uses SBX (simulated binary
crossover) as the reproduction operator, then it is replaced with
a differential evolution (DE) mutation operator in MOEA/D-
DE [6] which performs well on MOPs with complicated PS
shapes. Zhou et al. [7] proposed a probability model based
reproduction operator within the MOEA/D framework. A new
version of MOEA/D with uniform design is proposed in [8].

Many reproduction operators are proposed for solving SOPs
or MOPs, but they are usually suitable for a certain set of
problems. And theory and experiments have demonstrated
that it is impossible to design a single algorithm which
could always have the best performance on a diverse set of
optimization problems [9]. The reason might be that operators
have different search abilities on different regions in the
search space, at different stages of the search, or on different
optimization problems. Some researchers try to make full use
of one operator, in which its parameters can be changed during
the search, to exploit its search ability. In [10], for example, a
parameter control mechanism which uses the solution diversity
information is proposed to improve NSGA-II. Others turn to
find ways of using a set of operators which can perform
together, complement each other and augment their search
capabilities [11]. Vrugt te al. [12] proposed a method to solve
MOPs and it runs multiple optimization algorithms simulta-
neously and adaptively select the favor individual algorithms
to generate offsprings for each individual according to their
reproductive success rates. In [13], each search operator has
a subpopulation and the subpopulation size varies adaptively
according to its reproductive success rate.

In this paper, we proposes a method to use multiple DE
mutation operators within the MOEA/D framework to tackle
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continuous MOPs. Firstly three DE mutation strategies are
selected for MOPs and then the parameter for each mutation
strategy is tuned. Finally the three DE operators with randomly
selected parameters from the parameter pool are used to
produce new trial solutions.

The rest of the paper is organized as follows. In Section II,
we present the proposed algorithm with details. Experimental
results are reported in Section III, and the details how the
parameter is tuned are described. Finally, Section IV concludes
the paper.

II. MOEA/D WITH MULTIPLE DE MUTATION OPERATORS

In this section, the general framework of MOEA/D is firstly
introduced. Then the method of using multiple DE mutation
operators to produce new trial solutions is described.

A. MOEA/D Framework

MOEA/D decomposes an MOP into a set of SOPs (or
subproblems) and the optimal solution of each subproblem
will hopefully be a Pareto optimal solution of the MOP.
In principle, any decomposition technique can be used. In
this paper, the Tchebycheff technique [14] is adopted. A
subproblem can be defined as:

min 𝑔(𝑥∣𝜆, 𝑧∗) = max
1≤𝑖≤𝑚

{𝜆𝑖∣𝑓𝑖(𝑥)− 𝑧∗𝑖 ∣}

s.t. 𝑥 ∈ Ω
(2)

where 𝜆 = (𝜆1, ⋅ ⋅ ⋅ , 𝜆𝑚) is a weight vector, i.e., 𝜆𝑖 ≥ 0
for all 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚 and

∑𝑚
𝑖=1 𝜆𝑖 = 1. 𝑧∗ = (𝑧∗1 ⋅ ⋅ ⋅ , 𝑧∗𝑚)

is a reference point, i.e., 𝑧∗𝑖 = 𝑚𝑖𝑛{𝑓𝑖(𝑥)∣𝑥 ∈ Ω} for each
𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚. In MOEA/D, 𝑁 weight vectors 𝜆1, ⋅ ⋅ ⋅ , 𝜆𝑁 are
used to define 𝑁 subproblems. Subproblem 𝑖 is with weight
vector 𝜆𝑖, and its objective function is denoted as 𝑔(𝑥∣𝜆𝑖, 𝑧∗).
For simplicity, we use 𝑔𝑖(𝑥) to denote 𝑔(𝑥∣𝜆𝑖, 𝑧∗) hereafter.

MOEA/D attempts to deal with these 𝑁 subproblems simul-
taneously. Observing that 𝑔𝑖(𝑥) is continuous of 𝜆, the optimal
solutions of neighboring subproblems whose weight vectors
are close should be close in the decision space. Neighborhood
concept is then employed to improve search capability. In
MOEA/D, 𝑇 closest weight vectors in {𝜆1, ⋅ ⋅ ⋅ , 𝜆𝑁} to weight
vector 𝜆𝑖 constitute the neighborhood of 𝜆𝑖. Therefore, the
neighborhood of subproblem 𝑖 consists of all the subprob-
lems whose weight vectors are in the neighborhood of 𝜆𝑖.
A subproblem is optimized mainly within its neighboring
subproblems, such as selecting parent solutions and updating
parent solutions.

In MOEA/D, the following elements of the 𝑖th (𝑖 =
1, . . . , 𝑁 ) subproblem will be maintained:

∙ the objective function 𝑔𝑖(𝑥) in (2),
∙ the current solution 𝑥𝑖 and the objective vector of 𝑥𝑖, i.e.,
𝐹 𝑖 = 𝐹 (𝑥𝑖), and

∙ the index set of its neighboring subproblem 𝐵𝑖.

Thus, we could use a tuple of (𝑥𝑖, 𝐹 𝑖, 𝐵𝑖, 𝑔𝑖) to denote the
𝑖𝑡ℎ subproblem. MOEA/D also needs to maintain:

∙ a reference point 𝑧∗ = (𝑧∗1 , . . . , 𝑧
∗
𝑚)𝑇 .

Algorithm 1: Main Framework of MOEA/D

1 Initialize a set of subproblems (𝑥𝑖, 𝐹 𝑖, 𝐵𝑖, 𝑔𝑖),

𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 ;

2 Initialize the reference point 𝑧∗ as 𝑧∗𝑗 = min
𝑖=1,⋅⋅⋅ ,𝑁

𝑓𝑗(𝑥
𝑖),

𝑗 = 1, ⋅ ⋅ ⋅ ,𝑚;

3 while not terminate do

4 foreach 𝑖 ∈ 𝑝𝑒𝑟𝑚({1, . . . , 𝑁}) do

5 if 𝑟𝑎𝑛𝑑() < 𝑝𝑛 then

6 𝜋 = 𝑝𝑒𝑟𝑚(𝐵𝑖);

7 else

8 𝜋 = 𝑝𝑒𝑟𝑚({1, . . . , 𝑁});
9 end

10 (𝑦1, . . . , 𝑦𝐾) = 𝑂𝑃 (𝜋);

11 foreach 𝑦 ∈ {𝑦1, . . . , 𝑦𝐾} do

12 for 𝑗 = 1 : 𝑚 do

13 if 𝑓𝑗(𝑦) < 𝑧∗𝑗 then

14 Set 𝑧∗𝑗 = 𝑓𝑗(𝑦);

15 end

16 end

17 Set counter 𝑐 = 0;

18 foreach 𝑗 ∈ 𝜋 do

19 if 𝑔𝑗(𝑦) < 𝑔𝑗(𝑥𝑗) and 𝑐 < 𝐶 then

20 Replace 𝑥𝑗 by 𝑦;

21 Set 𝑐 = 𝑐+ 1;

22 end

23 end

24 end

25 end

26 end

The main framework of MOEA/D is presented in Algorithm
1. We would like to make the following comments on the
MOEA/D framework.

∙ 𝑁 is the number of subproblems.
∙ 𝑇 is the neighborhood size.
∙ 𝑝𝑛 is an algorithm parameter to balance the exploitation

and exploration of the search.
∙ 𝐶 is the maximal number of parent solutions allowed to

be replaced for each child solution.
∙ 𝑝𝑒𝑟𝑚(⋅) randomly permutes the input values, and 𝑟𝑎𝑛𝑑()

generates a random real number in [0, 1].
∙ Line 1: The initial solutions of the subproblems are uni-

formly randomly sampled from the feasible search space.
The weight vectors of the subproblems are uniformly
distributed. The detail on generating these weight vectors
is referred to [6].

398



M1 M2 M3

y1 y2 y3

Pool of parameter F

Fig. 1. Illustration of combining multiple DE strategies to generate solutions:
each strategy (M1, M2 or M3) randomly selects an F value from the pool to
generate a new solution.

∙ Line 3: A maximal number of generations is used as the
termination criteria.

∙ Line 4: In each generation, a subproblem is randomly
selected to avoid the influence of always selecting sub-
problems in the same order.

∙ Lines 5-9: The parent set 𝜋 is either the neighborhood
or the whole population which is controlled by 𝑝𝑛. If the
neighborhood is used, the algorithm will do exploitation;
otherwise, it will do exploration.

∙ Lines 17-23: The parent solutions are updated by child
solutions in a random order to avoid the influence of
always updating in the same order. To prevent premature
convergence, at most 𝐶 solutions can be updated. The
update is based on the subproblem objective values.

𝑂𝑃 (𝜋) in Line 10 of Algorithm 1 is the reproduction
procedure and new solutions are generated based on the parent
solutions from the neighborhood 𝜋. One or multiple operators
can be used to generate 𝐾 new solutions at one time. Usually,
𝐾 is set to 1, but in our algorithm it is 3.

B. Combining Multiple DE Mutation Operators

Differential evolution (DE) proposed by Storn and Price
[15] is a promising evolutionary algorithm and many variants
have been developed. But the performance of DE is sensitive
to its parameters and the best settings for the parameters
can be different for different optimization problems [16].
Based on the above analysis, Qin et al. [17] proposed a
self-adaptive differential evolution algorithm (SaDE) for SOPs
which chooses differential evolution strategies with probability
proportional to their previous success rates. Mallipeddi et
al. [16] presented an ensemble of generation strategies and
control parameters of DE (ESPDE). ESPDE aims to find good
combinations of strategies and control parameters. Another
algorithm proposed for SOPs called composite differential
evolution (CoDE) uses a random method to combine several
trial vector generation strategies with several control parameter
settings, and it generates more than one candidate solution for
each individual at one generation [18].

However, it’s also important to study the performance of
combining multiple operators for solving MOPs and there is
few work has been done. Motivated by CoDE, in this paper,
we propose a method to use multiple DE operators within
the MOEA/D framework to solve continuous MOPs. Firstly
three frequently used mutation strategies, named M1, M2 and
M3, are selected for MOPs. Then the parameter 𝐹 for the
mutation strategies is tuned, and we get a parameter pool for
𝐹 . Finally the three mutation strategies with randomly selected
parameters from the parameter pool are used to produce new
trial solutions. Fig. 1 illustrates how to combine DE operators.

DE mutation strategies need to be invariant of any orthogo-
nal coordinate rotation to deal with complicated PSs of MOPs
[6]. So crossover operator may be not suitable for MOPs. In
this paper, parameter 𝐶𝑅 for all the three mutation strategies
is set to 1.0. For similarity, the three mutation strategies are
shown as follows without crossover.⎧⎨
⎩
𝑀1 : 𝑦 = 𝑥𝑖 + 𝐹 ⋅ (𝑥𝑟1 − 𝑥𝑟2)
𝑀2 : 𝑦 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑 ⋅ (𝑥𝑟1 − 𝑥𝑟2) + 𝐹 ⋅ (𝑥𝑟3 − 𝑥𝑟4)
𝑀3 : 𝑦 = 𝑥𝑟1 + 𝑟𝑎𝑛𝑑 ⋅ (𝑥𝑟2 − 𝑥𝑟3) + 𝐹 ⋅ (𝑥𝑟4 − 𝑥𝑟5)

(3)
where 𝑥𝑖 is the current solution of the 𝑖𝑡ℎ subproblem and 𝑟1,
𝑟2, 𝑟3, 𝑟4, 𝑟5 are indexes randomly selected from 𝜋. Strategy
M1 is the most commonly used strategy in the literature. In
strategies M2 and M3, two difference vectors are added to a
base vector which is the current vector in M2 and a random
one in M3. This might lead to a better perturbation and more
different trial solution.

If any element of 𝑦 is out of boundary of the feasible search
space, its value is reset to a randomly selected value beyond
the boundary. The polynomial mutation is then applied to 𝑦
to generate 𝑦 = (𝑦1, . . . , 𝑦𝑛) as follows:

𝑦𝑘 =

{
𝑦𝑘 + 𝜎𝑘 × (𝑏𝑘 − 𝑎𝑘) if 𝑟𝑎𝑛𝑑 < 𝑝𝑚,

𝑦 otherwise
(4)

with

𝜎𝑘 =

{
(2× 𝑟𝑎𝑛𝑑)

1

𝜂+1 − 1 if 𝑟𝑎𝑛𝑑 < 0.5,

1− (2− 2× 𝑟𝑎𝑛𝑑)
1

𝜂+1 otherwise

where 𝑟𝑎𝑛𝑑 is a uniform random number in [0, 1]. The
distribution index 𝜂 and the mutation rate 𝑝𝑚 are two control
parameters. 𝑎𝑘 and 𝑏𝑘 are the lower and upper bounds of the
𝑘𝑡ℎ decision variable, respectively.

We select two values, 0.5 and 0.7, for 𝐹 as the parameter
pool. The details how we select them are shown in Section
III-D. With three mutation strategies and two 𝐹 values for
each strategy, we finally get six mutation operators.

In contrast to other algorithms that use multiple operators,
at each generation, all the three mutation strategies with
randomly selected 𝐹 value from the pool are used to produce
new trial solutions. Three new trial solutions are generated for
each subproblem at one time. Since the new trial solutions may
be suitable for different subproblems, everyone is evaluated
and used to update the neighborhood.
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III. EXPERIMENTAL RESULTS

A. Experimental Settings

We call the proposed MOEA/D with multiple DE mutation
operators MOEA/D-MO. In this section we apply MOEA/D-
MO to nine test instances (named F1-F9) with complicated PS
shapes which are introduced in [6] and ten unconstraint test
instances (named UF1-UF10) introduced in [19]. We compare
MOEA/D-MO with MOEA/D-DE [6] which uses a single DE
mutation operator to generate new trial solutions. MOEA/D-
DE is proved to be efficient for solving MOPs. The parameter
settings are as follows.

∙ The number of decision variables are 𝑛 = 30 for all the
test instances. Both algorithms stop after 150000 function
evaluations (FES). The statistical results are based on 50
independent runs. The population size, i.e., the number
of subproblems, is 300 for bi-objective problems and
595 for tri-objective problems. Both the two algorithms
are implemented in Matlab and run in a same desktop
computer.

∙ In MOEA/D-MO and MOEA/D-DE, the other parameters
for MOEA/D framework are: 𝑇 = 20, 𝑝𝑛 = 0.9, 𝐶 =
2. 𝜂 = 20 and 𝑝𝑚 = 1/𝑛 in the polynomial mutation
operator. 𝐶𝑅 = 1.0 and 𝐹 = 0.5 in the DE operator of
MOEA/D-DE. All these parameters are the same as in
[6].

B. Performance Metrics

We use the inverted generational distance (IGD) [20] and
hypervolume metric [21] to assess the performance of the
algorithms in our experimental studies.

1) Inverted generational distance metric: Let 𝑃 ∗ be a set
of uniformly distributed points in the objective space along the
𝑃𝐹 and 𝑃 be an approximation to the 𝑃𝐹 . The IGD from
𝑃 ∗ to 𝑃 is defined as

𝐼𝐺𝐷(𝑃 ∗, 𝑃 ) =

∑
𝑣∈𝑃∗ 𝑑(𝑣, 𝑃 )

𝑃 ∗

where 𝑑(𝑣, 𝑃 ) is the minimum Euclidean distance between 𝑣
and any point in 𝑃 and ∣𝑃 ∗∣ is the cardinality of 𝑃 ∗. If 𝑃 ∗

is large enough to represent the 𝑃𝐹 very well, 𝐼𝐺𝐷(𝑃 ∗, 𝑃 )
measures both the diversity and convergence of 𝑃 . To have a
low value of 𝐼𝐺𝐷(𝑃 ∗, 𝑃 ), 𝑃 must be very close to the 𝑃𝐹
and cannot miss any part of the whole 𝑃𝐹 .

2) Hypervalume indicator: As we have known the true
PF, the hypervolume metric can be defined as 𝐼−𝐻(𝑃, 𝑧∗) =
𝐼𝐻(𝑃 ∗, 𝑧∗) − 𝐼𝐻(𝑃, 𝑧∗). 𝐼−𝐻(𝑃, 𝑧∗) can measure both the
diversity and convergence of a set. To have a small value of
𝐼−𝐻(𝑃, 𝑧∗), the approximation set 𝑃 must be as close to the
true PF and diverse as possible.

In our experiments, 500 evenly distributed points in 𝑃𝐹 are
generated as the 𝑃 ∗ for bi-objective problems and 990 points
for tri-objective problems. 𝑧 is set (10, 10)𝑇 for 2-objective
instances and (10, 10, 10)𝑇 for 3-objective instances.

C. Comparison Results and Analysis

We compare MOEA/D-MO and MOEA/D-DE on F1-F9 and
UF1-UF10. The statistical results of the IGD and hypervolume
metrics are based on the final PF approximations obtained by
the two algorithms over 50 runs. Tables I and II show the
statistics based on the two metrics on F1-F9 respectively. The
average IGD values versus FES for these two algorithms on
F1-F9 are plotted in Fig. 2. And Fig. 3 plots all the 50 final
approximations and populations obtained by MOEA/D-MO on
F1-F9. Tables III and IV show the statistics based on the two
metrics on UF1-UF10 respectively.

Table I shows that MOEA/D-MO performs better than
MOEA/D-DE on five test instances, worse than MOEA/D-
DE on three test instances and has similar performance with
MOEA/D-DE on one test instance. From table II, we can see
that MOEA/D-MO wins on five of the nine test instances.
Overall MOEA/D-MO has better performance than MOEA/D-
DE on F1-F9.

Fig. 2 shows the run time performance. It is clear that con-
vergence speeds of the two algorithms are more or less similar
on F1, F2, F6 and F9, but MOEA/D-MO beats MOEA/D-DE
on F3-F5, F7 and F8.

In Fig. 3, all 50 final approximations and populations
obtained by MOEA/D-MO on F1-F9 are shown. We can see
that F1-F5 are 2-objective instances and they have the same
convex PF shapes while their PS shapes are various nonlinear
curves. F2-F5 have much more complex PS shapes than F1
does. From tables I and II, we can find that MOEA/D-MO
is good at solving complex problems since it outperforms
MOEA/D-DE on F3-F5 considering both IGD and 𝐼𝐻 . Similar
conclusion can be made on F7 and F8 which have many
local Pareto solutions. So MOEA/D-MO is also good at
solving problems with local optimal solutions. Therefore we
can conclude that a single operator method works well on
some simple problems while multiple operators method work
well on complex problems with some difficulties. The reason
might be that each operator in the multiple operators method
contributes to different conditions during the search.

We also compare the two algorithms on ten unconstrained
test instances (UF1-UF10). From Table III, we can see that
MOEA/D-MO performs better than MOEA/D-DE on six test
instances, worse than MOEA/D-DE on three test instances
and has similar performance with MOEA/D-DE on one test
instances. Table IV indicates that MOEA/D-MO wins on eight
of the ten test instances. Overall, our proposed MOEA/D-MO
is better than the compared MOEA/D-DE on UF1-UF10.

D. Parameter Pool of 𝐹 for Three DE Strategies

To tune parameter 𝐹 to get a parameter pool, we set 𝐹 =
0.1, 0.3, 0.5, 0.7, 0.9 with a step of 0.2 for each of the three
mutation strategies (M1, M2 and M3) on nine test instances
with distinct complexity. Fig. 4 shows the results in the form
of bar plot. There is tendency that operators with the middle 𝐹
values can have better performance on most of the instances,
although in some problems one operator may not be sensitive
to the parameter 𝐹 , to be specific, operators M2 and M3 on
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Fig. 2. The mean IGD values versus numbers of fitness evaluations obtained by the two algorithms over 50 runs

TABLE I
IGD-METRIC VALUES OF THE APPROXIMATIONS FOUND BY

MOEA/D-DE AND MOEA/D-MO ON F1-F9 OVER 50 RUNS

instance
MOEA/D-DE MOEA/D-MO

mean std. mean std.
F1 0.0013 0.0000 0.0013 0.0000
F2 0.0032 0.0005 0.0039 0.0006
F3 0.0116 0.0198 0.0033 0.0009
F4 0.0074 0.0087 0.0048 0.0014
F5 0.0109 0.0031 0.0077 0.0013
F6 0.0381 0.0065 0.0418 0.0073
F7 0.2426 0.0868 0.1620 0.1014
F8 0.0265 0.0271 0.0137 0.0131
F9 0.0040 0.0013 0.0049 0.0012

instances F2-F5. We can observe that 0.5 and 0.7 work well
on most instances, while the other values perform badly with
some mutation strategies on certain instances. So 𝐹 = 0.5, 0.7
are selected for all the mutation strategies in our proposed
algorithm. And we can find that these six combinations have
differences on almost all the instances, especially on F1, F6,
F7 and F8. We expect that they can complement each other and
improve the search capability. Here we want to mention that

TABLE II
HYPERVOLUME-METRIC VALUES OF THE APPROXIMATIONS FOUND BY

MOEA/D-DE AND MOEA/D-MO ON F1-F9 OVER 50 RUNS

instance
MOEA/D-DE MOEA/D-MO

mean std. mean std.
F1 0.0010 0.0000 0.0011 0.0000
F2 0.1313 0.0668 0.1669 0.0856
F3 0.3093 0.6613 0.1102 0.0547
F4 0.5011 0.7547 0.1047 0.0696
F5 0.2992 0.2375 0.2753 0.1683
F6 0.5036 0.1039 0.5075 0.1051
F7 5.1954 2.7963 2.3148 2.6628
F8 0.7023 0.8817 0.1672 0.4762
F9 0.0839 0.0474 0.1073 0.0635

the strategies may not have to share the same parameter pool,
i.e., each strategy can have its own parameter pool and pool
size. In this paper, for similarity, we use the same parameter
pool.

E. Contributions of Each DE Operator

We compare MOEA/D-MO with six algorithms, each of
which uses one DE operator to produce offsprings. The results
on F1-F9 over 50 runs are shown in Table V where ’M1-0.5’
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Fig. 3. All the final PF and PS approximations obtained by MOEA/D-MO on F1-F9 over 50 runs

TABLE III
IGD-METRIC VALUES OF THE APPROXIMATIONS FOUND BY

MOEA/D-DE AND MOEA/D-MO ON UF1-UF10 OVER 50 RUNS

instance
MOEA/D-DE MOEA/D-MO

mean std. mean std.
UF1 0.0020 0.0002 0.0024 0.0002
UF2 0.0094 0.0118 0.0052 0.0006
UF3 0.0110 0.0127 0.0049 0.0048
UF4 0.0602 0.0051 0.0533 0.0032
UF5 0.2761 0.0527 0.2636 0.0512
UF6 0.1898 0.1664 0.1392 0.1657
UF7 0.0028 0.0013 0.0028 0.0003
UF8 0.0755 0.0125 0.0764 0.0114
UF9 0.1086 0.0572 0.0723 0.0413

UF10 0.5301 0.0727 0.5760 0.0865

TABLE IV
HYPERVOLUME-METRIC VALUES OF THE APPROXIMATIONS FOUND BY

MOEA/D-DE AND MOEA/D-MO ON UF1-UF10 OVER 50 RUNS

instance
MOEA/D-DE MOEA/D-MO

mean std. mean std.
UF1 0.0972 0.0428 0.1561 0.0753
UF2 0.3671 0.5056 0.1854 0.1536
UF3 0.9791 1.0418 0.3279 0.6699
UF4 1.0181 0.1848 0.8803 0.1203
UF5 5.8243 1.8983 4.1520 1.3710
UF6 2.6626 2.3506 2.3319 2.5473
UF7 0.1764 0.2923 0.1279 0.0793
UF8 0.9932 0.2149 1.0357 0.2066
UF9 3.6362 1.6181 2.9451 1.2509

UF10 111.4497 24.8251 106.6439 18.5378
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Fig. 4. Bar plot of three DE mutation strategies on five F values (0.1, 0.3, 0.5, 0.7, 0.9) over 10 runs

means the algorithm uses strategy M1 with F=0.5, and so on.
Table V also presents the ranks of the seven algorithms on
each instance and the overall ranks of the algorithms according
to their average rank values on all the instances. We can see
from Table V that each DE operator has distinct performance
on different instances and overall our algorithm performs the
best, ranking top 3 on most of the instances.

IV. CONCLUSION

This paper proposed a method of combining multiple DE
mutation operators to improve the reproduction procedure in
the MOEA/D framework. The main idea behind the combining
method is to make use of different operators with distinct
advantages. In the proposed reproduction procedure, three
DE mutation strategies are selected, and the parameter 𝐹 for
each strategy is tuned to obtain a parameter pool. At each
generation, for each subproblem of MOEA/D, all the three
mutation strategies with randomly selected parameter are used
to generate new trial solutions. After the new trial solutions are

repaired and applied polynomial mutation, they are evaluated
and used to update the neighborhood of the subproblem.
The proposed MOEA/D-MO was compared with MOEA/D-
DE. For a fair comparison, the maximal number of fitness
evaluations is used as the stopping criteria. Further more, the
details how the parameter pool is generated were given and
we compared MOEA/D-MO with each single operators.

Experimental results indicate that MOEA/D-MO outper-
forms MOEA/D-DE on most of the test instances with dif-
ferent complexities and characteristics. MOEA/D-MO shows
promising results for solving instances with complicated PSs.
Moreover, it works well on instances which have local Pereto
solutions. We can conclude that different operators are suitable
for different kinds of MOPs and the proposed combining
method can make multiple operators perform together and
improve the search capability.

The work in this paper is preliminary and much work can
be considered in the future: (1) designing efficient operators,
besides DE mutation strategies, for MOPs, (2) introducing
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TABLE V
IGD-METRIC VALUES OF THE APPROXIMATIONS FOUND BY SEVEN ALGORITHMS ON F1-F9 OVER 50 RUNS AND THE RANKS

instance
M1-0.5 M1-0.7 M2-0.5 M2-0.7 M3-0.5 M3-0.7 MOEA/D-MO

mean(rank) mean(rank) mean(rank) mean(rank) mean(rank) mean(rank) mean(rank)
F1 0.0013(1) 0.0016(7) 0.0014(3) 0.0015(5) 0.0014(4) 0.0015(6) 0.0013(2)
F2 0.0032(1) 0.0051(5) 0.0050(4) 0.0070(7) 0.0046(3) 0.0060(6) 0.0039(2)
F3 0.0116(7) 0.0039(3) 0.0040(5) 0.0045(6) 0.0033(1) 0.0040(4) 0.0033(2)
F4 0.0074(7) 0.0055(5) 0.0050(3) 0.0065(6) 0.0042(1) 0.0053(4) 0.0048(2)
F5 0.0109(7) 0.0084(3) 0.0084(2) 0.0088(6) 0.0084(4) 0.0086(5) 0.0077(1)
F6 0.0381(1) 0.0464(6) 0.0462(5) 0.0506(7) 0.0391(2) 0.0438(4) 0.0418(3)
F7 0.2426(7) 0.0654(1) 0.0907(3) 0.0699(2) 0.1682(6) 0.1103(4) 0.1620(5)
F8 0.0265(7) 0.0157(6) 0.0142(5) 0.0139(4) 0.0116(1) 0.0129(2) 0.0137(3)
F9 0.0040(1) 0.0070(4) 0.0069(3) 0.0095(7) 0.0071(5) 0.0095(6) 0.0049(2)

rank statistics 4.3333(4) 4.4444(5) 3.6667(3) 5.5556(7) 3.0000(2) 4.5556(6) 2.4444(1)

stable and effective mechanism to balance the operators where
better operators can contribute more to the search, not with
equal contributions.
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