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Abstract—Similar to the ensemble learning for classification,
regression ensemble also tries to improve the prediction accuracy
through combining several “weak” estimators which are usually
high-variance and thus unstable. In this paper, we propose a
new scheme of fusing the weak Priestley-Chao Kernel Estimators
(PCKEs) based on Choquet fuzzy integral, which differs from
all the existing models of regressor fusion. The new scheme uses
Choquet fuzzy integral to fuse several target outputs from differ-
ent PCKEs, in which the optimal bandwidths are obtained with
cross-validation criteria. The key of applying fuzzy integral to
PCKE fusion is the determination of fuzzy measure. Considering
the advantage of particle swarm optimization (PSO) algorithm
on convergence rate, we use three different PSO algorithms, i.e.,
standard PSO (SPSO), Gaussian PSO (GPSO) and GPSO with
Gaussian jump (GPSOGJ), to determine the general and λ fuzzy
measures. The finally experimental results on 6 standard testing
functions show that the new paradigm for regression ensemble
based on fuzzy integral is more accurate and stable in comparison
with any individual PCKE. This demonstrates the feasibility and
effectiveness of our proposed regression ensemble model.

I. INTRODUCTION

Ensemble learning [1] [2] is a fusion strategy which tries to
make the final decision by integrating the multiple feedbacks
from different base-learners so as to reduce the decision
maker’s variance and improve its robustness and accuracy. That
is to say a strong learner will be produced by organizing some
weak ones in a proper way. Commonly, these weak learners
are integrated through the majority voting for classification
and a linear combination for regression [3]. In recent years,
the ensemble learning for classification has been well studied.
There are a number of classical works which introduce the
ensemble strategies for different classifiers, e.g., boosting or
bagging based ensembles for decision trees [4], neural net-
works [5] and support vector machines [6], etc. However,
just as Moreiraa, et al. said in [7], the successful ensemble
learning approaches for classification techniques are often not
directly applicable to regression. Thus, unlike the sophisticated
ensemble methods for classification, the regression ensemble
often uses the weighted or ordered weighted average of base-

learners to conduct the prediction, where several different
methods are developed to determine the weights [7].

The weighted average and ordered weighted average oper-
ators are good choices to deal with the different importance of
individual base-regressor, but these two methods are under an
assumption that interaction does not exist among the individual
regressors. However, this assumption may not be true in many
real problems. If the interaction is considered, fuzzy integrals
[8] [9] may be a better choice. The fuzzy integral as a fusion
tool, in which the non-additive measure can clearly express
the interaction among regressors, and the importance of each
individual regressor has its particular advantages. Motivated
by the definition of fuzzy integral which can be considered
as a mechanism of maximizing the potential efficiency of
base-regressor, we construct a new approach for regression
ensemble based on fuzzy integral in this paper.

One difficulty for applying fuzzy integrals in regressor
fusion is how to determine the fuzzy measures. There are some
methods to determine fuzzy measures such as gradient descent
(GD) [10], genetic algorithm (GA) [11], neural network (NN)
[12], etc. Although using GD, GA and NN to determine
the fuzzy measures is successful to some extent, there exist
many limitations in the application process. For example, GD
and NN frequently fall into the local minimum, and GA
is much slower. It is necessary to mine new computational
techniques for determining fuzzy measures. In 2011, Wang,
et al. [13] proposed particle swarm optimization (PSO) [14]
based fuzzy measure determination. The theoretical analy-
sis and experimental comparison demonstrated the superior
performance of PSO based methods. Thus, we use PSO to
determine the fuzzy measure in fuzzy integral based regression
ensemble in this paper. The main contributions of this paper
can be summarized as 1) using fuzzy integral to construct
the regression ensemble and 2) applying three different PSOs
(i.e., standard PSO-SPSO [14], Gaussian PSO-GPSO [15] and
GPSO with Gaussian jump-GPSOGJ [16]) to determine the
general and � fuzzy measures. In our study, a kind of kernel
regressor, i.e., Priestley-Chao kernel estimator-PCKE [17], is
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selected as the base-regressor. We call the kernel regression
ensemble model based on fuzzy integrals with the general and
� fuzzy measures KREFIg and KREFI� respectively.

The rest of this paper is organized as follows: Section
II introduces some basic concepts of fuzzy measure and
fuzzy integral. The new regression ensemble model-KREFI
is presented in Section III. Some simulations are performed
in Section IV to show KREFI’s effectiveness and efficiency.
Finally, Section V concludes the paper.

II. FUZZY MEASURE AND FUZZY INTEGRAL

A. Fuzzy Measure

Definition 1 [13]: Let X be a finite set and 2X be the
power set of X . If set function � : 2X → [0, 1] satisfies the
following conditions:

1) � (∅) = 0 and � (X) = 1;
2) If E ⊂ 2X , G ⊂ 2X and E ⊂ G, then � (E) ≤

� (G),

then � is called a general fuzzy measure defined on 2X .

From Definition 1, we can find that there are total 2k − 2
measure values which are needed to determine for general
fuzzy measure if the set X has k elements. When k is a very
large number, the computational complexity of determining
fuzzy measure is higher. In order to decrease this high com-
plexity, some special fuzzy measure is proposed, e.g., � fuzzy
measure.

Definition 2 [13]: Let X be a finite set and 2X be the
power set of X . If set function � : 2X → [0, 1] satisfies the
following conditions:

1) � (∅) = 0 and � (X) = 1;
2) � (A ∪B) = � (A) + � (B) + � × � (A) × � (B),

∀A,B ⊂ X , A ∩B = ∅, � ∈ (−1,+∞),

then � is called a � fuzzy measure defined on 2X , where the
parameter � can be solved according to Theorem 1:

Theorem 1 [13]: The parameter � of � fuzzy measure can
be calculated by Eq (1):

k
∏

j=1

(1 + ��j) = 1 + �, (1)

where �j = � ({xj}) is the measure value of singleton set
{xj}, let X = {x1, x2, · · · , xk}. [13] proves that it is only
one � meeting � > −1 that can be solved from Eq. (1).

When we know the measure values on k singleton sets and
�, the measure values on other subsets of X can be determined
as the following Theorem 2:

Theorem 2 [13]: For ∀E ⊂ X , its � fuzzy measure is

� (E) =
1

�





∏

xj∈E
(1 + ��j)− 1



 . (2)

For � fuzzy measure, there are only k measure val-
ues needed to be determined, i.e., � ({x1}), � ({x2}), · · · ,
� ({xk}).

B. Fuzzy Integral

In fact, fuzzy integral [18] [19] is a kind of generalized
integral with respect to fuzzy measure. There are some differ-
ent types of fuzzy integrals which have been suggested in the
literature [20] [21]. In this paper, we only give the introduction
of Choquet integral on which our regression ensemble models
KREFIg and KREFI� are based.

Definition 3 [13]: For the finite set X = {x1, x2, · · · , xk},
Choquet integral of function f with respect to fuzzy measure
� is defined as follows, let f

(

x(0)
)

= 0:
∫

fd� =

k
∑

j=1

[[

f
(

x(j)
)

− f
(

x(j−1)
)]

× �
(

A(j)

)]

, (3)

where
{

x(1), x(2), · · · , x(k)
}

is the reordered set of
{x1, x2, · · · , xk} as f

(

x(1)
)

≤ f
(

x(2)
)

≤ · · · ≤ f
(

x(k)
)

,
A(j) =

{

x(j), x(j+1), · · · , x(k)
}

.

From Eq. (3) we can find that the determination of fuzzy
measure � is the key of calculation of Choquet integral.
f
(

x(j)
)

is the known value which can be obtained according
to the specially practical application.

III. KERNEL REGRESSION ENSEMBLE BASED ON FUZZY
INTEGRAL-KREFI

A. Base-Regressors

In this paper, we use Priestley-Chao kernel estimator-
PCKE [17] as the base-regressor. There are two commonly-
used PCKEs which can be found in practical application,
i.e., PCKE1 and PCKE2. Given the training dataset D
= {(xi, yi) |xi ∈ ℜ, yi ∈ ℜ, i = 1, 2, · · · , n}, the regression
functions obtained by PCKE1 and PCKE2 can be formulated
as Eqs. (4) and (5) respectively (let x1 ≤ x2 ≤ · · · ≤ xn):

mPCKE1 (x) =

n
∑

i=2

[

(xi − xi−1)K
(

x−xi

ℎ

)

yi
]

h
, (4)

and

mPCKE2 (x) =

n−1
∑

i=2

[

(xi+1 − xi−1)K
(

x−xi

ℎ

)

yi
]

2h
, (5)

where K(u) = 1√
2�

exp
(

−u2

2

)

is Gaussian kernel and h is
the bandwidth which is an important parameter impacting the
performance of PCKEs. We use the cross-validation method
to determine the optimal bandwidth ĥ in Eqs. (4) and (5) as
follows:

ĥCV = argmin
ℎ∈H

{CV (h)} , (6)

CV (h) =
n
∑

i=1

[yi −m−i (xi)]2, (7)

where m−i (x) is the estimated regression function based on
the dataset D − xi. Sometimes, the penalty function will be
introduced to relax the roughness of bandwidth selected with
Eq. (7):

CV′ (h) =

n
∑

i=1

{

[yi −m−i (xi)]2 π (W (xi))
}

, (8)
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Algorithm 1 Standard PSO-SPSO
1: for every particle xi in swarm S do
2: vi = vmin + (vmax − vmin) ·Ui (0, 1);
3: xi = xmin + (xmax − xmin) ·Ui (0, 1);
4: pbi = xi; % Locally optimal solutions
5: end for
6: pg = argmin

xi∈S
[f (xi)]; % Globally optimal solutions

7: while the termination condition does not hold do
8: for every particle xi in swarm S do
9: vi = w · vi + c1 · u1 · (pbi − xi) + c2 · u2 · (pg − xi);

10: xi = xi + vi;
11: if f (xi) < f (pbi) then
12: pbi = xi;
13: if f (pbi) < f (pg) then
14: pg = pbi;
15: end if
16: end if
17: end for
18: end while
19: Output pg and f (pg);

where π (u) = (1− u)−2 is the penalty function and W(x)

= K(0)
n
∑

i=1

K( x−xi
h )

. This kind of cross-validation is also called

generalized cross-validation.

We denote PCKE1 and PCKE2 with the optimal band-
widths determined by Eqs. (7) and (8) as PCKE1CV,
PCKE1GCV, PCKE2CV and PCKE2GCV respectively. These
four kernel regression estimators are served as the base-
regressors of KREFI.

B. Description of KREFI Model

Assume the regression values estimated by PCKE1CV

(r1), PCKE1GCV (r2), PCKE2CV (r3) and PCKE2GCV (r4)
for a new sample x are m(r1), m(r2), m(r3) and m(r4)
respectively. KREFI estimates its regression value y by inte-
grating m(r1), m(r2), m(r3) and m(r4) with Choquet integral
as the following Eq. (9), let m

(

r(0)
)

= 0:

y =

∫

md�

=
4
∑

j=1

[[

m
(

r(j)
)

−m
(

r(j−1)
)]

× �
(

R(j)

)]

,
(9)

where
{

r(1), r(2), r(3), r(4)
}

is the reordered set of
{r1, r2, r3, r4} as m

(

r(1)
)

≤ m
(

r(2)
)

≤ m
(

r(3)
)

≤
m
(

r(4)
)

, R(j) =
{

r(j), r(j+1), · · · , r(4)
}

.

From Eq. (9), we can find that the determination of fuzzy
measure � is very important to the estimation of regression
value of new sample x. Based on information table as shown
in TABLE I, we give the detailed explanation about how to
determine the fuzzy measure for KREFI. In TABLE I, rij
(i = 1, 2, · · · , n; j = 1, 2, 3, 4) denotes the regression value of
xi estimated by regressor rj based on the dataset D−xi. In our
designed KREFI, there are 14 (24 − 4 = 14) measure values
needed to be determined, i.e., � ({r1}), � ({r2}), � ({r3}),
� ({r4}), � ({r1, r2}), � ({r1, r3}), � ({r1, r4}), � ({r2, r3}),

Algorithm 2 Gaussian PSO-GPSO
1: for every particle xi in swarm S do
2: vi = vmin + (vmax − vmin) ·Ui (0, 1);
3: xi = xmin + (xmax − xmin) ·Ui (0, 1);
4: pbi = xi; % Locally optimal solutions
5: end for
6: pg = argmin

xi∈S
[f (xi)]; % Globally optimal solutions

7: while the termination condition does not hold do
8: for every particle xi in swarm S do
9: vi = |n1| · (pbi − xi) + |n2| · (pg − xi);

10: xi = xi + vi;
11: if f (xi) < f (pbi) then
12: pbi = xi;
13: if f (pbi) < f (pg) then
14: pg = pbi;
15: end if
16: end if
17: end for
18: end while
19: Output pg and f (pg);

� ({r2, r4}), � ({r3, r4}), � ({r1, r2, r3}), � ({r1, r2, r4}),
� ({r1, r3, r4}) and � ({r2, r3, r4}). The optimal fuzzy mea-
sure can be found via the following optimization expression:

min
�
e =

√

√

√

√

1

n

n
∑

i=1

(yi − ei)2, (10)

where ei including the unknown fuzzy measure can be calcu-
lated according to Eq. (3) or Eq. (9). Hence, the regression
ensemble based on fuzzy integral is transformed to an opti-
mization problem.

C. Particle Swarm Optimization-PSO

PSO [14] is designed by imitating the behavior of bird
flocking, which use one globally optimal solution (gbest) and
m locally optimal solutions (pbest) to guide the m birds
(particle) to find the food (optimal solution) by adjusting
their velocities and positions iteratively. In this paper, we will
use three different PSO algorithms to optimize the expression
Eq. (10), i.e., standard PSO-SPSO [14], Gaussian PSO-GPSO
[15] and GPSO with Gaussian jump-GPSOGJ [16]. The corre-
sponding algorithm procedures are summarized in Algorithms
1-3.

Now, we give some explanations to the parameters in these
three algorithms. vmax and vmin are the upper and lower
bounds of particle xi’s velocity respectively. And, xmax and
xmin are the upper and lower bounds of particle xi’s position
respectively. pbi is the locally optimal solution of particle xi
and pg is the globally optimal solution of swarm S. In the
line 9 of Algorithm 1, w is the inertia weight, c1 and c2 are
acceleration constants, and u1 and u2 are the random numbers
obeying the uniform distribution U(0, 1). In the line 9 of
Algorithm 2, n1 and n2 are the random numbers obeying the
standard normal uniform distribution N(0, 1). In the line 9 of
Algorithm 3, waiti records the number of particle xi falling
into the local minimum and waitmax the maximal number of
particle xi falling into the local minimum. In the line 13 of
Algorithm 3, � ∈ [0, 1] denotes the scale parameter.
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TABLE I. INFORMATION TABLE OF KREFI

Training Sample PCKE1CV (r1) PCKE1GCV (r2) PCKE2CV (r3) PCKE2GCV (r4) Integration value
x1 r11 r12 r13 r14 e1

x2 r21 r22 r23 r24 e2
...

...
...

...
...

...
xn rn1 rn2 rn3 rn4 en

TABLE II. 6 TESTING FUNCTIONS

Functions Variable Disturbance
f1 = 1− x+ exp

[

−200 (x− 0.5)2
]

+ " x ∼ U(0, 1) " ∼ N(0, 0.1)

f2 = x+
exp(−2x2)√

2π
+ 0.2" x ∼ U(−0.5, 2) " ∼ N(0, 1)

f3 = x+ sin
[

2� (1− x)2
]

+ 0.2" x ∼ U(−1, 1) " ∼ N(0, 1)

f4 = x+ 2 sin (15x) + 0.2" x ∼ U(−1, 1) " ∼ N(0, 1)

f5 =
[

sin
(

2�x3
)]3

+ 0.2" x ∼ U(−1, 1) " ∼ N(0, 1)

f6 = sin
(

3�x2
)

+ 0.2" x ∼ U(−1, 1) " ∼ N(0, 1)

Algorithm 3 GPSO with Gaussian jump-GPSOGJ
1: for every particle xi in swarm S do
2: vi = vmin + (vmax − vmin) ·Ui (0, 1);
3: xi = xmin + (xmax − xmin) ·Ui (0, 1);
4: pbi = xi; % Locally optimal solutions
5: end for
6: pg = argmin

xi∈S
[f (xi)]; % Globally optimal solutions

7: while the termination condition does not hold do
8: for every particle xi in swarm S do
9: if waiti ≤ waitmax then

10: vi = |n1| · (pbi − xi) + |n2| · (pg − xi);
11: xi = xi + vi;
12: else
13: xi = xi + � ·Ni (0, 1); % Gaussian jump
14: end if
15: if f (xi) < f (pbi) then
16: pbi = xi;
17: waiti = 0;
18: if f (pbi) < f (pg) then
19: pg = pbi;
20: end if
21: else
22: waiti = waiti + 1;
23: end if
24: end for
25: end while
26: Output pg and f (pg);

IV. SIMULATION RESULTS

To show the effectiveness and efficiency of the proposed
KREFI models, the following simulations are performed.

A. Data Preparation

In our experiment, 6 testing functions listed in TABLE II
are used to compare the performances of different regressors.
For every testing function, 100 random samples are generated

as training dataset which is used to learn the fuzzy measures
and other 100 random samples are generated as testing dataset
which is used to evaluate the mean squared errors (MSE) of
different regressors. The finally experimental results are the
average of 10-time evaluations.

B. Parameter Setups

The parameters in PSO algorithms are set up as follows:

1) The number of particles in swarm S is 50. And, the
number of iterations is 30, i.e., Iteration Num =
30.

2) Because the fuzzy measure belongs to the interval
[0, 1], xmax = 1 and xmin = 0. During the iteration,
if xi > 1 or xi < 0, then we will let xi ← 1

1+e−xi

so that the position value which is larger than 1 or
smaller than 0 can be reset into the interval [0, 1].

3) vmax = 0.5 and vmin = −0.5. If the updated velocity
vi > vmax, then let vi = vmax; if the updated velocity
vi < vmin, then let vi = vmin;

4) The inertia weight w gradually decreases from 0.9 to
0.4 with the increase of number of iterations, i.e., for
the l-th iteration, w ← 0.9− 0.9−0.4

Iteration Num × l.
5) Let the acceleration constants c1 = 2 and c2 = 2.
6) Let the scale parameter � = 0.1 and waitmax = 3.

For the kernel regression ensemble based on general fuzzy
measure KREFIg, the dimension of every particle is 14. And,
for the kernel regression ensemble based on � fuzzy measure
KREFI�, the dimension of every particle is 4. It is worthwhile
to note that the monotonicity of general fuzzy measure (i.e., the
condition 2 of Definition 1) should be satisfied in the process
of optimization for KREFIg. In order to implement this, we
adopt the strategy used in work [22]. An array M is used to
store the 14 fuzzy measure values. Any integer between 1 and
14 is transformed into a 4-bit binary number, e.g., 2 = 0×20+
1×21+0×22+0×23, 6 = 0×20+1×21+1×22+0×23 and
11 = 1×20+1×21+0×22+1×23. Then, M [2] = � ({r2}),
M [6] = � ({r2, r3}) and M [11] = � ({r1, r2, r4}). For ∀i =
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2, 3, · · · , 14 and j = 1, 2, · · · , i − 1, check whether M [j] >
M [i]: if yes, exchange the values M [j] and M [i]. We call
this process “measure reordering” [22] which is conducted in
every iteration. The optimization of KREFI� does not need the
measure reordering, because there are only 4 measure values
on singleton sets which are needed to be determined and other
measures can be directly calculated according to Eqs. (1) and
(2).

C. Experimental Results

Our experiment compares the performances (measured
with MSE) of 11 different regression estimators, i.e.,
PCKE1CV, PCKE1GCV, PCKE2CV, PCKE2GCV, basic en-
semble method (BEM) [7], KREFIgs and KREFI�s based on
SPSO, GPSO and GPSOGJ, where BEM calculates the average
of predictions of base-regressors in ensemble:

y =
m (r1) +m (r2) +m (r3) +m (r4)

4
, (11)

where the meanings of m (r1), m (r2), m (r3) and m (r4) have
been given in Subsection III-B. In fact, we can find that there
are strong dependence between these four base-regressors, i.e.,
PCKE1CV, PCKE1GCV, PCKE2CV, PCKE2GCV, because
they are homologous, the main difference among them is the
bandwidth selection. In addition, PCKE1CV, PCKE1GCV,
PCKE2CV, PCKE2GCV are high-variance, because PCKE is
sensitive to the training data.

We firstly check the convergence of PSO algorithms in
KREFIgs and KREFI�s based on these 6 testing functions.
The experimental results are listed in Fig. 1. From these
pictures, we can see that with the increase of iteration, the
estimated errors in Eq. (10) corresponding to different PSO
algorithms all gradually decrease first and then keep approx-
imately smooth, which reflects that the fuzzy measures are
updated gradually until the approximately optimal ones are
found. This indicates that our proposed KREFI based on
PSO algorithms are feasible. Then, we compare the regression
performances of 11 regressors based on 6 testing functions.
From the comparative results summarized in TABLE III, we
can find that

1) KREFIgs and KREFI�s obtain the lower MSEs
and variances compared with four base-regressors
only with 30-time iterations. For example, MSE
of KREFIg + SPSO on f1 is 0.030, which
is lower than PCKE1CV’s 0.050, PCKE1GCV’s
0.064, PCKE2CV’s 0.044, PCKE2GCV’s 0.051 and
BEM’s 0.037; variance of KREFI� + SPSO on
f3 is 0.023, which is lower than PCKE1CV’s
0.107, PCKE1GCV’s 1.103, PCKE2CV’s 0.044,
PCKE2GCV’s 0.071 and BEM’s 0.155. This shows
KREFIgs and KREFI�s are more accurate and sta-
ble than PCKEs and indicates our ensembles are
effective and efficient. The main reason KREFIgs
and KREFI�s can obtain the better regression per-
formances is due to the ensemble which reduces
estimation variances of individual regressors.

2) Compared with BEM which is the traditionally linear
combination of base-regressors for regression ensem-
ble, KREFIgs and KREFI�s also obtain the better
regression performances. This shows KREFIgs and

KREFI�s can effectively consider the dependence
(or interaction) among base-regressors, because the
weighted average in BEM can only consider the ad-
ditive dependence, while fuzzy integral in KREFIgs
and KREFI�s consider the non-additive dependence.

3) There is no obvious difference among the perfor-
mances of different KREFIgs and KREFI�s. This
conclusion also gives us an indication regarding the
application of KREFI from another perspective: for
the less number of iterations, SPSO, GPSO and GP-
SOGJ cannot remarkably affect the performances of
developed KREFIs. For reference, we give the general
and � fuzzy measures in TABLE IV determined by
SPSO, GPSO and GPSOGJ algorithms on f3. From
this table we can see that there are obvious differences
among the fuzzy measures solved with SPSO, GPSO
and GPSOGJ algorithms. However, the differences
between some fuzzy measure values solved with the
same PSO algorithm are small. This indicates that
there are more than one optimal fuzzy measure for
KREFI and the fuzzy measure is sensitive to the
initialization of PSO algorithm.

V. CONCLUSIONS

In this paper, a new kernel regression ensemble model
based on fuzzy integral (KREFI) is proposed, which consid-
ers the dependence or interaction among the different base-
regressors so that the importance of each individual regressor
can be expressed clearly. The fuzzy measure is the key for the
application of Choquet fuzzy integral. In order to determine
two different kinds of fuzzy measures (i.e., general and � fuzzy
measures) in KREFI, three PSO algorithms are adopted. The
finally experimental results reveal that KREFI models are more
accurate and stable in comparison with the base-regressors
and commonly-used basic regression method. A number of
enhancements and future research can be summarized as fol-
lows: (1) using other kinds of fuzzy integrals, e.g., Sugeno [23]
and upper [24] integrals, to construct the regression ensemble
models; (2) designing a fuzzy integral based measure to eval-
uate the interaction among base-regressors and study how this
interaction affects the regression ensemble and (3) seeking the
practical application for KREFI, e.g., the regression analysis to
Fourier transform infrared spectroscopy in the field of optical
engineering.
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