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Abstract—1In many real-world constrained optimization 

problems (COPs) it is highly probable that some constraints are 
active at optimum points, i.e. some optimum points are 
boundary points between feasible and infeasible parts of the 
search space. A method is proposed which narrows the feasible 
area of a COP to its boundary. In the proposed method the 
thickness of the narrowed boundary is adjustable by a 
parameter. The method is extended in a way that it is able to 
limit the feasible regions to boundaries where at least one of the 
constraints in a given subset of all constraints is active and the 
remaining constraints might be active or not. Another 
extension is able to limit the search to cases where all 
constraints in a given subset are active and the rest might be 
active or not. The particle swarm optimization algorithm is 
used as a framework to compare the proposed methods. Results 
show that the proposed methods can limit the search to the 
requested boundary and they are effective in locating optimal 
solutions on the boundaries of the feasible and infeasible area.  

I INTRODUCTION 
A constrained optimization problem (COP) is formulated 

as follows: 

ݔ ݀݊݅ܨ א ࣠ ك ܵ ك ܴ஽ ݐ݄ܽݐ ݄ܿݑݏ ቐݕ׊ א ࣠ ݂ሺݔሻ ൑ ݂ሺݕሻ, ሺܽሻ௜݃ሺݔሻ ൑ 0, ݅ ݎ݋݂ ൌ ݍ ݋ݐ 1 ሺܾሻ݄௜ሺݔሻ ൌ 0, ݅ ݎ݋݂ ൌ ݍ ൅ ݉ ݋ݐ 1 ሺܿሻ 1 

where f, gi, and hi are real-valued functions on the search 
space S, q is the number of inequalities, and ݉ െ  is the ݍ 
number of equalities. The set of all feasible points which 
satisfy constraints (b) and (c) are denoted by ࣠ [1]. The 
equality constraints are usually replaced by |݄݅ሺݔሻ| െ ߪ ൑ 0 
where σ is a small value (normally set to 10ିସ) [2]. Thus, a 
COP is formulated as ݔ ݀݊݅ܨ א ࣠ ك كܵ ܴ஽ ݐ݄ܽݐ ݄ܿݑݏ ൜ݕ׊ א ࣠ ݂ሺݔሻ ൑ ݂ሺݕሻ, ሺܽሻ݃௜ሺݔሻ ൑ 0, ݅ ݎ݋݂ ൌ ݉ ݋ݐ 1 ሺܾሻ 2 

where ݃௜ሺݔሻ ൌ |݄௜ሺݔሻ| െ ݅ for all ߪ א ሼݍ ൅ 1, … , ݉ሽ. 
Hereafter, the term COP refers to this formulation. 

The constraint ݃௜ሺݔሻ is called active at the point x if the 
value of ݃௜ሺݔሻ is zero. Also, if ݃௜ሺݔሻ ൏ 0 then ݃௜ሺݔሻ is 
called inactive at x. Obviously, if x is feasible and at least 
one of the constraints is active at x, then x is on the boundary 
of the feasible and infeasible areas of the search space. 

                                                           
* Z. Michalewicz is with the School of Computer Science, the 

University of Adelaide, Adelaide, SA 5005, Australia, and also at the 
Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 
01-237 Warsaw, Poland, at the Polish-Japanese Institute of Information 
Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland.  

In many real-world COPs it is highly probable that some 
constraints are active at optimum points [3], i.e. some 
optimum points are on the edge of feasibility. The reason is 
that constraints in real-world problems often represent some 
limitations of resources. Clearly, it is beneficial to make use 
of some resources as much as possible, which means 
constraints are active at quality solutions. Presence of active 
constraints at the optimum points causes difficulty for many 
optimization algorithms to locate optimal solution [4]. Thus, 
it might be beneficial if the algorithm is able to focus the 
search on the edge of feasibility for quality solutions.  

In this paper it is assumed that there exists at least one 
active constraint at the optimum solution of COPs. A new 
function, called Subset Constraints Boundary Narrower 
(SCBN), is proposed which enables the search methods to 
focus on the boundary of feasibility with an adjustable 
thickness rather than the whole search space. SCBN is 
actually a function (with a parameter ߝ for thickness) that, 
for a point x, its value is smaller than zero if and only if x is 
feasible and the value of at least one of the constraints in a 
given subset of all constraint of the COP at the point x is 
within a predefined boundary with a specific thickness. By 
using SCBN in any COP, the feasible area of the COP is 
limited to the boundary of feasible area defined by SCBN, so 
that the search algorithms can only focus on the boundary. 
Some other extensions of SCBN are proposed that are useful 
in different situations. SCBN and its extensions are used in a 
particle swarm optimization (PSO) algorithm with a simple 
constraint handling method to assess if they are performing 
properly in narrowing the search on the boundaries. 

The rest of this paper is organized as follows. Some 
background information on the constraints violation value, 
searching the edge of feasibility, and particle swarm 
optimizer are given in section II. Section III presents the 
proposed approach and its extensions, and in section IV the 
comparison results are reported and discussed. Section V 
concludes the paper. 

II BACKGROUND 
Some background on constraint violation value, 

searching the edge of feasibility, and particle swarm 
optimizer are discussed in this section. 

A Constraint violation 
A COP can be rewritten by combining all inequality 

constraints to form only one inequality constraint. In fact, 
any COP can be formulated as follows: 
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ݔ ݀݊݅ܨ א ࣠ ك ܵ ك ܴ஽ ݐ݄ܽݐ ݄ܿݑݏ ൜ݕ׊ א ࣠ ݂ሺݔሻ ൑ ݂ሺݕሻ, ሺܽሻܯሺݔሻ ൑ 0 ሺܾሻ 3 

where ܯሺݔሻ is a function that combines all constraints gi(x) 
into one function. The function M(x) can be defined in many 
different ways. The surfaces that are defined by different 
instances of M(x) might be different. The inequality 3(b) 
should capture the feasible area of the search space. 
However, by using problem specific knowledge, one can 
also define M(x) in a way that the area that is captured by ܯሺݔሻ ൑ 0 only refers to a sub-space of the whole feasible 
area where high quality solutions might be found. In this 
case, the search algorithm can focus only on the captured 
area which is smaller than the whole feasible area and make 
the search more effective. A frequently-used [5, 6] instance 
of ܯሺݔሻ is a function K(x) 

ሻݔሺܭ ൌ ෍ ,ሻݔሼ݃௜ሺݔܽ݉ 0ሽ௠
௜ୀଵ  4 

Clearly, the value of K(x) is non-negative. K(x) is zero if 
and only if x is feasible. Also, if ܭሺݔሻ ൐ 0, the value of K(x) 
represents the maximum violation value (called the 
constraint violation value).  

B Searching the edge of feasibility 
As in many real-world COPs, there is at least one active 

constraint near the global best solution of COPs [3], some 
researchers developed operators to enable search methods to 
focus the search on the edges of feasibility. GENOCOP 
(GEnetic algorithm for Numerical Optimization for 
COnstrained Optimization) [7] was probably the first genetic 
algorithm variant that applied boundary search operators for 
dealing with COPs. Indeed, GENOCOP had three mutations 
and three crossovers operators and one of these mutation 
operators was a boundary mutation which could generate a 
random point on the boundary of the feasible area. 
Experiments showed that the presence of this operator 
caused significant improvement in GENOCOP for finding 
optimum for problems which their optimum solution is on 
the boundary of feasible and infeasible area [7]. 

A specific COP was investigated in [8] and a specific 
crossover operator, called geometric crossover, was 
proposed to deal with that COP. The COP was defined as 
follows: ݂ሺݔሻ ൌ | ∑ ௜ሻ஽௜ୀଵݔସሺݏ݋ܿ െ 2 ∏ ∑௜ሻ஽௜ୀଵඥݔଶሺݏ݋ܿ ௜ଶ஽௜ୀଵݔ݅ |

݃ଵሺݔሻ ൌ 0.75 െ ෑ ௜஽ݔ
௜ୀଵ ൑ 0

݃ଶሺݔሻ ൌ ෍ ௜஽ݔ
௜ୀଵ െ ൑ ܦ0.75 0

 5 

where 0 ൑ ௜ݔ ൑ 10 for all i. Earlier experiments [9] shown 
that the value of the first constraint (g1(x)) is very close to 
zero at the best known feasible solution for this COP. The 
geometric crossover was designed as ݔ௡௘௪,௝ ൌ ඥݔଵ,௜ݔଶ,௝, 
where ݔ௜,௝ is the value of the jth dimension of the ith parent, 
and ݔ௡௘௪,௝ is the value of the jth dimension of the new 
individual. By using this crossover, if ݃ଵሺݔԦଵሻ ൌ ݃ଵሺݔԦଶሻ ൌ 0, 

then ݃ଵሺݔԦ௡௘௪ሻ ൌ 0 (the crossover is closed under g1(x)). It 
was shown that an evolutionary algorithm that uses this 
crossover is much more effective than an evolutionary 
algorithm which uses other crossover operators in dealing 
with this COP. In addition, another crossover operator was 
also designed [8], called sphere crossover, that was closed 
under the constraint ݃ሺݔሻ ൌ ∑ ௜ଶ஽௜ୀଵݔ െ 1. In the sphere 
crossover, the value of the new offspring was generated by ݔ௡௘௪,௝ ൌ ටݔߙଵ,௝ଶ ൅ ሺ1 െ ଶ,௝ଶݔሻߙ , where ݔ௜,௝ is the value of the 

jth dimension of the ith parent, and both parents ݔԦଵ and ݔԦଶ are 
on g(x). This operator could be used if g(x) is the constraint 
in a COP and it is active on the optimal solution.  

In [4], several different crossover operators closed under ݃ሺݔሻ ൌ ∑ ௜ଶ஽௜ୀଵݔ െ 1 were discussed. These crossovers 
operators included repair, sphere (explained above), curve, 
and plane operators. In the repair operator, each generated 
solution was normalized and then moved to the surface of 
g(x). In this case, any crossover and mutation could be used 
to generate offspring; however, the resulted offspring is 
moved (repaired) to the surface of g(x). The curve operator 
was designed in a way that it could generate points on the 
geodesic curves, curves with minimum length on a surface, 
on g(x). The plane operator was based on the selection of a 
plane which contains both parents and crosses the surface of 
g(x). Any point on this intersection is actually on the surface 
of the g(x) as well. These operators were incorporated into 
several optimization methods such as GA and Evolutionary 
Strategy (ES) and the results of applying these methods to 
two COPs were compared. 

A variant of evolutionary algorithm for optimization of a 
water distribution system was proposed [10]. The main 
argument was that the method should be able to make use of 
information on the edge between infeasible and feasible area 
to be effective in solving the water distribution system 
problem. The proposed approach was based on an adapting 
penalty factor in order to guide the search towards the 
boundary of the feasible search space. The penalty factor 
was changed according to the percentage of the feasibility of 
the individuals in the population in such a way that there are 
always some infeasible solutions in the population. In this 
case, crossover can make use of these infeasible and feasible 
individuals to generate solutions on the boundary of feasible 
region. 

In [11], a boundary search operator was adopted from [7] 
and added to an ant colony optimization (ACO) method. The 
boundary search was based on the fact that the line segment 
that connects two points x and y, where one of these points 
are infeasible and the other one is feasible, crosses the 
boundary of feasibility. A binary search can be used to 
search along this line segment to find a point on the 
boundary of feasibility. Thus, any pair of points (x, y), where 
one of them is infeasible and the other is feasible, represents 
a point on the boundary of feasibility. These points were 
moved by an ACO during the run. Experiments showed that 
the algorithm is effective in locating optimal solutions that 
are on the boundary of feasibility. 
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C Particle swarm optimization 
Particle swarm optimization (PSO) algorithm is an 

iterative stochastic optimization method proposed in 1995 
[12]. In PSO, there is a population (aka swarm) of 
individuals (aka particles), each individual i at iteration t 
contains three vectors: position (ݔԦ௧௜), velocity (ݒԦ௧௜), and 
personal best (݌Ԧ௧௜). The position of each particle is used to 
evaluate the particle and it replaces ݌Ԧ௧௜  if it was better than 
that. The velocity vector is used to move the particles to new 
positions. In each iteration, the velocity and position of each 
particle is updated by: ݒԦ௧ାଵ௜ ൌ Ԧ௧௜ݒ ൅ ߮ଵܴଵ൫݌Ԧ௧௜ െ Ԧ௧௜൯ݔ ൅ ߮ଶܴଶ൫ Ԧ݃௧ െ Ԧ௧ାଵ௜ݔ Ԧ௧௜൯ 6ݔ ൌ Ԧ௧௜ݔ ൅ Ԧ௧௜ݒ  7 

where Ԧ݃௧ is the best personal best over the whole swarm, ߮ଵ 
and ߮ଶ are two constants, known as acceleration 
coefficients, and ܴଵ and ܴଶ are two D by D diagonal 
matrices. The values of the diagonal of ܴଵ and ܴଶ are set by 
uniform random numbers in the interval [0, 1] in each 
iteration for each particle independently. The velocity 
updating rule was modified in [13] where ݒԦ௧௜  was replaced by ߱ݒԦ௧௜. The coefficient ߱ is known as inertia weight and 
controls the influence of the previous velocity vector on the 
new velocity. From now on, the term PSO in this paper 
refers to this model with inertia weight. The algorithm has 
been used in many different areas of constraint optimization, 
such as dealing with linear equality constraints in COPs 
[14], dealing with COPs in general case [2, 15], locating 
feasible regions in COPs [16], among others.  

III PROPOSED APPROACH 
In this section, three alternative instances for M(x) (Eq. 

3) are proposed to reduce the feasibility area of any COP to 
only the boundary of that COP. In fact, by using any of the 
proposed instances for M(x), a new COP is constructed in 
which ܯሺݔሻ ൑ 0 if and only if the point x is on the boundary 
of the COP.  

A Definition of a boundary point 
Let’s define a ߜ-active constraint in a COP as follows:  

Definition 1: ݃௜ሺݔሻ is a ߜ-active constraint at the point x 
if െߜ ൑ ݃௜ሺݔሻ ൑   .is a small positive value ߜ where ,ߜ

Accordingly, a ߜ-boundary point is defined as: 

Definition 2: x is a ߜ-boundary point of a COP if x is 
feasible and at least one of the constraints of the COP is ߜ-
active at x, where ߜ is a small positive value. Also, the set of 
all ߜ-boundary points in a COP is called ߜ-boundary of the 
COP. 

Definition 2 allows us to define different levels of 
boundaries. The edge of feasibility is defined as follows: 

Definition 3: x is said to be on the edge of feasibility if it 
is a 0-boundary point.  

Definition 3 refers also to the fact that for any point x on 
the edge of feasibility, ݃௜ሺݔሻ ൌ 0 for at least one i.  

B Proposed instances for M(x) 
Consider a COP with constraints gi(x). The value of K(x) 

in Eq. 4 is zero if and only if x is feasible i.e. K(x) vs. x is a 
flat area for the set of all feasible points. Because K(x) is 
zero for all feasible solutions, it is impossible to distinguish 
whether a feasible point x is on the edge of feasibility or not. 
Of course there are many alternative instances for M(x). One 
possible instance for M(x) is a function G(x) ܩሺݔሻ ൌ ଵஸ௜ஸ௠ሼݔܽ݉ ௜݃ሺݔሻሽ 8 

The function G(x) is called Maximum Constraints 
Violation, MCV, function. Clearly, ܩሺݔሻ ൑ 0 if and only if ݔ א ࣠. Note that, according to definition 1 and Eq. 3, if x is 
a ߜ-boundary point of a COP then െߜ ൑ ሻݔሺܩ ൑ 0. By 
using this instance for M(x), one can recognize whether x is a ߜ-boundary of the COP by simply testing whether െߜ ൑ܩሺݔሻ ൑ 0. Note that, although G(x) allows determination 
whether a point is a ߜ-boundary, ܩሺݔሻ maintains the whole 
feasible area for a COP and it is not able to restrict the 
search on the boundary of feasibility by its own.  

Assume that for a given COP, it is known that at least 
one of the constraints in the set ሼ݃௜אΩሺݔሻሽ is ߜ-active at the 
optimum solution and the remaining constraints are satisfied 
at x, where Ω ك ሼ1, 2, … , ݉ሽ. Let’s define ܪΩ,ఌሺݔሻ as 
follows: ܪΩ,εሺݔሻ ൌ max ቄቚ݉ܽא݅ݔΩ ൛݃݅ሺݔሻൟ ൅ ቚߝ െ ,ߝ Ωב݅ݔܽ݉ ൛݃݅ሺݔሻൟቅ 9 

where ߝ is a positive value. This function is called Subset 
Constraint Boundary Narrower, SCBN. Obviously, ܪΩ,கሺݔሻ ൑ 0 if and only if at least one of the constraints in 
the subset Ω is 2ߝ-active and the others are satisfied. The 
reason is that, the component |݉ܽݔ௜אΩሼ݃௜ሺݔሻሽ ൅ |ߝ െ  is ߝ
negative if x is feasible and at least one of ݃௜אΩሺݔሻ is 2ߝ-
active. Also, the component ݉ܽݔ௜בΩሼ݃௜ሺݔሻሽ ensures that the 
rest of constraints are satisfied.  

Let’s investigate a special case of SCBN where Ω ൌሼ1, 2, … , ݉ሽ in more detail. We define the function ܪఌሺݔሻ as 
follows (note that we drop the subscript Ω when it refers to 
all existing constraints): ܪఌሺݔሻ ൌ ሻݔሺܩ| ൅ |ߝ െ  10  ߝ

where ߝ is a positive value and G(x) is defined by Eq. 8. This function 
is called Constraint Boundary Narrower (CBN) throughout the paper. 

Figure 1 presents ܪఌሺݔሻ vs. G(x) and illustrates that െ2ߝ ൑ ሻݔሺܩ ൑ 0 if and only if ܪఌሺݔሻ ൑ 0. This in fact 
implies that the areas in where x satisfies ܪఌሺݔሻ ൑ 0 
correspond with the 2ߝ-boundary of the COP. Thus, if we set ߝ to a value in the interval ሾ0, ఋଶሿ then ܪఌሺݔሻ ൑ 0 if x is a ߜ-
boundary point of the COP. The value of ߝ determines the 
desired thickness of the boundary. Note that if ߝ ൌ 0 then ܪఌሺݔሻ ൑ 0 corresponds to the points where G(x)=0, i.e. edge 
of feasibility of the COP. Also, if ߝ is set to a value larger 
than หmin൫ܩሺݔሻ൯ห over all x then ܪఌሺݔሻ is equal to ܩሺݔሻ for 
all x.  

To summarize, 
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• The area where ܪఌሺݔሻ ൑ 0 corresponds to the 2ߝ-
boundary of the COP 
• If ߝ א ቂ0, ఋଶቃ then ܪఌሺݔሻ ൑ 0 corresponds to ߜ-
boundary of the COP 
• If ߝ ൌ 0 then ܪఌሺݔሻ ൑ 0 corresponds to the edge of 
feasibility of the COP 
• If ߝ ൐ หmaxܵאݔ׊൫ܩሺݔሻ൯ห then ܪఌሺݔሻ ൌ  ሻ for allݔሺܩ
x, which refers to the whole feasible area of the COP 

ε−ε2−
ε

ε

ε−

))(( xGHε

 

Figure 1. The graph of ߝܪ൫ܩሺݔሻ൯ . The value of ߝܪ൫ܩሺݔሻ൯ is negative if 
and only if െ2ߝ ൑ ሻݔሺܩ ൑ 0 for any value of x. Also, if ܩሺݔሻ ൐ 0 then ߝܪ൫ܩሺݔሻ൯ ൌ  .ሻ for any value of xݔሺܩ

Let’s consider some examples to see how ܪఌሺݔሻ ൑ 0 
corresponds to the 2ߝ-boundary of feasible area. 

C Examples for CBN 
Three examples are provided to show how ܪఌሺݔሻ ൑ 0 

represents the boundary of feasibility of a COP.  

Example 1: 

Consider a single variable COP with the following single 
constraint: 

ଵ݃ሺݔሻ ൌ ሺݔ ൅ 2ሻଶ െ 3 ൑ ሻݔఌሺܪ :ሻ is calculated asݔఌሺܪ 0 ൌ ቚ max1൑݅൑݉൛݃݅ሺݔሻൟ ൅ ቚߝ െ ߝ ൌ ห݃1ሺݔሻ ൅ หߝ െ  ߝ

Figure 2 shows the constraint g1(x), G(x), and ܪఌሺݔሻ and 
Figure 2(a) shows the curves of the constraint ݃ଵሺݔሻ and ܩሺݔሻ ൌ max׊௜൫݃௜ሺݔሻ൯ where െ5 ൑ ݔ ൑ 5. Figure 2(b) 
shows ܩሺݔሻ and ܪఌሺݔሻ in the same interval of x. The value 
of ߝ was set to 0.5. The red shaded areas in Figure 2(c) show 
the areas where x satisfies ܪఌሺݔሻ ൑ 0. It is obvious that if x 
satisfies ܪఌሺݔሻ ൑ 0 then it satisfies ܩሺݔሻ ൑ 0 and also x is a ߜ-boundary point. Note that the value of ܪఌሺݔሻ reduces only 
to െߝ, however, for any x where െ2ߝ ൑ ሻݔሺܩ ൑ 0, we have ܪఌሺݔሻ ൑ 0. 

(a) (b) 
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G(x)
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(c) 

Figure 2. Effects of the function CBN on a COP with one constraint (a) the 
constraint g1(x) and the constraint violation MCV, (b) MCV and CBN 
 .(૙.૞ሺ࢞ሻࡴ) zoomed in of MCV and CBN (c) ,(૙.૞ሺ࢞ሻࡴ)

Example 2: 

Consider a single variable COP with the following two 
constraints: ݃1ሺݔሻ ൌ ݔ݁ െ 1݃2ሺݔሻ ൌ 2ݔ െ ሻݔఌሺܪ :ሻ is calculated asݔఌሺܪ 3 ൌ ቚ max1൑݅൑݉൛݃݅ሺݔሻൟ ൅ ቚߝ െ  ߝ

Figure 3 shows the constraints, G(x), and ܪఌሺݔሻ and 
Figure 3(a) shows the curves of two constraints (݃ଵሺݔሻ and ݃ଶሺݔሻ) and ܩሺݔሻ ൌ maxଵஸ௜ஸ௠ሼ݃௜ሺݔሻሽ where െ3 ൑ ݔ ൑ 3. 
Figure 3(b) shows ܩሺݔሻ and ܪఌሺݔሻ in the same interval of x. 
The value of ߝ was set to 0.1. Figure 3(c) shows a zoomed in 
version of Figure 3(b). The regions between the red curve, ܪఌሺݔሻ, and the horizontal axes are the regions where ܪఌሺݔሻ ൑ 0 (red shaded). It is clear that these two regions 
correspond to the ߜ-boundary in the original COP.  

Example 3: 

Let’s consider another example to see how ܪఌሺݔሻ ൑ 0 
represents the ߜ-boundary of a COP in a two dimensional 
space (a COP with two variables) with two constraints: ݃1ሺݔሬԦሻ ൌ 2ݔ1൅ݔ݁ െ 1݃2ሺݔሬԦሻ ൌ sinሺ1ݔሻ ൅ 1.9 cosሺ2ݔሻ ൅ 1 

The value of ܪఌሺݔሻ for this COP can be expressed by the 
following formula:  ܪఌሺݔሻ ൌ ቚ maxଵஸ௜ஸ௠ሼ ௜݃ሺݔሻሽ ൅ ቚߝ െ  ߝ
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Figure 3. Effects of CBN on a COP with two constraints (a) two constraints 
g1(x) and g2(x), and the constraint violation MCV (G(x)), (b) MCV and 0.1ܪሺݔሻ, (c) the red areas are the areas where 0.1ܪሺݔሻ ൑ 0. 

Figure 4 shows the original feasible space as well as the 
space where ܪఌሺݔሻ ൑ 0 (െ5 ൏ ,ଵݔ ଶݔ ൏ 5) for different 
values of ߝ.  

Clearly, ܪఌሺݔሻ ൑ 0 indicates the boundaries of feasible 
regions of the COP with some thickness. This thickness is 
adjustable by changing the value of ߝ, the smaller the value 
of ߝ, the thinner the boundary. Note that if ߝ set to zero, ܪఌሺݔሻ represents the boundary of feasibility with the 
thickness equal to zero. Thus, it shows the lines where ܩሺݔሻ ൌ 0, i.e. at least one of the constraints is 0-active.  

There is an important advantage for the proposed CBN 
(and SCBN) in comparison to other methods discussed in 
section II.B: it is possible to control how close to the 
boundaries should be sought by the algorithm, which was 
not adjustable in other methods. In fact, other methods 
considered two types of feasible points: boundary and non-
boundary. However, in CBN, one can define a spectrum 
from non-boundary to boundary points. As an example, a 
feasible point x for which ܩሺݔሻ ൌ െ2 is considered as a 
point in the 1-boundary of the COP, while if ܩሺݔ’ሻ ൌ 0, it is 
in fact in the 0-boundary of the COP. This is beneficial as 
one can start with a larger value of ߝ and reduce it to smaller 
value with the aim of searching all feasible areas 
(explorations) at the beginning of the search and then 
focusing on the boundaries (exploitation). 

Note that if ܪఌሺݔሻ ൑ 0 then at least one of the 
constraints of the COP is 2ߝ-active.  

D Generalization and other derivatives of CBN 
It might be the case that the active constraints are known 

in a problem based on some prior knowledge. Let’s assume 

that all constraints in a subset of constraints are 2ߝ-active at 
x (shown by Φ ك ሼ1, 2, … , ݉ሽ). We define ܥ஍,ఌሺݔሻ as 
follows: ܥΦ,ߝሺݔሻ ൌ max ቄ݉ܽא݅׊ݔΦ ൛ห݃݅ሺݔሻ ൅ หߝ െ ൟߝ , Φב݅׊ݔܽ݉ ൛݃݅ሺݔሻൟቅ 11 

This function is called All in a subset CBN, ACBN. 
According to this definition, ܥ஍,ఌሺݔሻ ൑ 0 if and only if all 
constraints in Φ are 2ߝ-active at x and the other constraints 
are satisfied. Note that, it does not mean that the remaining 
constraints cannot be 2ߝ-active.  

 
(a) Original function 

 
(b) ܪ଴.ଷሺݔሻ 

 
(c) ܪ଴.ଵሺݔሻ 

 
(d) ܪ଴.଴ଵሺݔሻ 

Figure 4. Effects of CBN on a COP with two constraint (a) shows the 
infeasible region (dark red) and feasible regions (dark blue), (b, c, d) show ߝܪሺݔሻ ൐ 0 (dark red) and ߝܪሺݔሻ ൑ 0 (dark blue) with different ߝ values 
(0.3, 0.1, and 0.01, respectively). 

Figure 5 shows the areas where ܥ஍,଴.ଷሺݔሻ ൑ 0 for the 
COP defined in Eq. 5. When Φ ൌ ሼ1, 2ሽ (Figure 5(a)), we 
are after areas where both constraints are 0.6-active. The 
figure shows that there is no feasible point in this situation. 
This was actually expected because there is no point in the 
search space where both constraints are active. Figure 5(b) 
shows that, for Φ ൌ ሼ1ሽ, referring to constraint g1(x) is 2ε-
active while constraint g2(x) might be active or not, there is 
an arc-shape narrow area where ܥ஍,଴.ଷሺݔሻ ൑ 0. This is in fact 
the shape of the boundaries of the first constraint in Eq. 5. 
This is also similar (with a different shape) in the case Φ ൌ ሼ2ሽ. Finally, Φ might be empty (Φ ൌ ሼሽ) that refers to 
any constraint might be active or non-active, which is 
actually the whole feasible space. 

All of the aforementioned formulations can be useful in 
different situations. For a particular COP: 

• If nothing is known about the active constraints at 
the optimal solution, then use any of the four proposed 
formulations (Eq. 8, 9, 10 or 11) with ߝ set to the largest 
possible number if applicable, 
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• If it is known that at least one of the constraints is 2ߝ-active then use ܪఌሺݔሻ, CBN, 
• If it is known that at least one of the constraint of a 
known subset of constraints is 2ߝ-active (and of course 
the rest are satisfied) at the optimal solution then use ܪΩ,ఌሺݔሻ, SCBN, 
• If it is known that a subset of constraints are 2ε-
active and the remaining constraints are satisfied (might 
be 2ߝ-active or not), then use ܥ஍,கሺݔሻ, ACBN. 

 
(a) Φ ൌ ሼ1, 2ሽ 

 
(b) Φ ൌ ሼ1ሽ 

 
(c) Φ ൌ ሼ2ሽ 

 
(d) Φ ൌ ሼሽ 

Figure 5. The shape of the feasible (dark blue) and infeasible (dark red) 
areas according to the function ܥ஍,଴.ଷሺݔሻ when different knowledge is 
available about the active constraints (different Φ) (a) both constraints are 
active, (b) first constraint is active while the second might be active or not, 
(c) second constraint is active while the first might be active or not, and (d) 
there is no knowledge about active constraints.  

These instances of M(x) (Eq. 3) are compared with each 
other to see if they are really effective according to different 
knowledge about the constraints (whether they are active or 
not). We use PSO as the optimizer to compare these 
different instances. PSO is combined with a simple 
constraint handling method (used also in [2]) for COPs 
where the optimal solution is on the edge of feasibility. A 
simple constraint handling method for comparing two 
points, x and y, in the search space is as follows: 

• for ݉ܽݔሼܯሺݔሻ, ሻݕሺܯ  ൏ 0, x is better than y iff ݂ሺݔሻ ൏ ݂ሺݕሻ 
• for ܯሺݔሻ ൌ ሻݔሻ, x is better than y iff ݂ሺݕሺܯ ൏݂ሺݕሻ 
•   for all other cases, i.e. ݉ܽݔሼܯሺݔሻ, ሻሽݕሺܯ ൐ 0 and ܯሺݔሻ ് ሻݔሺܯ  ሻ, x is better than y iffݕሺܯ ൏  ሻݕሺܯ

IV EXPERIMENTS AND COMPARISONS 
In this section, the proposed instances of M(x) (Eq. 3), 

MCV, CBN, SCBN, and ACBN are tested when they are 
added to the PSO to solve COPs. The aim is to find out if the 
proposed constraint boundary narrower approaches can 

improve the performance of the algorithm in finding optimal 
solution. The COP test cases used for the comparisons were 
taken from a benchmark known as CEC06 [17]. This 
benchmark contains 24 COPs, however, we only consider 
the first 7 of them in our comparisons (shown by G01, G02, 
…, G07)2. The optimal solutions for these functions as well 
as the active constraints at the optimal solution are known 
[11]. In the case of SCBN and ACBN the known active 
constraints were specified for the algorithm. To make 
comparisons easier, the gap between the found solutions by 
the algorithm and the optimal solution is calculated and 
reported. This gap is calculated as follows: ݃ܽ݌ ൌ ฬכݖ െ כݖݖ ฬ 12 

where z* is the best known solution and z is the found 
solution by the algorithm. The maximum number of function 
evaluations was set to 100,000 and the number of 
dimensions for each test case was set according to the 
specifications recommended in [17]. The parameters for 
PSO were set to: ߱ ൌ 0.729, ߮ଵ ൌ ߮ଶ ൌ 1.49 (these 
parameters are frequently used in other PSO studies), 
population size = 30. The tests are done with two different 
values for ε (1 and 0.01).  

 
Figure 6. Results of using MCV, CBN, SCBN, and ACBN for the constraint 
violation. ε = 1 for all tests. 

CBN outperforms MCV in all cases except the case G02. 
This good performance was actually expected as CBN 
applies to the COPs with some prior knowledge, i.e. the 
optimal solution is on the boundaries. SCBN performs better 
than MCV in G01, G02, G03, G05, and G06. However, it is 
just slightly worse than MCV in G04 and G07. ACBN 
performs also better than MCV in G01, G03, G04, G05, 
G06, and it is slightly worse than MCV in G02 and G07. 
Let’s take a closer look into the test case G02. The 
formulation of G02 is exactly the same as in Eq. 5 (note that 
the first constraint is active at the optimal point). Figure 7 
shows M(x) (for two dimensional x’s in the interval 0 and 
10) when it is equal to CBN, ACBN, and MCV (note that, as 
G02 has only two constraints and its first constraint is active, 
the contour for ACBN and SCBN is the same as each other).  

                                                           
2 More comprehensive experiments are planned for the extended version of 
this paper. 
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When MCV is used, most of the area in the center (color 
spectrum from dark blue to light green in Figure 7(a)) is the 
feasible area. When the function CBN is used (Figure 7(b)), 
the area in the middle becomes infeasible and actually two 
disjoint feasible regions (two dark blue areas in Figure 7(b)) 
appear. The optimal solution is in the dark blue area in the 
bottom left of the figure. Moving from the feasible area on 
the top right of the figure to the feasible area on the bottom 
left is not that easy for optimization algorithms. The reason 
is that the area between these two regions is infeasible with 
very high value of M(x) (in this case, CBN), which traps the 
individuals in one of these two feasible areas. Thus, 
individuals that have converged to the solutions on the top 
right area are not able to move to the bottom left area easily, 
which results in missing optimal solution. However, when 
ACBN is used, there is a high chance for individuals to 
move towards the area where it contains the optimal solution 
(the dark blue area at the bottom left of Figure 7(c)). Note 
that, this area is in fact the only valley in the search space 
that is easy to converge to by most of optimization methods 
(PSO in this case).  

 
(a) 

 
(b) 

 
(c) 

Figure 7. The constraint violation space for G02 when M(x) is (a) MCV, (b) 
CBN with ε = 1, and (c) ACBN with ε = 1 and Φ ൌ ሼ1ሽ. 

To study the effect of ε on the performance of CBN 
functions, we applied the same test as mentioned above, but 
this time with ε=0.01. Figure 8 shows the results for ε=0.01 
when M(x) is set to different functions (MCV, CBN, SCBN, 
and ACBN).  

MCV outperforms CBN in G02, G05 (slightly), G06 
(slightly), and G07. The reason for the worse performance of 
CBN was the same as the one explained in the previous test 
when ε=1.  

In the test case G07, it is clear that the result has been 
affected by the value of ε. In fact, smaller value for ε results 
in worse performance of CBN in dealing with G07. A 
potential reason would be the smaller values for ε causes 

smaller feasible areas that might be far from each other. 
Hence, finding the feasible area that contains global 
optimum might be harder when ε is smaller. 

SCBN performs better than MCV in G03, G05, G06, and 
G07 and slightly worse than that in G01, G02, and G04. 
Also, ACBN performs better than MCV in G01, G03, and 
G07 and slightly worse than that in G02 and G05. However, 
ACBN performs substantially worse than MCV in G04 and 
G06. In G04 test case, it is obvious that the performance of 
ACBN has dropped substantially when the value of ε has 
decreased. This means a potential reason behind worse 
performance would be generating smaller feasible areas 
when ε is small, which makes finding feasible areas harder. 

 
Figure 8. Results of using MCV, CBN, SCBN, and ACBN for the constraint 
violation. ε = 0.01 for all tests. 

Let’s take a closer look at G06 to find out what is the 
reason that ACBN does not perform well on that; the 
function M(x) for G06 has been shown in Figure 9(a) when 
M(x) is MCV (the dark blue arc shaped area is the feasible 
area). The optimal solution is at the bottom right of the 
feasible area. By using ACBN (the feasible areas are two 
dark blue narrow areas at left and right of Figure 9(b)), this 
feasible area is divided into two areas, corresponding to the 
edges of feasibility (the optimal solution is in the right one).  

This splitting of the feasible area in fact causes the 
algorithm to sometimes converge to the feasible area where 
the optimal solution is not in (the left one in Figure 9(b)). 
This causes poor average performance of the algorithm. 

V CONCLUSIONS AND FUTURE WORK 
There has been some experimental evidence that showed 

the importance of searching the boundaries of feasible and 
infeasible areas in a constraint optimization problem (COP) 
[3, 4, 8]. This boundary is defined as: the points that are 
feasible and at least one of the constraints is zero for them. 
In this paper, three new instances (called Constraint 
Boundary Narrower, CBN, Subset CBN, SCBN, and All in a 
subset CBN, ACBN) for the constraint violation function 
were proposed which were able to reduce the feasible area to 
only boundaries of the feasible area. In the SCBN (ACBN), 

 

 

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

-8

-6

-4

-2

0

2

4

 

 

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

-1

0

1

2

3

4

5

6

 

 

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

G01 G02 G03 G04 G05 G06 G07

G
ap

 fr
om

 th
e 

be
st

 k
nw

on
 so

lu
tio

n 

MCV CBN SCBN ACBN

3065



 

it is possible to select a subset of constraints and limit the 
boundaries where at least one of these constraints (all of 
these constraints) is (are) active. The thickness of the 
boundaries was adjustable in the proposed method by a 
parameter (ε). Experiments showed that changing the value 
of ε influences the performance of the algorithm. In fact, a 
smaller value of ε causes limiting the feasible area to 
narrower boundaries, which makes finding the feasible areas 
harder. However, although it is harder to find the feasible 
areas (narrower boundaries), improving the final solutions is 
easier once the correct boundary was found. Thus, as a 
potential future work, one can design an adaptive method so 
that the search is started to explore the feasible area and then 
it is concentrated on the boundaries. 
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Figure 9. The contour of M(x) for the function G06 when (a) MCV is used, 
(b) ACBN is used (ε = 0.01 and Φ ൌ ሼ1, 2ሽ). 
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