

On the edge of feasibility: a case study of the particle swarm optimizer

Mohammad Reza Bonyadi
School of Computer Science
The University of Adelaide

mrbonyadi@cs.adelaide.edu.au

Zbigniew Michalewicz *
School of Computer Science
The University of Adelaide
zbyszek@cs.adelaide.edu.au

Abstract—1In many real-world constrained optimization

problems (COPs) it is highly probable that some constraints are
active at optimum points, i.e. some optimum points are
boundary points between feasible and infeasible parts of the
search space. A method is proposed which narrows the feasible
area of a COP to its boundary. In the proposed method the
thickness of the narrowed boundary is adjustable by a
parameter. The method is extended in a way that it is able to
limit the feasible regions to boundaries where at least one of the
constraints in a given subset of all constraints is active and the
remaining constraints might be active or not. Another
extension is able to limit the search to cases where all
constraints in a given subset are active and the rest might be
active or not. The particle swarm optimization algorithm is
used as a framework to compare the proposed methods. Results
show that the proposed methods can limit the search to the
requested boundary and they are effective in locating optimal
solutions on the boundaries of the feasible and infeasible area.

I INTRODUCTION
A constrained optimization problem (COP) is formulated

as follows:

ݔ ݀݊݅ܨ א ࣠ ك ܵ ك ܴ஽ ݐ݄ܽݐ ݄ܿݑݏ ቐݕ׊ א ࣠ ݂ሺݔሻ ൑ ݂ሺݕሻ, ሺܽሻ௜݃ሺݔሻ ൑ 0, ݅ ݎ݋݂ ൌ ݍ ݋ݐ 1 ሺܾሻ݄௜ሺݔሻ ൌ 0, ݅ ݎ݋݂ ൌ ݍ ൅ ݉ ݋ݐ 1 ሺܿሻ 1

where f, gi, and hi are real-valued functions on the search
space S, q is the number of inequalities, and ݉ െ is the ݍ
number of equalities. The set of all feasible points which
satisfy constraints (b) and (c) are denoted by ࣠ [1]. The
equality constraints are usually replaced by |݄݅ሺݔሻ| െ ߪ ൑ 0
where σ is a small value (normally set to 10ିସ) [2]. Thus, a
COP is formulated as ݔ ݀݊݅ܨ א ࣠ ك كܵ ܴ஽ ݐ݄ܽݐ ݄ܿݑݏ ൜ݕ׊ א ࣠ ݂ሺݔሻ ൑ ݂ሺݕሻ, ሺܽሻ݃௜ሺݔሻ ൑ 0, ݅ ݎ݋݂ ൌ ݉ ݋ݐ 1 ሺܾሻ 2

where ݃௜ሺݔሻ ൌ |݄௜ሺݔሻ| െ ݅ for all ߪ א ሼݍ ൅ 1, … , ݉ሽ.
Hereafter, the term COP refers to this formulation.

The constraint ݃௜ሺݔሻ is called active at the point x if the
value of ݃௜ሺݔሻ is zero. Also, if ݃௜ሺݔሻ ൏ 0 then ݃௜ሺݔሻ is
called inactive at x. Obviously, if x is feasible and at least
one of the constraints is active at x, then x is on the boundary
of the feasible and infeasible areas of the search space.

* Z. Michalewicz is with the School of Computer Science, the

University of Adelaide, Adelaide, SA 5005, Australia, and also at the
Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21,
01-237 Warsaw, Poland, at the Polish-Japanese Institute of Information
Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland.

In many real-world COPs it is highly probable that some
constraints are active at optimum points [3], i.e. some
optimum points are on the edge of feasibility. The reason is
that constraints in real-world problems often represent some
limitations of resources. Clearly, it is beneficial to make use
of some resources as much as possible, which means
constraints are active at quality solutions. Presence of active
constraints at the optimum points causes difficulty for many
optimization algorithms to locate optimal solution [4]. Thus,
it might be beneficial if the algorithm is able to focus the
search on the edge of feasibility for quality solutions.

In this paper it is assumed that there exists at least one
active constraint at the optimum solution of COPs. A new
function, called Subset Constraints Boundary Narrower
(SCBN), is proposed which enables the search methods to
focus on the boundary of feasibility with an adjustable
thickness rather than the whole search space. SCBN is
actually a function (with a parameter ߝ for thickness) that,
for a point x, its value is smaller than zero if and only if x is
feasible and the value of at least one of the constraints in a
given subset of all constraint of the COP at the point x is
within a predefined boundary with a specific thickness. By
using SCBN in any COP, the feasible area of the COP is
limited to the boundary of feasible area defined by SCBN, so
that the search algorithms can only focus on the boundary.
Some other extensions of SCBN are proposed that are useful
in different situations. SCBN and its extensions are used in a
particle swarm optimization (PSO) algorithm with a simple
constraint handling method to assess if they are performing
properly in narrowing the search on the boundaries.

The rest of this paper is organized as follows. Some
background information on the constraints violation value,
searching the edge of feasibility, and particle swarm
optimizer are given in section II. Section III presents the
proposed approach and its extensions, and in section IV the
comparison results are reported and discussed. Section V
concludes the paper.

II BACKGROUND
Some background on constraint violation value,

searching the edge of feasibility, and particle swarm
optimizer are discussed in this section.

A Constraint violation
A COP can be rewritten by combining all inequality

constraints to form only one inequality constraint. In fact,
any COP can be formulated as follows:

3059

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

ݔ ݀݊݅ܨ א ࣠ ك ܵ ك ܴ஽ ݐ݄ܽݐ ݄ܿݑݏ ൜ݕ׊ א ࣠ ݂ሺݔሻ ൑ ݂ሺݕሻ, ሺܽሻܯሺݔሻ ൑ 0 ሺܾሻ 3

where ܯሺݔሻ is a function that combines all constraints gi(x)
into one function. The function M(x) can be defined in many
different ways. The surfaces that are defined by different
instances of M(x) might be different. The inequality 3(b)
should capture the feasible area of the search space.
However, by using problem specific knowledge, one can
also define M(x) in a way that the area that is captured by ܯሺݔሻ ൑ 0 only refers to a sub-space of the whole feasible
area where high quality solutions might be found. In this
case, the search algorithm can focus only on the captured
area which is smaller than the whole feasible area and make
the search more effective. A frequently-used [5, 6] instance
of ܯሺݔሻ is a function K(x)

ሻݔሺܭ ൌ ෍ ,ሻݔሼ݃௜ሺݔܽ݉ 0ሽ௠
௜ୀଵ 4

Clearly, the value of K(x) is non-negative. K(x) is zero if
and only if x is feasible. Also, if ܭሺݔሻ ൐ 0, the value of K(x)
represents the maximum violation value (called the
constraint violation value).

B Searching the edge of feasibility
As in many real-world COPs, there is at least one active

constraint near the global best solution of COPs [3], some
researchers developed operators to enable search methods to
focus the search on the edges of feasibility. GENOCOP
(GEnetic algorithm for Numerical Optimization for
COnstrained Optimization) [7] was probably the first genetic
algorithm variant that applied boundary search operators for
dealing with COPs. Indeed, GENOCOP had three mutations
and three crossovers operators and one of these mutation
operators was a boundary mutation which could generate a
random point on the boundary of the feasible area.
Experiments showed that the presence of this operator
caused significant improvement in GENOCOP for finding
optimum for problems which their optimum solution is on
the boundary of feasible and infeasible area [7].

A specific COP was investigated in [8] and a specific
crossover operator, called geometric crossover, was
proposed to deal with that COP. The COP was defined as
follows: ݂ሺݔሻ ൌ | ∑ ௜ሻ஽௜ୀଵݔସሺݏ݋ܿ െ 2 ∏ ∑௜ሻ஽௜ୀଵඥݔଶሺݏ݋ܿ ௜ଶ஽௜ୀଵݔ݅ |

݃ଵሺݔሻ ൌ 0.75 െ ෑ ௜஽ݔ
௜ୀଵ ൑ 0

݃ଶሺݔሻ ൌ ෍ ௜஽ݔ
௜ୀଵ െ ൑ ܦ0.75 0

 5

where 0 ൑ ௜ݔ ൑ 10 for all i. Earlier experiments [9] shown
that the value of the first constraint (g1(x)) is very close to
zero at the best known feasible solution for this COP. The
geometric crossover was designed as ݔ௡௘௪,௝ ൌ ඥݔଵ,௜ݔଶ,௝,
where ݔ௜,௝ is the value of the jth dimension of the ith parent,
and ݔ௡௘௪,௝ is the value of the jth dimension of the new
individual. By using this crossover, if ݃ଵሺݔԦଵሻ ൌ ݃ଵሺݔԦଶሻ ൌ 0,

then ݃ଵሺݔԦ௡௘௪ሻ ൌ 0 (the crossover is closed under g1(x)). It
was shown that an evolutionary algorithm that uses this
crossover is much more effective than an evolutionary
algorithm which uses other crossover operators in dealing
with this COP. In addition, another crossover operator was
also designed [8], called sphere crossover, that was closed
under the constraint ݃ሺݔሻ ൌ ∑ ௜ଶ஽௜ୀଵݔ െ 1. In the sphere
crossover, the value of the new offspring was generated by ݔ௡௘௪,௝ ൌ ටݔߙଵ,௝ଶ ൅ ሺ1 െ ଶ,௝ଶݔሻߙ , where ݔ௜,௝ is the value of the

jth dimension of the ith parent, and both parents ݔԦଵ and ݔԦଶ are
on g(x). This operator could be used if g(x) is the constraint
in a COP and it is active on the optimal solution.

In [4], several different crossover operators closed under ݃ሺݔሻ ൌ ∑ ௜ଶ஽௜ୀଵݔ െ 1 were discussed. These crossovers
operators included repair, sphere (explained above), curve,
and plane operators. In the repair operator, each generated
solution was normalized and then moved to the surface of
g(x). In this case, any crossover and mutation could be used
to generate offspring; however, the resulted offspring is
moved (repaired) to the surface of g(x). The curve operator
was designed in a way that it could generate points on the
geodesic curves, curves with minimum length on a surface,
on g(x). The plane operator was based on the selection of a
plane which contains both parents and crosses the surface of
g(x). Any point on this intersection is actually on the surface
of the g(x) as well. These operators were incorporated into
several optimization methods such as GA and Evolutionary
Strategy (ES) and the results of applying these methods to
two COPs were compared.

A variant of evolutionary algorithm for optimization of a
water distribution system was proposed [10]. The main
argument was that the method should be able to make use of
information on the edge between infeasible and feasible area
to be effective in solving the water distribution system
problem. The proposed approach was based on an adapting
penalty factor in order to guide the search towards the
boundary of the feasible search space. The penalty factor
was changed according to the percentage of the feasibility of
the individuals in the population in such a way that there are
always some infeasible solutions in the population. In this
case, crossover can make use of these infeasible and feasible
individuals to generate solutions on the boundary of feasible
region.

In [11], a boundary search operator was adopted from [7]
and added to an ant colony optimization (ACO) method. The
boundary search was based on the fact that the line segment
that connects two points x and y, where one of these points
are infeasible and the other one is feasible, crosses the
boundary of feasibility. A binary search can be used to
search along this line segment to find a point on the
boundary of feasibility. Thus, any pair of points (x, y), where
one of them is infeasible and the other is feasible, represents
a point on the boundary of feasibility. These points were
moved by an ACO during the run. Experiments showed that
the algorithm is effective in locating optimal solutions that
are on the boundary of feasibility.

3060

C Particle swarm optimization
Particle swarm optimization (PSO) algorithm is an

iterative stochastic optimization method proposed in 1995
[12]. In PSO, there is a population (aka swarm) of
individuals (aka particles), each individual i at iteration t
contains three vectors: position (ݔԦ௧௜), velocity (ݒԦ௧௜), and
personal best (݌Ԧ௧௜). The position of each particle is used to
evaluate the particle and it replaces ݌Ԧ௧௜ if it was better than
that. The velocity vector is used to move the particles to new
positions. In each iteration, the velocity and position of each
particle is updated by: ݒԦ௧ାଵ௜ ൌ Ԧ௧௜ݒ ൅ ߮ଵܴଵ൫݌Ԧ௧௜ െ Ԧ௧௜൯ݔ ൅ ߮ଶܴଶ൫ Ԧ݃௧ െ Ԧ௧ାଵ௜ݔ Ԧ௧௜൯ 6ݔ ൌ Ԧ௧௜ݔ ൅ Ԧ௧௜ݒ 7

where Ԧ݃௧ is the best personal best over the whole swarm, ߮ଵ
and ߮ଶ are two constants, known as acceleration
coefficients, and ܴଵ and ܴଶ are two D by D diagonal
matrices. The values of the diagonal of ܴଵ and ܴଶ are set by
uniform random numbers in the interval [0, 1] in each
iteration for each particle independently. The velocity
updating rule was modified in [13] where ݒԦ௧௜ was replaced by ߱ݒԦ௧௜. The coefficient ߱ is known as inertia weight and
controls the influence of the previous velocity vector on the
new velocity. From now on, the term PSO in this paper
refers to this model with inertia weight. The algorithm has
been used in many different areas of constraint optimization,
such as dealing with linear equality constraints in COPs
[14], dealing with COPs in general case [2, 15], locating
feasible regions in COPs [16], among others.

III PROPOSED APPROACH
In this section, three alternative instances for M(x) (Eq.

3) are proposed to reduce the feasibility area of any COP to
only the boundary of that COP. In fact, by using any of the
proposed instances for M(x), a new COP is constructed in
which ܯሺݔሻ ൑ 0 if and only if the point x is on the boundary
of the COP.

A Definition of a boundary point
Let’s define a ߜ-active constraint in a COP as follows:

Definition 1: ݃௜ሺݔሻ is a ߜ-active constraint at the point x
if െߜ ൑ ݃௜ሺݔሻ ൑ .is a small positive value ߜ where ,ߜ

Accordingly, a ߜ-boundary point is defined as:

Definition 2: x is a ߜ-boundary point of a COP if x is
feasible and at least one of the constraints of the COP is ߜ-
active at x, where ߜ is a small positive value. Also, the set of
all ߜ-boundary points in a COP is called ߜ-boundary of the
COP.

Definition 2 allows us to define different levels of
boundaries. The edge of feasibility is defined as follows:

Definition 3: x is said to be on the edge of feasibility if it
is a 0-boundary point.

Definition 3 refers also to the fact that for any point x on
the edge of feasibility, ݃௜ሺݔሻ ൌ 0 for at least one i.

B Proposed instances for M(x)
Consider a COP with constraints gi(x). The value of K(x)

in Eq. 4 is zero if and only if x is feasible i.e. K(x) vs. x is a
flat area for the set of all feasible points. Because K(x) is
zero for all feasible solutions, it is impossible to distinguish
whether a feasible point x is on the edge of feasibility or not.
Of course there are many alternative instances for M(x). One
possible instance for M(x) is a function G(x) ܩሺݔሻ ൌ ଵஸ௜ஸ௠ሼݔܽ݉ ௜݃ሺݔሻሽ 8

The function G(x) is called Maximum Constraints
Violation, MCV, function. Clearly, ܩሺݔሻ ൑ 0 if and only if ݔ א ࣠. Note that, according to definition 1 and Eq. 3, if x is
a ߜ-boundary point of a COP then െߜ ൑ ሻݔሺܩ ൑ 0. By
using this instance for M(x), one can recognize whether x is a ߜ-boundary of the COP by simply testing whether െߜ ൑ܩሺݔሻ ൑ 0. Note that, although G(x) allows determination
whether a point is a ߜ-boundary, ܩሺݔሻ maintains the whole
feasible area for a COP and it is not able to restrict the
search on the boundary of feasibility by its own.

Assume that for a given COP, it is known that at least
one of the constraints in the set ሼ݃௜אΩሺݔሻሽ is ߜ-active at the
optimum solution and the remaining constraints are satisfied
at x, where Ω ك ሼ1, 2, … , ݉ሽ. Let’s define ܪΩ,ఌሺݔሻ as
follows: ܪΩ,εሺݔሻ ൌ max ቄቚ݉ܽא݅ݔΩ ൛݃݅ሺݔሻൟ ൅ ቚߝ െ ,ߝ Ωב݅ݔܽ݉ ൛݃݅ሺݔሻൟቅ 9

where ߝ is a positive value. This function is called Subset
Constraint Boundary Narrower, SCBN. Obviously, ܪΩ,கሺݔሻ ൑ 0 if and only if at least one of the constraints in
the subset Ω is 2ߝ-active and the others are satisfied. The
reason is that, the component |݉ܽݔ௜אΩሼ݃௜ሺݔሻሽ ൅ |ߝ െ is ߝ
negative if x is feasible and at least one of ݃௜אΩሺݔሻ is 2ߝ-
active. Also, the component ݉ܽݔ௜בΩሼ݃௜ሺݔሻሽ ensures that the
rest of constraints are satisfied.

Let’s investigate a special case of SCBN where Ω ൌሼ1, 2, … , ݉ሽ in more detail. We define the function ܪఌሺݔሻ as
follows (note that we drop the subscript Ω when it refers to
all existing constraints): ܪఌሺݔሻ ൌ ሻݔሺܩ| ൅ |ߝ െ 10 ߝ

where ߝ is a positive value and G(x) is defined by Eq. 8. This function
is called Constraint Boundary Narrower (CBN) throughout the paper.

Figure 1 presents ܪఌሺݔሻ vs. G(x) and illustrates that െ2ߝ ൑ ሻݔሺܩ ൑ 0 if and only if ܪఌሺݔሻ ൑ 0. This in fact
implies that the areas in where x satisfies ܪఌሺݔሻ ൑ 0
correspond with the 2ߝ-boundary of the COP. Thus, if we set ߝ to a value in the interval ሾ0, ఋଶሿ then ܪఌሺݔሻ ൑ 0 if x is a ߜ-
boundary point of the COP. The value of ߝ determines the
desired thickness of the boundary. Note that if ߝ ൌ 0 then ܪఌሺݔሻ ൑ 0 corresponds to the points where G(x)=0, i.e. edge
of feasibility of the COP. Also, if ߝ is set to a value larger
than หmin൫ܩሺݔሻ൯ห over all x then ܪఌሺݔሻ is equal to ܩሺݔሻ for
all x.

To summarize,

3061

• The area where ܪఌሺݔሻ ൑ 0 corresponds to the 2ߝ-
boundary of the COP
• If ߝ א ቂ0, ఋଶቃ then ܪఌሺݔሻ ൑ 0 corresponds to ߜ-
boundary of the COP
• If ߝ ൌ 0 then ܪఌሺݔሻ ൑ 0 corresponds to the edge of
feasibility of the COP
• If ߝ ൐ หmaxܵאݔ׊൫ܩሺݔሻ൯ห then ܪఌሺݔሻ ൌ ሻ for allݔሺܩ
x, which refers to the whole feasible area of the COP

ε−ε2−
ε

ε

ε−

))((xGHε

Figure 1. The graph of ߝܪ൫ܩሺݔሻ൯ . The value of ߝܪ൫ܩሺݔሻ൯ is negative if
and only if െ2ߝ ൑ ሻݔሺܩ ൑ 0 for any value of x. Also, if ܩሺݔሻ ൐ 0 then ߝܪ൫ܩሺݔሻ൯ ൌ .ሻ for any value of xݔሺܩ

Let’s consider some examples to see how ܪఌሺݔሻ ൑ 0
corresponds to the 2ߝ-boundary of feasible area.

C Examples for CBN
Three examples are provided to show how ܪఌሺݔሻ ൑ 0

represents the boundary of feasibility of a COP.

Example 1:

Consider a single variable COP with the following single
constraint:

ଵ݃ሺݔሻ ൌ ሺݔ ൅ 2ሻଶ െ 3 ൑ ሻݔఌሺܪ :ሻ is calculated asݔఌሺܪ 0 ൌ ቚ max1൑݅൑݉൛݃݅ሺݔሻൟ ൅ ቚߝ െ ߝ ൌ ห݃1ሺݔሻ ൅ หߝ െ ߝ

Figure 2 shows the constraint g1(x), G(x), and ܪఌሺݔሻ and
Figure 2(a) shows the curves of the constraint ݃ଵሺݔሻ and ܩሺݔሻ ൌ max׊௜൫݃௜ሺݔሻ൯ where െ5 ൑ ݔ ൑ 5. Figure 2(b)
shows ܩሺݔሻ and ܪఌሺݔሻ in the same interval of x. The value
of ߝ was set to 0.5. The red shaded areas in Figure 2(c) show
the areas where x satisfies ܪఌሺݔሻ ൑ 0. It is obvious that if x
satisfies ܪఌሺݔሻ ൑ 0 then it satisfies ܩሺݔሻ ൑ 0 and also x is a ߜ-boundary point. Note that the value of ܪఌሺݔሻ reduces only
to െߝ, however, for any x where െ2ߝ ൑ ሻݔሺܩ ൑ 0, we have ܪఌሺݔሻ ൑ 0.

(a) (b)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

G(x)

H(x)

(c)

Figure 2. Effects of the function CBN on a COP with one constraint (a) the
constraint g1(x) and the constraint violation MCV, (b) MCV and CBN
 .(૙.૞ሺ࢞ሻࡴ) zoomed in of MCV and CBN (c) ,(૙.૞ሺ࢞ሻࡴ)

Example 2:

Consider a single variable COP with the following two
constraints: ݃1ሺݔሻ ൌ ݔ݁ െ 1݃2ሺݔሻ ൌ 2ݔ െ ሻݔఌሺܪ :ሻ is calculated asݔఌሺܪ 3 ൌ ቚ max1൑݅൑݉൛݃݅ሺݔሻൟ ൅ ቚߝ െ ߝ

Figure 3 shows the constraints, G(x), and ܪఌሺݔሻ and
Figure 3(a) shows the curves of two constraints (݃ଵሺݔሻ and ݃ଶሺݔሻ) and ܩሺݔሻ ൌ maxଵஸ௜ஸ௠ሼ݃௜ሺݔሻሽ where െ3 ൑ ݔ ൑ 3.
Figure 3(b) shows ܩሺݔሻ and ܪఌሺݔሻ in the same interval of x.
The value of ߝ was set to 0.1. Figure 3(c) shows a zoomed in
version of Figure 3(b). The regions between the red curve, ܪఌሺݔሻ, and the horizontal axes are the regions where ܪఌሺݔሻ ൑ 0 (red shaded). It is clear that these two regions
correspond to the ߜ-boundary in the original COP.

Example 3:

Let’s consider another example to see how ܪఌሺݔሻ ൑ 0
represents the ߜ-boundary of a COP in a two dimensional
space (a COP with two variables) with two constraints: ݃1ሺݔሬԦሻ ൌ 2ݔ1൅ݔ݁ െ 1݃2ሺݔሬԦሻ ൌ sinሺ1ݔሻ ൅ 1.9 cosሺ2ݔሻ ൅ 1

The value of ܪఌሺݔሻ for this COP can be expressed by the
following formula: ܪఌሺݔሻ ൌ ቚ maxଵஸ௜ஸ௠ሼ ௜݃ሺݔሻሽ ൅ ቚߝ െ ߝ

-5 -4 -3 -2 -1 0 1 2 3 4 5
-10

0

10

20

30

40

50

g1(x)

G(x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-10

0

10

20

30

40

50

G(x)

H(x)

3062

(a) (b)

-2 -1.5 -1 -0.5 0
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

G(x)

H(x)

(c)

Figure 3. Effects of CBN on a COP with two constraints (a) two constraints
g1(x) and g2(x), and the constraint violation MCV (G(x)), (b) MCV and 0.1ܪሺݔሻ, (c) the red areas are the areas where 0.1ܪሺݔሻ ൑ 0.

Figure 4 shows the original feasible space as well as the
space where ܪఌሺݔሻ ൑ 0 (െ5 ൏ ,ଵݔ ଶݔ ൏ 5) for different
values of ߝ.

Clearly, ܪఌሺݔሻ ൑ 0 indicates the boundaries of feasible
regions of the COP with some thickness. This thickness is
adjustable by changing the value of ߝ, the smaller the value
of ߝ, the thinner the boundary. Note that if ߝ set to zero, ܪఌሺݔሻ represents the boundary of feasibility with the
thickness equal to zero. Thus, it shows the lines where ܩሺݔሻ ൌ 0, i.e. at least one of the constraints is 0-active.

There is an important advantage for the proposed CBN
(and SCBN) in comparison to other methods discussed in
section II.B: it is possible to control how close to the
boundaries should be sought by the algorithm, which was
not adjustable in other methods. In fact, other methods
considered two types of feasible points: boundary and non-
boundary. However, in CBN, one can define a spectrum
from non-boundary to boundary points. As an example, a
feasible point x for which ܩሺݔሻ ൌ െ2 is considered as a
point in the 1-boundary of the COP, while if ܩሺݔ’ሻ ൌ 0, it is
in fact in the 0-boundary of the COP. This is beneficial as
one can start with a larger value of ߝ and reduce it to smaller
value with the aim of searching all feasible areas
(explorations) at the beginning of the search and then
focusing on the boundaries (exploitation).

Note that if ܪఌሺݔሻ ൑ 0 then at least one of the
constraints of the COP is 2ߝ-active.

D Generalization and other derivatives of CBN
It might be the case that the active constraints are known

in a problem based on some prior knowledge. Let’s assume

that all constraints in a subset of constraints are 2ߝ-active at
x (shown by Φ ك ሼ1, 2, … , ݉ሽ). We define ܥ஍,ఌሺݔሻ as
follows: ܥΦ,ߝሺݔሻ ൌ max ቄ݉ܽא݅׊ݔΦ ൛ห݃݅ሺݔሻ ൅ หߝ െ ൟߝ , Φב݅׊ݔܽ݉ ൛݃݅ሺݔሻൟቅ 11

This function is called All in a subset CBN, ACBN.
According to this definition, ܥ஍,ఌሺݔሻ ൑ 0 if and only if all
constraints in Φ are 2ߝ-active at x and the other constraints
are satisfied. Note that, it does not mean that the remaining
constraints cannot be 2ߝ-active.

(a) Original function

(b) ܪ଴.ଷሺݔሻ

(c) ܪ଴.ଵሺݔሻ

(d) ܪ଴.଴ଵሺݔሻ

Figure 4. Effects of CBN on a COP with two constraint (a) shows the
infeasible region (dark red) and feasible regions (dark blue), (b, c, d) show ߝܪሺݔሻ ൐ 0 (dark red) and ߝܪሺݔሻ ൑ 0 (dark blue) with different ߝ values
(0.3, 0.1, and 0.01, respectively).

Figure 5 shows the areas where ܥ஍,଴.ଷሺݔሻ ൑ 0 for the
COP defined in Eq. 5. When Φ ൌ ሼ1, 2ሽ (Figure 5(a)), we
are after areas where both constraints are 0.6-active. The
figure shows that there is no feasible point in this situation.
This was actually expected because there is no point in the
search space where both constraints are active. Figure 5(b)
shows that, for Φ ൌ ሼ1ሽ, referring to constraint g1(x) is 2ε-
active while constraint g2(x) might be active or not, there is
an arc-shape narrow area where ܥ஍,଴.ଷሺݔሻ ൑ 0. This is in fact
the shape of the boundaries of the first constraint in Eq. 5.
This is also similar (with a different shape) in the case Φ ൌ ሼ2ሽ. Finally, Φ might be empty (Φ ൌ ሼሽ) that refers to
any constraint might be active or non-active, which is
actually the whole feasible space.

All of the aforementioned formulations can be useful in
different situations. For a particular COP:

• If nothing is known about the active constraints at
the optimal solution, then use any of the four proposed
formulations (Eq. 8, 9, 10 or 11) with ߝ set to the largest
possible number if applicable,

-3 -2 -1 0 1 2 3
-5

0

5

10

15

20

g1(x)

g2(x)

G(x)

-3 -2 -1 0 1 2 3
-5

0

5

10

15

20

G(x)

H(x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

3063

• If it is known that at least one of the constraints is 2ߝ-active then use ܪఌሺݔሻ, CBN,
• If it is known that at least one of the constraint of a
known subset of constraints is 2ߝ-active (and of course
the rest are satisfied) at the optimal solution then use ܪΩ,ఌሺݔሻ, SCBN,
• If it is known that a subset of constraints are 2ε-
active and the remaining constraints are satisfied (might
be 2ߝ-active or not), then use ܥ஍,கሺݔሻ, ACBN.

(a) Φ ൌ ሼ1, 2ሽ

(b) Φ ൌ ሼ1ሽ

(c) Φ ൌ ሼ2ሽ

(d) Φ ൌ ሼሽ

Figure 5. The shape of the feasible (dark blue) and infeasible (dark red)
areas according to the function ܥ஍,଴.ଷሺݔሻ when different knowledge is
available about the active constraints (different Φ) (a) both constraints are
active, (b) first constraint is active while the second might be active or not,
(c) second constraint is active while the first might be active or not, and (d)
there is no knowledge about active constraints.

These instances of M(x) (Eq. 3) are compared with each
other to see if they are really effective according to different
knowledge about the constraints (whether they are active or
not). We use PSO as the optimizer to compare these
different instances. PSO is combined with a simple
constraint handling method (used also in [2]) for COPs
where the optimal solution is on the edge of feasibility. A
simple constraint handling method for comparing two
points, x and y, in the search space is as follows:

• for ݉ܽݔሼܯሺݔሻ, ሻݕሺܯ ൏ 0, x is better than y iff ݂ሺݔሻ ൏ ݂ሺݕሻ
• for ܯሺݔሻ ൌ ሻݔሻ, x is better than y iff ݂ሺݕሺܯ ൏݂ሺݕሻ
• for all other cases, i.e. ݉ܽݔሼܯሺݔሻ, ሻሽݕሺܯ ൐ 0 and ܯሺݔሻ ് ሻݔሺܯ ሻ, x is better than y iffݕሺܯ ൏ ሻݕሺܯ

IV EXPERIMENTS AND COMPARISONS
In this section, the proposed instances of M(x) (Eq. 3),

MCV, CBN, SCBN, and ACBN are tested when they are
added to the PSO to solve COPs. The aim is to find out if the
proposed constraint boundary narrower approaches can

improve the performance of the algorithm in finding optimal
solution. The COP test cases used for the comparisons were
taken from a benchmark known as CEC06 [17]. This
benchmark contains 24 COPs, however, we only consider
the first 7 of them in our comparisons (shown by G01, G02,
…, G07)2. The optimal solutions for these functions as well
as the active constraints at the optimal solution are known
[11]. In the case of SCBN and ACBN the known active
constraints were specified for the algorithm. To make
comparisons easier, the gap between the found solutions by
the algorithm and the optimal solution is calculated and
reported. This gap is calculated as follows: ݃ܽ݌ ൌ ฬכݖ െ כݖݖ ฬ 12

where z* is the best known solution and z is the found
solution by the algorithm. The maximum number of function
evaluations was set to 100,000 and the number of
dimensions for each test case was set according to the
specifications recommended in [17]. The parameters for
PSO were set to: ߱ ൌ 0.729, ߮ଵ ൌ ߮ଶ ൌ 1.49 (these
parameters are frequently used in other PSO studies),
population size = 30. The tests are done with two different
values for ε (1 and 0.01).

Figure 6. Results of using MCV, CBN, SCBN, and ACBN for the constraint
violation. ε = 1 for all tests.

CBN outperforms MCV in all cases except the case G02.
This good performance was actually expected as CBN
applies to the COPs with some prior knowledge, i.e. the
optimal solution is on the boundaries. SCBN performs better
than MCV in G01, G02, G03, G05, and G06. However, it is
just slightly worse than MCV in G04 and G07. ACBN
performs also better than MCV in G01, G03, G04, G05,
G06, and it is slightly worse than MCV in G02 and G07.
Let’s take a closer look into the test case G02. The
formulation of G02 is exactly the same as in Eq. 5 (note that
the first constraint is active at the optimal point). Figure 7
shows M(x) (for two dimensional x’s in the interval 0 and
10) when it is equal to CBN, ACBN, and MCV (note that, as
G02 has only two constraints and its first constraint is active,
the contour for ACBN and SCBN is the same as each other).

2 More comprehensive experiments are planned for the extended version of
this paper.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

G01 G02 G03 G04 G05 G06 G07

G
ap

 fr
om

 th
e

be
st

 k
no

w
n

so
lu

tio
n

MCV CBN SCBN ACBN

3064

When MCV is used, most of the area in the center (color
spectrum from dark blue to light green in Figure 7(a)) is the
feasible area. When the function CBN is used (Figure 7(b)),
the area in the middle becomes infeasible and actually two
disjoint feasible regions (two dark blue areas in Figure 7(b))
appear. The optimal solution is in the dark blue area in the
bottom left of the figure. Moving from the feasible area on
the top right of the figure to the feasible area on the bottom
left is not that easy for optimization algorithms. The reason
is that the area between these two regions is infeasible with
very high value of M(x) (in this case, CBN), which traps the
individuals in one of these two feasible areas. Thus,
individuals that have converged to the solutions on the top
right area are not able to move to the bottom left area easily,
which results in missing optimal solution. However, when
ACBN is used, there is a high chance for individuals to
move towards the area where it contains the optimal solution
(the dark blue area at the bottom left of Figure 7(c)). Note
that, this area is in fact the only valley in the search space
that is easy to converge to by most of optimization methods
(PSO in this case).

(a)

(b)

(c)

Figure 7. The constraint violation space for G02 when M(x) is (a) MCV, (b)
CBN with ε = 1, and (c) ACBN with ε = 1 and Φ ൌ ሼ1ሽ.

To study the effect of ε on the performance of CBN
functions, we applied the same test as mentioned above, but
this time with ε=0.01. Figure 8 shows the results for ε=0.01
when M(x) is set to different functions (MCV, CBN, SCBN,
and ACBN).

MCV outperforms CBN in G02, G05 (slightly), G06
(slightly), and G07. The reason for the worse performance of
CBN was the same as the one explained in the previous test
when ε=1.

In the test case G07, it is clear that the result has been
affected by the value of ε. In fact, smaller value for ε results
in worse performance of CBN in dealing with G07. A
potential reason would be the smaller values for ε causes

smaller feasible areas that might be far from each other.
Hence, finding the feasible area that contains global
optimum might be harder when ε is smaller.

SCBN performs better than MCV in G03, G05, G06, and
G07 and slightly worse than that in G01, G02, and G04.
Also, ACBN performs better than MCV in G01, G03, and
G07 and slightly worse than that in G02 and G05. However,
ACBN performs substantially worse than MCV in G04 and
G06. In G04 test case, it is obvious that the performance of
ACBN has dropped substantially when the value of ε has
decreased. This means a potential reason behind worse
performance would be generating smaller feasible areas
when ε is small, which makes finding feasible areas harder.

Figure 8. Results of using MCV, CBN, SCBN, and ACBN for the constraint
violation. ε = 0.01 for all tests.

Let’s take a closer look at G06 to find out what is the
reason that ACBN does not perform well on that; the
function M(x) for G06 has been shown in Figure 9(a) when
M(x) is MCV (the dark blue arc shaped area is the feasible
area). The optimal solution is at the bottom right of the
feasible area. By using ACBN (the feasible areas are two
dark blue narrow areas at left and right of Figure 9(b)), this
feasible area is divided into two areas, corresponding to the
edges of feasibility (the optimal solution is in the right one).

This splitting of the feasible area in fact causes the
algorithm to sometimes converge to the feasible area where
the optimal solution is not in (the left one in Figure 9(b)).
This causes poor average performance of the algorithm.

V CONCLUSIONS AND FUTURE WORK
There has been some experimental evidence that showed

the importance of searching the boundaries of feasible and
infeasible areas in a constraint optimization problem (COP)
[3, 4, 8]. This boundary is defined as: the points that are
feasible and at least one of the constraints is zero for them.
In this paper, three new instances (called Constraint
Boundary Narrower, CBN, Subset CBN, SCBN, and All in a
subset CBN, ACBN) for the constraint violation function
were proposed which were able to reduce the feasible area to
only boundaries of the feasible area. In the SCBN (ACBN),

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

-1

0

1

2

3

4

5

6

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

G01 G02 G03 G04 G05 G06 G07

G
ap

 fr
om

 th
e

be
st

 k
nw

on
 so

lu
tio

n

MCV CBN SCBN ACBN

3065

it is possible to select a subset of constraints and limit the
boundaries where at least one of these constraints (all of
these constraints) is (are) active. The thickness of the
boundaries was adjustable in the proposed method by a
parameter (ε). Experiments showed that changing the value
of ε influences the performance of the algorithm. In fact, a
smaller value of ε causes limiting the feasible area to
narrower boundaries, which makes finding the feasible areas
harder. However, although it is harder to find the feasible
areas (narrower boundaries), improving the final solutions is
easier once the correct boundary was found. Thus, as a
potential future work, one can design an adaptive method so
that the search is started to explore the feasible area and then
it is concentrated on the boundaries.

(a)

1 2 3 4 5 6 7 8 9
14

14.2

14.4

14.6

14.8

15

0

2

4

6

8

10

12

14

16

18

20

22

7 7.5 8 8.5 9 9.5
14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

0

2

4

6

8

10

12

14

(b)

Figure 9. The contour of M(x) for the function G06 when (a) MCV is used,
(b) ACBN is used (ε = 0.01 and Φ ൌ ሼ1, 2ሽ).

VI ACKNOWLEDGEMENTS
This work was partially funded by the ARC Discovery

Grant DP130104395 and by grant N N519 5788038 from the
Polish Ministry of Science and Higher Education (MNiSW).

VII REFERENCES ATGF
[1] Z. Michalewicz and M. Schoenauer, "Evolutionary algorithms

for constrained parameter optimization problems," Evolutionary
Computation, vol. 4, pp. 1-32, 1996.

[2] M. R. Bonyadi, X. Li, and Z. Michalewicz, "A hybrid particle
swarm with velocity mutation for constraint optimization
problems," in Genetic and Evolutionary Computation
Conference, ACM, 2013, pp. 1-8.

[3] M. Schoenauer and Z. Michalewicz, "Evolutionary computation
at the edge of feasibility," PPSN IV, pp. 245-254, 1996.

[4] M. Schoenauer and Z. Michalewicz, "Boundary Operators for
Constrained Parameter Optimization Problems," in ICGA, 1997,
pp. 322-329.

[5] T. P. Runarsson and X. Yao, "Stochastic ranking for constrained
evolutionary optimization," IEEE Tran. on Evolu. Comp., vol. 4,
pp. 284-294, 2000.

[6] X. Li, M. R. Bonyadi, Z. Michalewicz, and L. Barone, "Solving
a real-world wheat blending problem using a hybrid evolutionary
algorithm," in IEEE CEC, 2013, pp. 2665-2671.

[7] Z. Michalewicz, Genetic algorithms + data structures =
evolution programs: Springer, 1992.

[8] Z. Michalewicz, G. Nazhiyath, and M. Michalewicz, "A note on
usefulness of geometrical crossover for numerical optimization
problems," in Fifth Ann. Conf. on Evolu. Progr., 1996, pp. 305–
312.

[9] A. Keane. (1994, Thursday, May 19). Genetic algoritm digest.
Available: ftp://ftp.cse.msu.edu/pub/GA/gadigest/v8n16.txt

[10] Z. Y. Wu and A. R. Simpson, "A self-adaptive boundary search
genetic algorithm and its application to water distribution
systems," Journal of Hydraulic Research, vol. 40, pp. 191-203,
2002.

[11] G. Leguizamon and C. A. C. Coello, "Boundary Search for
Constrained Numerical Optimization Problems With an
Algorithm Inspired by the Ant Colony Metaphor," IEEE Tran.
Evolu. Comp., vol. 13, pp. 350-368, 2009.

[12] R. Eberhart and J. Kennedy, "A new optimizer using particle
swarm theory," in Symposium on Micro Machine and Human
Science, IEEE, 1995, pp. 39-43.

[13] Y. Shi and R. Eberhart, "A modified particle swarm optimizer,"
in World Congress on Computational Intelligence, IEEE, 1998,
pp. 69-73.

[14] U. Paquet and A. P. Engelbrecht, "Particle swarms for linearly
constrained optimisation," Fundamenta Informaticae, vol. 76,
pp. 147-170, 2007.

[15] J. Liang, S. Zhigang, and L. Zhihui, "Coevolutionary
comprehensive learning particle swarm optimizer," in Congress
on Evolutionary Computation, IEEE, 2010, pp. 1-8.

[16] M. R. Bonyadi and Z. Michalewicz, "Locating potentially
disjoint feasible regions of a search space with a particle swarm
optimizer," in Evolutionary Constrained Optimization, K. Deb,
Ed., ed: Springer-Verlag, 2014.

[17] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P.
Suganthan, C. C. Coello, et al., "Problem definitions and
evaluation criteria for the CEC 2006 special session on
constrained real-parameter optimization," Nangyang
Technological University, Singapore, Technichal report, 2006.

1 2 3 4 5 6 7 8 9
14

14.2

14.4

14.6

14.8

15

15.2

0

2

4

6

8

10

12

14

16

18

20

22

3066

